
© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_8

 Practical DevOps
 Leveraging Existing Reference Sources, Roles,

and Practices

 In enterprise computing, DevOps will never operate in a vacuum. Over many
years businesses have invested, adopted, and adapted many other methodolo-
gies and practices. For DevOps to be successful, this means many practices
and existing roles (beyond development and operations) should be care-
fully reviewed and, if necessary, adjusted to drive improvements across the
DevOps-enabled software factory.

 DevOps and Enterprise Architecture
 For many years, organizations have understood the dangers of technical debt.
That is, the additional overhead arising when badly designed, poorly tested,
and defect-ridden software is accepted for short-term gain. Analogous to
financial debt, too much technical debt and the associated interest can cripple
an organization to a point where they’re constantly putting right previous
wrongs at the expense of delivering new innovations.

 Architectural debt is similar to technical debt and equally problematic. Poor
architectural decisions can severely limit an organization’s ability to move
toward more agile styles of delivery. The result can be lower levels of innova-
tion, slower time to market, or more cost and effort consumed rebuilding appli-
cations. These poor decisions are the consequence of conflicting architectural

 C H A P T E R

8

Chapter 8 | Practical DevOps126

perspectives. On the one hand, scant regard for architecture and unconstrained
development leads to software that is hard to integrate, support, and enhance.
On the other, overly defined architecture is difficult and complex to implement,
leading to delays in software delivery.

 Some DevOps practitioners feel that they don’t need to be guided Enterprise
Architecture (EA). Conversely, many Enterprise Architects believe that rigorous
dictates, methodologies, and practices must be adopted fully by DevOps pro-
grams. In truth, both agile development and DevOps cannot succeed without
EA. However, the scope and application of the discipline must change to acceler-
ate DevOps benefits without burdening the business with additional risk.

 Without Good Architecture IT Builds Software
Slums
 The UK high-rise tower blocks built circa 1950-1980 were heralded as archi-
tectural wonders. Large towers housing the same population as the smaller
pre-war houses they replaced. With large rooms, excellent views, and sur-
rounding open spaces, they were initially lauded as the low-cost future for
urban housing. However, there were many problems.

 Due to cost cutting, substandard materials, demanding deadlines, and rushed
construction practices, these modern-age housing miracles quickly became the
new slums of the day. And by building tower-blocks across the country, town
planners unwittingly replicated bad designs everywhere. The result: undesir-
able housing, elevated crime levels, and urban decay. Even the surrounding
open areas and playgrounds were neglected because no one had ownership
over maintenance or supervised them.

 In many ways, this is analogous to many architectural design calamities made
by IT in the past.

 Built over many decades, rigid monolithic application designs have become
difficult to scale and require costly maintenance. They’re also tough to police
and secure, with vandalism and theft being a constant problem. Add to this
integration issues (IT’s own unsupervised open spaces) and we’re left with sys-
tems that are inadequate to meet the needs of modern digital business. That's
not to say, however, that modern design approaches are the panacea. Web and
microservices introduce new architectural issues, not the least, dependency
management and monitoring complexity.

 Enterprise Architecture Must Adapt to the Times
 DevOps, with its focus on collaboration across the entire service lifecycle, is
now seen as the answer to many of these issues. This is fine in principle, but
without flexible EA, the end result could be IT developing application “slums,”
only more of them at an increased pace.

DevOps for Digital Leaders 127

 With some justification, many DevOps practitioners argue that heavy EA
practices and frameworks haven’t evolved to match the pace of agile. Iterative
style development essentially means an end product very different from the
initial idea, which necessitates a transition from set-in-stone architectures to
a more fluid mix based on continuously evolving decisions. And if architects
can’t adapt, autonomous agile teams with easier access to open source and
cloud-based resources are increasingly empowered to make architectural
calls. But this can be problematic.

 Great developers don’t necessarily make great architects; they’re not hard-
wired that way. Charging down a development path without architectural
guiderails, or tactically making team-based decisions, could address short-
term development requirements but compromise broader program-level
objectives. For example:

• Scalability and performance issues needed to address
the business strategy of tripling the customer base and
increasing satisfaction scores are neglected because
development only concentrates on delivering more
functionality.

