
© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_6

 Deploy
 Building an Agile, Resilient, and Scalable

Continuous Delivery Pipeline

 To keep pace with demands for new features and application updates, digital
transformation must be driven by continuous delivery—the ability to rapidly
and reliably release software across the pipeline at any time.

 By almost every metric, companies that address this imperative create a
competitive advantage over those that lag. Yet few companies have actually
developed the process maturity and scalable automation needed to deliver
applications at the volume, velocity, and quality levels now required to remain
competitive.

 Before looking the challenges and strategies needed to increase maturity, let’s
examine how advanced DevOps thinking backed by release automation has
helped technology giant Citrix significantly cut deployment times and reduce
errors during the release process. 1

 C H A P T E R

6

 1 Full story: http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-
boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-
automation.pdf

http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/case-studies/citrix-boosts-business-agility-and-accelerates-devops-adoption-with-ca-release-automation.pdf

Chapter 6 | Deploy88

 Case Study: Citrix
 Citrix provides a range of virtualization, networking, and cloud solutions to
around 400,000 customers worldwide. To help create more productive work-
spaces both for its customers and own users, Citrix is continually looking at
ways to improve its business operations and enable innovation. As part of this
drive, Citrix created an Office of IT Delivery Optimization in December 2014,
which is tasked with evaluating and improving all aspects of IT. As part of its
optimization efforts, the team is embracing DevOps principles. As Eugene
Lehenbauer, Worldwide IT Delivery Optimization Group Manager at Citrix,
explains, “Adopting a DevOps approach to IT delivery will help us achieve bet-
ter cross-team collaboration, faster delivery, and greater quality.”

 Although individual development, architecture, and design teams at Citrix had
already embarked on their own DevOps journeys, the company wanted to
take a more centralized approach to maximize results and share best prac-
tices. “Supporting innovation and free-thinking is really important at Citrix,
so we didn’t want to impose a specific toolset,” says Lehenbauer. “We did,
however, want to give teams the option of using a proven enterprise platform
for automating application deployments to help free up their people from
repetitive and mundane tasks.”

 During the proof of concept exercise, Citrix moved from manual release
processes to fully automated release processes, reducing deployment time
by 80 percent. But that was not enough for the Citrix team. Development
was inspired to re-architect the one large “MyCitrix” application into many
smaller pieces, which, along with release automation, enabled the application
deployment time to be reduced further to 94 percent.

 “Achieving such impressive and immediate quantifiable results has really
helped accelerate the adoption of DevOps principles across the business and
inspired development innovation,” explains Lehenbauer.

 A central dashboard permits everyone involved to view the status of all
releases, giving teams the information they need to act quickly and providing
an audit trail for development and operational teams alike.

 The weekly updates to MyCitrix are managed via a release automation solu-
tion. “Since deploying Release Automation, we’ve achieved faster delivery
times and fewer issues. As a result, we now have more developers focused on
innovating, rather than reacting,” added Lehenbauer.

 Release automation has been a catalyst for Citrix’s adoption of DevOps prin-
ciples. It has enabled Citrix to take an enterprise-level approach to application
delivery by automating application release tasks and orchestrating its continu-
ous delivery toolchain.

DevOps for Digital Leaders 89

 Citrix has been able to significantly accelerate its application delivery and
reduce the errors and time required during the release process. This has
helped the company to be more responsive to customer needs, ensure com-
pliance and auditability, and focus on innovation instead of repetitive tasks.

 Obstacles to Continuous Delivery
 As the Citrix story demonstrates, continuously delivering software is an
extremely collaborative process that spans multiple departments, from devel-
opment to test, to release management to operations. With so many stake-
holders and motivations, the challenges faced by development-focused teams
can be very different than those confronting operations professionals.