• Developers acquire public cloud resources to accelerate
application testing, but don’t consider masking personally
identifiable customer details when moving test data. As a
result, organizations (especially those in heavily regulated
industries) risk compliance breaches and heavy financial
penalties.

• Because of team-based technical bias, a development
group chooses one NoSQL database over the technology
already used by another team. The existing technology
would have met their needs (albeit with compromises),
but their technology bias has significantly increased the
support burden on IT operations.

 It’s important not to lay the blame squarely on development. Architects should
recognize that any misalignment between existing processes (particularly the
rigid ones) and the vision of an increasingly software-driven business will only
further isolate the practice to the eventual detriment of the business.

 New Fluid Guidelines and Principles
 By incorporating the experience of enterprises architects within DevOps
teams, organizations can maintain the pace of software delivery without intro-
ducing chaos. What’s key, however, is to limit architectural over-engineering
and provide development groups a minimum set of EA so as to avoid technical
and architectural debt.

Chapter 8 | Practical DevOps128

 Even in minimal-mode, EA can still help developers quickly identify critical
software design issues. The aim being to guide developers into understanding
what architectural facets make up a successful application, and more impor-
tantly, how new ways of thinking can support more sustainable software
innovation.

 Interestingly, these practices are analogous to those that could be used to
avoid building “housing slums”:

 Avoid substandard or unsupported materials— Development tools will
most likely comprise both commercial and open source software and utilize
both on-premise and cloud-based infrastructure. Teams must ensure applica-
tion supportability becomes a key consideration, especially as more modern
applications comprising multiple components move into production.

 ■ Note Just as the cost of maintaining UK housing tower-blocks reached unsustainable levels,

so too will support burden on the organization when open source software isn’t maintained and

enhanced by the broader software community or lacks commercial backing. Enterprise architects

should also work closely with development to understand where constraints lead to testing

compromises—the “construction shortcuts” syndrome, resulting in compliance and quality issues.

 New technologies shouldn’t rehouse old problems —Enterprise archi-
tects should avoid rigid and inflexible edicts on technology usage. For example,
mandating that all applications must be containerized, even legacy applications.
This could be extremely problematic since the runtime-independent nature of
containerized applications will extend the life of “problems” and provides no
incentive to clear existing technical debt.

 ■ Note As UK high-rise housing tower-blocks degraded and vandalism increased, many local

authorities tried to contain the situation by housing “problem groups” in the same units. Enterprise

architects should avoid the same trap as they adopt technologies such as public cloud services

and containers.

 Monitor and manage sub-contractors —Whatever cloud model is
adopted, abstracting away the infrastructure or application stack frees up
development to focus on coding. But this shouldn’t mean relinquishing vis-
ibility and control over application performance and the end user experience.
To this end, enterprise architects must act as cloud-brokerage advisors. For
example, working to ensure that cloud service providers incorporate open
APIs with their offerings so that monitoring can be seamlessly incorporated
into existing tools.

DevOps for Digital Leaders 129

 Building new digital services with DevOps is only part of the role of EA. The
innovations of today may become legacies of the future, while many new apps
must also integrate with existing systems that have strict compliance and risk
controls. It’s essential therefore that architecture covers both bases, working
in minimal mode to ensure fast construction of quality services, but also apply-
ing standards and governance when needs dictate and systems change.

 Actions to Establish EA in DevOps Programs
 Some important steps needed to ensure EA becomes a sustainable contribu-
tor to a DevOps initiative include:

• Communication —To impress the importance of flexible
architecture practices and standards. For example, API
instrumentation shouldn’t be mandated with rigid rules,
but by carefully outlining how the practice improves soft-
ware quality and supportability. This involves building
closer ties with developers to ensure the right tooling
decisions are being made. Enterprise architects should
always emphasize that their participation isn’t to slow
down one particular team, but to ensure that team deci-
sions (especially tooling) support broader program goals
and objectives.

• Collaboration —In dynamic agile environments, it’s natu-
ral for small teams to only focus on their own project
and not consider the wider business context. Enterprise
architects must apply flexible governance to ensure all
stakeholders are involved in decision making without
the system becoming overly bureaucratic. To this end,
the governance approach must outline the need for big-
picture strategy at an overall application portfolio level
(complete with funding, commitment and risk manage-
ment), together with support at a project level so to
drive better outcomes in a business context. This sup-
port should start at the requirements phase and extend
across the software development lifecycle.

 DevOps and Information Security
 It’s a common misnomer that DevOps only involves closer collaboration
between development and IT operations teams. In actuality, DevOps pro-
grams must also involve other disciplines that have traditionally been engaged
late in the software development lifecycle. This is especially important with
regard to information security.

Chapter 8 | Practical DevOps130

 At first glance it appears that the goals of DevOps and security are at odds.
Whereas DevOps calls for increasing the delivery of high-quality software,
security and compliance seeks careful and deliberate oversight to ensure the
business isn't opening itself up to vulnerabilities. And with a mountain of rules
and regulations to support, it's not surprising that security could easily become
being regarded as another bottleneck in release and deployment processes.

 All teams must accept that security is a key facet of “high-quality” software,
which again can be established without slowing down development. There are
four essential practices to consider:

 Make everyone accountable for security —DevOps impresses the need
shared responsibility and accountability. Therefore, security professionals
should seek to build relationships with dev and ops teams and engage them
as active stakeholders and participants in driving security improvements. As
with enterprise architecture, this doesn't mean continually enforcing rigid
and inflexible policies, but actually working collaboratively to assign security
responsibilities to the team's best positioned to act on them. For example,
during every application security incident, developers responsible for the
actual code implicated should really be the first group called to help address
the problem. These teams will be much more familiar with the software work-
ings, plus the lessons they learn will help harden application security.

 Demonstrate how DevOps improves security and vice versa —As
organizations increasingly embrace DevOps, there'll be many new automated
tools and practices introduced. As with everything new, these elements could
introduce new threats and risk. Rather than see this as a problem, highly col-
laborative teams should work proactively to identify where additional guid-
ance and controls are needed and can be applied without causing friction.

 Take the development of a new mobile application for example. Here security
experts can provide critical guidance on new threat surfaces, API governance
requirements, and vulnerability testing. It’s also important to consider that
many new tools introduced (especially in areas like configuration manage-
ment and release automation) also provide an opportunity for teams to build
and improve security within the continuous delivery pipeline. To this end,
it becomes less about making DevOps more secure and more about using
DevOps (and especially automation) to improve security. This could include:

• Invoking techniques such as static code analysis during
every application build, or providing development teams
with comprehensive and fully automated security testing
services that can be used repeatedly.

• Automatically creating the minimum set test cases with
maximum security test coverage, right from the earliest
stages of software development: the requirements phase.

DevOps for Digital Leaders 131

• Reducing security test cycle preparation time by request-
ing and reserving accurate and compliant data from a test
data repository.

• Generating realistic synthetic test data and incorpo-
rating directly into virtual or emulated services so as
to improve testing quality while avoiding compliance
exposures.

 Shift security “left” —As with the traditional development to opera-
tions code handballing, the tendency has been to engage security very
late in the development process. Too often, security teams are seen as
the bottleneck police, holding up deployment with snap code audits and
lengthy compliance checks. DevOps practices, however, enable security to
be established during parallel development and testing. As code is devel-
oped, automated tests can be automatically invoked to continuously check
and demonstrate compliance controls. This could include separation-of-
duties and privileged user access controls, or masking personally identi-
fiable customer information during cloud-based testing to demonstrate
compliance.

 ■ Note By shifting security controls left into development and continuous delivery, it becomes

easier to demonstrate compliance against a broad range of regulations (e.g., Federal Security

Information Management Act—FISMA and General Data Protection Regulation—GDPR). High

costs and delays resulting from auditors coming late into the process and finding the system isn't

compliant may also be avoided.