 Development Challenges
 With an emphasis on increasing throughput, major obstacles are delays and
release bottlenecks. For example:

• Manual, time-consuming, error-prone environment provi-
sioning and release processes

• Numerous errors happening throughout the applica-
tion release cycle and lots of detective work to find the
source of problems

• Inefficiencies caused by the uncoordinated adoption of
open source tools, leading to duplication of effort, redun-
dant solutions, and disjointed integration

• Slow response to customer feedback and market needs
impacting customer retention and acquisition

 Operations Challenges
 With an emphasis on ensuring stability, major challenges involve guaranteeing
resilience as the volume and velocity of deployments increases. For example:

• Fractured release processes; managing with spreadsheets,
scripts, and tools

• Difficulty managing/tracking the volume of releases as
more agile development ensues

• Long weekends, low staff-morale and stress due to prob-
lems when finally deploying to production

Chapter 6 | Deploy90

• Double-digit application outages or downtime happening
each month and needing an “all hands on deck” approach
to resolve

• Loss of customers and revenue due to downtime/outages
or errors in application deployments

 Finding Common Ground
 Regardless of the issues facing each team, it's important that common ground
and consensus is reached by tracking all issues preventing successful business
outcomes. This is a shared exercise and involves all stakeholders collectively
working to determine where the organization as a whole is on the path to
automating software releases that drive a continuous flow of value to the
business and its customers.

 ■ Tip Consider organizing a continuous delivery “current state” workshop that brings all

stakeholders together. These may include application owners, developers, enterprise architects,

security managers, change managers, release managers, operations, and support.

 To facilitate open discussion, some good conversation-starters include:

• In terms of continuous delivery, what are our agreed
business goals and metrics?

• How are we managing and executing application deploy-
ments? What elements are heavily scripted and rely on
manual intervention?

• How are we configuring environments from development
through to production? Are different teams using differ-
ent processes?

• Across the software pipeline, what are the readily visible
bottlenecks in the application release process?

• What automation tools are currently leveraged (e.g., con-
tinuous integration and configuration management)? Are
teams using different tools?

 By jointly answering questions like these, teams can develop a structured
understanding of where there may be weaknesses across the entire release
pipeline and identify opportunities to automate and improve processes.

DevOps for Digital Leaders 91

 ■ Tip Try not to restrict analysis to release teams and processes only. Look for opportunities

where automation can help drive improvements in development and testing. Careful attention

should be given to how the “current state” affects the work of others. For example, if there are

release delays, how does this impact development? What processes are they using to circumvent?

 For example, are development teams being pulled off important refactoring work because of

delays? Is testing being pushed late in the cycle or neglected because teams think they have time

to do it later?

 Continuous Delivery Maturity
 As with all new technologies and best practices, organizations will be at differ-
ent points on the journey to continuous delivery (see Figure 6-1). Some will
have already begun, often by adopting facets of agile or even DevOps, while
others will just be starting out. In fact, it’s not uncommon for different teams
across IT to be at different points in adoption.

CO
NT

IN
UO

US
 D

EL
IV

ER
Y

M
AT

UR
IT

Y

Manual
Scriptin

g

Automated

Continuous

Optimized

BUSINESS VALUE

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

?

Optimized
Organization
for DevOps

Continuous
Improvement

End-to -End
Connection

Consistency &
Collaboration

Heroes &
Heavy Lifting

AG
IL

E
M

AT
UR

IT
Y

Silos, manual handovers, waterfall,
one release/year, monolithic apps,
long term project/resource
planning, error prone release
processes

DevOps, end -to -end delivery,
incremental agile/sprint release

cadence, multi -component micro
apps, “on the fly” scrum planning,

reliable and continuous releases

Release Automation

 Figure 6-1. Continuous delivery maturity levels

 Level 1: (Manual)
 At this level, success depends on the competence and heroics of the people
doing the delivery. Teams are very much operating in silos. Application releases
are error-prone and infrequent and the business is badly positioned to act
quickly on new opportunities, defend market position, or retain customers.

Chapter 6 | Deploy92

 Level 2: (Scripting)
 Deployment processes are planned per release, and status is managed
and tracked. Automation may exist for some deployment capabilities (e.g.,
scripts). Teams are probably using version control/repositories (e.g., Nexus)
and doing automated builds using tools like Jenkins/CloudBees. It's likely
that provisioning or configuration management tools like Chef or Puppet
are used to help with delivery, but no application-centric end-to-end release
orchestration is employed.

 Level 3: (Automated)
 Here, there are common, reusable, automated application delivery processes
established across environments and releases. Release processes, release
metadata, and release artifacts are monitored and tracked under full lifecycle
control. Delivery automation exists at the environment release level, which
may include leveraging existing provisioning and deployment automation capa-
bilities (which may not be scalable).

 Level 4: (Continuous)
 At this stage, release automation orchestrates application release promotion,
enabling predictable, monitored, and measurable continuous delivery from
development to production. Organizations can deploy applications consis-
tently across different types of environments and releasing software is a rou-
tine and relatively low-risk event.

 Level 5: (Optimized)
 Now all elements are working in a fully orchestrated fashion to provide a
zero-touch deployment—from planning to production. Continuous optimi-
zation of end-to-end application delivery processes through feedback loops,
with deployment patterns, scenario simulation, and analysis of operational
release data are used to continuously improve cost-performance of applica-
tion delivery. Teams manage multiple applications (multi-services) through the
continuous delivery pipeline, which becomes a single point of control. There
is also a strong focus on resilience and continuous availability.

 No matter where you sit on the continuous delivery maturity curve, one thing
is clear—every new level provides tangible benefits. Processes become more
automated and standardized. And teams become more productive, focusing
on delivering differentiating features rather than managing unplanned work
and maintenance tasks. They can handle the growing tempo and complexity
of applications, while still ensuring quality and resilience.

DevOps for Digital Leaders 93

 Accelerating Maturity: Three Ways
 As Figure 6-1 illustrates, the adoption of automated release processes and
tools typically drives major inflection points in a continuous delivery journey.
There are three important considerations.

 The First Way: Connect End-to-End Release
Management
 Scripting to Automated

 Taking an end-to-end release automation approach is essential in order to
execute a successful continuous delivery strategy. Key to this is the ability
to automate and standardize application releases all the way from develop-
ment through to production, combined with capabilities to plan, manage, and
optimize the release pipeline to improve quality and processes. Rather than
act in isolation, release automation must easily integrate with other processes
and tools (e.g., continuous integration, provisioning, and configuration man-
agement) across the continuous delivery toolchain; seamlessly scaling as the
volume, velocity, and complexity of applications grow.

 Taking this step to end-to-end release automation also supports DevOps
adoption. It becomes easier for teams to have the release transparency, com-
munication, and consistency needed for more purposeful collaboration.

 More importantly, cross-functional teams gain control and visibility of the
entire release pipeline, looking at the release process systematically versus
in silos.

 At this and any stage it’s important to measure how improvements are help-
ing support the business goals of continuous delivery that were identified
before any toolset implementation. For a large Fortune 100 financial services
company participating in a release automation ROI study, this involved increas-
ing application release rates across the software lifecycle. As stated by the
manager of DevOps enterprise release and deployment, “One of our core
application deployments was done twice a week due to lack of automation,
intensive manpower, and complicated deployment procedure. After automat-
ing this application deployment with release automation, the application is
being deployed at least 50 times in a week, all the way from continuous inte-
gration to production.” 2

 2 The Total Economic Impact™ of CA Release Automation, December 2015: http://
www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-
economic-impact-of-ca-release-automation.pdf

http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf

Chapter 6 | Deploy94

 ■ Tip Never underestimate the people impact when introducing new automated release

methods. Rather than enforcing enterprise adoption, consider small but important projects where

benefits can be quickly demonstrated. This can become the catalyst for wider support.