 As applications become increasingly complex and threats more pervasive,
highly skilled security specialists will become highly prized and critical
element to the success of any DevOps initiative. Organizations shouldn’t
make the mistake of assuming that developers themselves with a smatter-
ing of web application security experience can take on a full time security
role (or will even want to), or that security staff (more used to maintaining
security in legacy applications that infrequently change) can suddenly think
like an agile developer. Over time, these skills will need to be developed
by leveraging DevOps style collaboration. This could include agile teams
inviting security to participate in user story development, stand up meet-
ings, and retrospectives. For security professionals, it also means gaining
credibility with a more detailed understanding of modern coding prac-
tices, providing faster feedback, and becoming an active voice in all security
related discussions.

Chapter 8 | Practical DevOps132

 Rethinking Security Practices for DevOps
 For many organizations, embedding security professionals into DevOps teams
isn’t practical. There just aren’t enough of them and security operations
may have problems scaling to handle a sudden influx of software changes.
Addressing this requires a radical rethink on how to best apply security prac-
tices. This can involve:

• Using security as a guiderail —Security must take a lead in
developing solutions and policies that all development
teams can adopt. However, if teams gain management
approval to bypass a policy because it slows them down,
or the business unit accepts the trade-off is well worth
the risk, security shouldn’t stand in their way. Rather,
security should measure their security capabilities and
continue to inform teams about the risks of their actions.

• Building closer collaboration with suppliers —With appli-
cations moving to the cloud, organizations must work
closely with software and cloud service providers to
instruct what additional security controls and methods
are needed in order to develop, test, and store informa-
tion, without carrying additional risk. Businesses operating
in different industry verticals will have specific compli-
ance and data protection mandates, meaning providers
must be willing to act in a more enterprise-friendly man-
ner. This involves service providers including customers
in development roadmaps and a willingness to support
enterprise specific security requirements.

• Making security a whole-of-business issue —The role of secu-
rity in DevOps should be to make security everybody’s
issue, not just the responsibility of the highly specialized
security team. One effective way to do this is to develop a
hierarchical security scoring system. If for example a defi-
cient security practice is detected during the provisioning
of a test environment, then the team responsible should
be rated accordingly. That score should also bubble up to
a group or divisional level. In this way, everyone (includ-
ing senior management across business and IT) becomes
more accountable.

• Proactively involving security —While it might not be prac-
tical to embed security specialization into every team,
the security group can establish small teams charged
with continuously testing security across the software

DevOps for Digital Leaders 133

development pipeline. At regular times this team will
focus on particular services (even groups of people) and
use their expertise to hunt out vulnerabilities and log
via established ticketing mechanisms with the appropriate
classification and priority. During these exercises, no one
should be immune from investigation or the activity lim-
ited to static systems. Even if teams are in the middle of
a large important release, any severe problems detected
must be addressed immediately.

 Essential Characteristics of Security-Minded DevOps
 As illustrated in Table 8-1 , a security-minded DevOps program transcends
beyond reacting and fixing security problems to protecting the business as
applications are designed, developed, and tested.

 DevOps and IT Service Management
 While DevOps as a movement is relatively new and many organizations are
in the early stages of adoption, most have heavily invested in more established
methodologies and practices—especially ITIL® 1 . Since its inception in 1994,
ITIL has been positioned as the most complete approach to IT management,
with the exception of project management and enterprise architecture. It’s
not surprising then that upwards of two million people had some form of
ITIL training (from foundational to expert) and that most enterprises have
adopted many of the processes as detailed across the five ITIL volumes (ser-
vice strategy, service design, service transition, service operations, and con-
tinuous improvement). For some, this starts and ends with service operations

 Table 8-1. DevOps and Security: Organizational Mindset

 Customers first Mindset that enables security to be continually tailored

according to customer needs and business outcomes.

 Team alignment Flexible organizational structures that enable security

expertise to be embedded within development, testing, and

operational functions.

 Proactive engagement Constantly assessing the security readiness across the

software development lifecycle by introducing unplanned

security events and threats.