 The Second Way: Operationalize Feedback Loops
 Automated to Continuous

 While automation is essential for continuous delivery, it’s only the start of
the journey. As automated end-to-end release processes become firmly
entrenched, many new release challenges emerge. Taken individually or as a
whole (as illustrated in Table 6-1), these pressure points drive a shift to better
pipeline management.

 Table 6-1. Pressure Points Increase the Need for Advanced Release Automation

 Application Content
Complexity

 Infusing releases with feedback more quickly

 Prioritizing deployment of the right content

 Demonstrating implementation against business requirements

 Preventing “polluted” content from reaching production

 The Pipeline Multiplier
Effect

 Planning, tracking, and prioritizing many complex multi-level

applications and independently developed services

 Managing dependencies and avoiding conflicts

 Sharing resources between multiple teams, projects, and

timelines

 Pipeline Tooling
Expansion

 Juggling a growing breadth of open source, home-grown, and

third-party commercial tools used across the enterprise by

different teams

 As these pressure points intensify, organizations need to consider processes
for executing multi-team, cross-app, composite releases, while ensuring
all dependencies are handled. The proliferation of moving parts requires a
“big picture” view of the pipeline to maintain throughput, contain issues, and
ensure fast feedback.

 More importantly, the continuous delivery pipeline is becoming the single
control point and application delivery is becoming streamlined, predictable,
and risk-free. At this stage, release automation is orchestrating tools and
processes beyond deployment, including application lifecycle management
(ALM) and service management processes (e.g., change management). This is
essential for DevOps, since it strengthens feedback loops and better informs
decision-making.

DevOps for Digital Leaders 95

 Many more teams within in the enterprise should now be running apps
through the single control point. If they are, they are better equipped to estab-
lish a framework of continuous delivery best practice that’s valuable across
the organization.

 ■ Note According to the 2016 State of DevOps report, high-performing IT organizations deploy

200 times more frequently than low performers, with 2,555 times faster lead times. 3

 The Third Way: Optimize the Continuous Delivery
Pipeline
 Continuous to Optimized

 Although few departments are operating at this level, it is the pinnacle toward
which all teams should aspire.

 With the continuous delivery pipeline being too important to fail, attention
should become focused toward making the pipeline (so many teams depend
upon) as efficient, stable, and resilient as possible.

 This involves shifting toward mastering the art of releasing multi-app, cross-
app, multi-team applications and making deployments more predictable and
efficient. Improving business execution through accelerated feedback loops
will be another benefit, and by establishing a culture of continuous improve-
ment, teams will embrace a “fail fast” culture and then apply the lessons
learned within their release processes to prevent future problems.

 This notion of continuous improvement is well illustrated by a director of
DevOps tools management at a leading Fortune 100 financial services com-
pany, who stated, “ Agile and continuous delivery can be nothing but a journey.
You are never done; you are constantly moving the needle. There is always
something you can do.” 4

 Essential Toolchain Integrations
 While it's important to review functional aspects of release automation solu-
tions, what’s more important is examining a solution in terms of how it helps
organizations increase continuous delivery maturity.

 3 2016 State of DevOps Report: https://puppet.com/resources/white-paper/2016-
state-of-devops-report
 4 The Total Economic Impact™ of CA Release Automation , December 2015: http://
www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-
economic-impact-of-ca-release-automation.pdf

https://puppet.com/resources/white-paper/2016-state-of-devops-report
https://puppet.com/resources/white-paper/2016-state-of-devops-report
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf
http://www.ca.com/content/dam/ca/us/files/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.pdf

Chapter 6 | Deploy96

 No release automation tool will work in isolation. More advanced solutions
will serve as an integration hub, orchestrating many activities across the pipe-
line. At a simple level this could involve application-centric release automation
to configure all the resources needed to support a new build (e.g., allocating
server and storage capacity and ensuring an appropriate platform is in place
to receive the build).

 Beyond addressing immediate operational requirements, advanced solutions
will work in concert with many other processes to build a continuous deliv-
ery ecosystem that helps IT achieve the most advanced levels of maturity.
What distinguishes capabilities here isn't just strong integration, but the
flexibility needed to support a more adaptive toolchain - one where new
technologies can be quickly and easily incorporated to strengthen the con-
tinuous delivery model.

 ■ Tip To avoid vendor lock-in, ensure release automation tools provide an open and scalable

platform, integrating easily with any continuous delivery toolchain for end-to-end visibility and

orchestration of releases.

 Figure 6-2 and the section that follows illustrate and describe essential release
automation toolchain integrations needed to optimize continuous delivery.

 Figure 6-2. Release automation: toolchain integration

DevOps for Digital Leaders 97

 1. Requirements Design

 This integration allows agile teams to track multi-application release content
through the software lifecycle and establish critical feedbacks loops for faster
problem resolution and application delivery.

 With a real-time dashboard for managing and monitoring multi-application
release content (user stories, features, and bug fixes) through the release pipe-
line, agile teams gain complete visibility of release progress, more easily recon-
cile dependencies, and can map to business requirements.

 Without this integration, agile teams would have to manually track and report
on business-level user stories, features, or fixes to specific application releases
moving through the pipeline.

 2. Service Virtualization

 This integration automates the launch of virtual services as part of a deploy-
ment to optimize resources and speed testing.

 Here, DevOps practitioners can provision virtual services and execute test
suites across multiple virtual environments directly within a deployment
workflow. By deploying into any testing environment, teams are freed from
constraints (e.g., waiting for physical hardware environments to be built and
made ready for testing). This improves productivity and speeds time-to-value.

 Without this integration the release process could be interrupted. Manual
requests would be needed to provision physical systems and virtualized ser-
vices separate from the automated deployment workflow. This impedes the
flow of value and ties up resources on repetitive and error-prone tasks.

 3. Test Data Management

 This integration automates the generation of accurate test data based on
proper test cases within a release workflow.

 Without this integration, manual requests are needed to generate the proper
test data separate from the automated deployment workflow. Again, this
results in release interrupts, delays, and slower delivery.

 ■ Note Integrating test data management with release automation should be considered a

DevOps automation best practice. Not only does it ensure teams have ready access to accurate

test, it also helps establish compliance (e.g., generating synthetic data to protect customer

information) into the release process itself and avoid the delays associated with lengthy auditing

checks at the end of each cycle.

Chapter 6 | Deploy98

 4. Test Automation

 This integration automatically starts the test case process and ties the results
back into the release to determine and confirm readiness for promotion.

 Here the test case process would be automatically initiated with the results
linked back to the release. This is essential in order to determine go/no for
automated promotion—enabling faster, higher quality deployments.

 Without this integration it would be necessary to manually determine if the
application has sufficiently passed a testing stage in order to move forward to
the next stage and then manually promote the application. Again, this is time
consuming.

 5. Performance Monitoring

 This integration establishes monitoring earlier in the software lifecycle in
order to feedback critical information needed to improve quality.

 Release automation can coordinate the installation and activation of moni-
toring in pre-production. The technique of "shift left" monitoring (discussed
in Chapter 7) enables teams to see the performance impact of releases and
compare it against production baselines. This provides development with
earlier warning on code-related performance issues and operations earlier
guidance on service-level requirements.

 6. Existing Toolchain Investments

 A fully integrated continuous delivery toolchain solution will be open
and scalable, coordinating the application of any existing products within
standard and reusable release processes. Some important integrations
include:

• Continuous integration —Automatically kick off an applica-
tion deployment upon the immediate completion of a
software build in Jenkins.

• Configuration management —Combine release automa-
tion with solutions like Chef and Puppet to solve the
problem of attempting a deployment when the target
environment is not in a good known state. Integration
here can be used to enforce specific environment con-
figurations prior to deployment and manage configura-
tion drift.