 Continuous investigation Thorough analysis of external attempts to attack a business so

teams can remediate security issues quickly and effectively.

 1 ITIL® is a (registered) trademark of AXELOS Limited. All rights reserved.

Chapter 8 | Practical DevOps134

processes (especially the service desk function together with incident, prob-
lem, and change management problems), while others have embraced a fuller
lifecycle-based approach to adoption.

 DevOps and ITIL
 Despite common misconceptions, ITIL is not specifically opposed to agile and
DevOps thinking. For example, the service strategy volume promotes the
notion of continuous improvement via feedback across the service lifecycle,
while service design mentions agile and iterative design. However, despite the
synergies, the general philosophy behind ITIL is one of rigorous sequential
planning and control via process; opposite of the fast iterative design approach
of agile development. ITIL also suggests that silos will continue to exist (albeit
aligned around 26 processes), whereas the idea of smaller cross-functional
style product teams, fast feedback, managing work in process, and small batch
sizes is not well supported.

 This appears to suggest that ITIL is becoming increasingly irrelevant with the
practices under increased enterprise scrutiny. While this is perhaps true, it’s
important to appreciate where coexistence is practical and the immense value
established ITIL processes can still deliver a DevOps program—especially
core ITIL processes (e.g., incident and problem management).

 Take problem management for example. This can provide considerable insight
into the behavior and performance of a particular application, which can
inform developers of needed non-functional improvements. This can also help
teams avoid getting information (often conflicting) from a variety of sources.
Additionally, a standard incident/problem ticketing method across develop-
ment and operations may help improve teamwork and collaboration.

 Overcoming Resistance
 The biggest problem with respect to DevOps adoption is the resistance to
change by established ITSM practitioners within the organization. Very often
many roles are aligned around ITIL processes (change managers, problem
managers, etc.), so it’s natural people may resist DevOps if they feel their
careers are threatened. To this end, DevOps and ITSM leaders must actively
work to better understand how existing roles and practices can be enabler of
successful DevOps capabilities and where refinements are needed. This could
include:

 Developing a better understanding of change —The adoption of ITIL has
led many organizations to create the often-maligned Change Advisory Boards
(CABs). Meeting infrequently, these groups have the unenvious task of approving
production changes—essentially becoming the control point for delivery.

DevOps for Digital Leaders 135

 DevOps’ approach to change is radically different. With DevOps, all change is
encouraged unless it introduces greater risk and the increased probability of
adverse customer and business impact. To this end, change isn’t policed at the
end of the cycle, but managed at the start of development. This is supported
by many automated methods, including:

• Automatically establishing tests early, even when require-
ments are being established

• Maintaining consistent environmental configurations
across development, test, and production

• Automated construction and invocation of testing during
development, application builds, promotion, etc.

• Visibility and automation of complete release workflows

 In dynamic agile environment, the rigor associated with CAB style change
management may be too inflexible. It’s important that ITIL roles readjust pro-
cesses to accommodate the more continuous introduction of change. This
could involve CAB leadership determining which DevOps-related changes do
not require the normal process rigor and may bypass the traditional controls.

 Integrating existing ITIL processes with DevOps —DevOps practitio-
ners should collaborate with ITIL process owners to determine where inte-
gration with existing systems can drive improvements. Even if changes have
to go through an approval process (e.g., for systems subject to compliance
controls), this can be streamlined by integrating release automation with the
change request process (normally maintained in a help desk system). Rather
than rely on manually entering a change request separately, this activity would
be incorporated in the actual release automation workflow itself, together
with all necessary approval requests and escalations. In another example,
security managers could work closely with DevOps practitioners, establishing
technologies such as privileged access management to better accommodate
the needs of developers without compromising strict compliance controls.

 Participating in DevOps discussions —With many years of experience, ITIL
practitioners can provide DevOps practitioners essential knowledge needed to
drive improvements. An experienced IT operations manager could, for example,
demonstrate how application performance management tools can be used in
pre-production to identify any performance related problems undetected dur-
ing earlier stages of testing. On the flip-side, ITIL process owners may ben-
efit from newer tools introduced by agile and DevOps practitioners. Examples
include configuration management and release automation solutions.

 Beyond discussions and as illustrated in Table 8-2 , there are many other
practices that teams can adopt to reinforce the value of more collaborative
behaviors.

Chapter 8 | Practical DevOps136

 DevOps and Lean Startup
 While DevOps will need to coexist with and leverage traditional IT prac-
tices such as ITIL, there may be occasions when DevOps practices are very
appropriate to help drive the adoption and success of newer business-driven
methodologies. One such example is Lean Startup, a method for developing
businesses and accelerating product development through a combination of
hypothesis-driven experimentation, iterative product releases, and validated
learning.

 Originally proposed in 2008 by Eric Ries 2 , the Lean Startup promise is to help
businesses iteratively develop products to meet customer needs, while reduc-
ing market risks and avoiding heavy project funding and expensive product
launches and failures.

 DevOps practices have many synergies with Lean Startup, including:

• Customer focus —Lean Startup places great emphasis
on validated learning, which is basically the process for
understanding quickly what a customer actually needs
or wants so that useful (and profitable) products can
be developed. Agile and DevOps can help achieve this
through the delivery of smaller units of work or itera-
tions, after which results are validated.

 Table 8-2. Example Behavioral Practices for DevOps and ITIL Teams

 Practice Example

 Celebrate successes Service managers present the business outcomes from a

successful release together with lessons learned.

 Improvement indicators Service management team attends daily stand-up meetings and

presents how data sharing has improved the supportability of a

new application.

 Recognition and rewards At a joint weekly meeting, DevOps and service management

teams jointly recognize individuals who have demonstrated

strong collaboration and a shared commitment to driving

improvements.

 Reinforcing vision At a weekly meeting, IT operations leadership reinforces the

vision and goals of the DevOps program.

 Satisfaction snapshots Process owners are regularly engaged to assess the current

level of engagement and support for a DevOps program.

 2 “ The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation To Create
Radically Successful Businesses ,” Eric Ries, September 2011

http://books.google.com/books?id=tvfyz-4JILwC
http://books.google.com/books?id=tvfyz-4JILwC

DevOps for Digital Leaders 137

• Fast feedback —Lean Startup success depends heavily on
continuous customer feedback during product develop-
ment. This is to ensure that business don’t invest unneces-
sary time and money developing features that customers
don’t want. DevOps supports this through two practices.
First, by teams aligning activities to business outcomes and
developing actionable metrics (discussed in Chapter 3),
and secondly by employing continuous delivery processes
to quickly release and test prototypes, experiments, etc.

• Team collaboration —With Lean Startup promoting the
continuous running of experiments and validation, it is
critical that all cross-functional teams operate in unison.
In such fast-paced environments, any form of waste like
long cycle times and delays hampers validated learning
and inhibits the flow of value. It's why DevOps prac-
titioners supporting a Lean Startup model place great
emphasis on reducing all elements of waste across the
software lifecycle (see Chapter 3).

 Summary
 Being myopically focused of DevOps to such an extent that existing bodies of
knowledge and best practices are shunned or ignored is a recipe for disaster.
That said, organizations must also be ready to adjust existing methods, roles,
and practices. As this chapter illustrates, this includes enterprise architecture
and information security.

 In the next chapter, we'll describe important tangible business benefits and
strategies needed to accelerate DevOps ROI.

http://dx.doi.org/10.1007/978-1-4842-1842-6_3
http://dx.doi.org/10.1007/978-1-4842-1842-6_3

	Chapter
8: Practical DevOps
	DevOps and Enterprise Architecture
	Without Good Architecture IT Builds Software Slums
	Enterprise Architecture Must Adapt to the Times
	New Fluid Guidelines and Principles
	Actions to Establish EA in DevOps Programs

	DevOps and Information Security
	Rethinking Security Practices for DevOps
	Essential Characteristics of Security-Minded DevOps

	DevOps and IT Service Management
	DevOps and ITIL
	Overcoming Resistance

	DevOps and Lean Startup
	Summary