• Cloud provisioning —Enable users to build workflows that
provision, configure, and tear down cloud environments
within a deployment workflow.

http://dx.doi.org/10.1007/978-1-4842-1842-6_7

DevOps for Digital Leaders 99

 Release Automation: Capability Checklist
 With release automation playing such a central role in integrating tools and
processes across the toolchain, solutions in this category should at a minimum
deliver a deployment engine capable of supporting:

• Artifact management —The ability to deploy many differ-
ent components and configurations of applications on
physical, virtual, and public or private clouds.

• Configurable deployment options — A powerful, visual work-
flow engine to easily create standard, reusable deploy-
ment processes to promote apps from one environment
to the next.

• Reusable deployment best practices — Shared components,
allowing teams to leverage and reuse deployment logic
across different projects and applications.

• Orchestration of preferred tools — As discussed, solutions
should leverage existing tool and technology investments
to automate deployments by using out-of-box action
packs or through a software development kit.

• Deployment remediation and auditing — Using a visual
dashboard teams can track and record configurations,
artifacts, and release progress for improvement and
auditing.

 To develop, plan, manage, and optimize the continuous delivery pipeline,
release automation should also scale to helping teams:

• Design a shared pipeline — Orchestrate manual and auto-
mated tasks within the continuous delivery pipeline.

• Execute many complex releases — Run through all the
release phases—development to production for multi-
app, multi-team releases. Iterate and improve failed
content.

• Plan and manage the timeline — Schedule and manage apps
through multiple phases using a visual calendar. Provide
immediate notification of conflicts and maintenance
windows.

• Improve collaboration — Assign owners to tasks and use an
activity feed to share comments.

Chapter 6 | Deploy100

• Manage and track content — Track features as they pro-
ceed to production. Provide full insight when prioritizing
and ensure the business implications of delays are clear.

• Optimize releases —Detect problems in real-time, rec-
ognize bottlenecks, and improve processes and team
activities.

 As maturity increases, release automation should cater to more advanced
requirements. This may include:

 Dependency Management
 When building multi-component/multi-application systems, there will be com-
plex dependencies between applications or different versions of an application.
This may include a mix of release, content, application, and application version
level dependencies. The knowledge of which application version depends on
which is critical and often only known to a small number of experts within the
department. Systems should be able to establish the definition of these depen-
dencies with automatic alerts when dependency conditions are not met.

 Pipeline Visibility with Notifications
 Systems should provide a clear view of the release pipeline, including all phases
and all tasks within each phase. Each phase should show list of tasks, the order
of their execution, and whether it is to be run sequentially or in parallel. To
support continuous delivery, each release should trigger a new build and pro-
mote this build through the pipeline, from the test phase and all the way to
production. Automation should reiterate phases until all tasks pass predefined
criteria. If something goes wrong with a release, delays and idle time should be
reduced through automated notifications.

 Flexible Approval Processes
 For sensitive phases such as production deployment, full governance may be
required. To support these cases, systems should prevent mistakes by allow-
ing only the permitted users to approve the execution of these phases.

 Recommendations and Action Plan
 To attain the continuous delivery best practices described in this chapter,
organizations need to ensure they apply due diligence when adopting an auto-
mated approach.

DevOps for Digital Leaders 101

 As suggested, the best way to start is by assessing processes, culture, and tools
currently in use. This way a clearer picture emerges of where businesses are
today in comparison to where they need to be to support agreed goals and
objectives.

 At the start of its journey, City Index used manual processes to deploy appli-
cation code from development to production. Value chain analysis showed
that moving code through development environments to quality assurance,
then pre-production before finally going live, made up 50 percent of the deliv-
ery effort. 5

 ■ Tip When assessing capabilities, don't limit analysis to one element (e.g., test lab provisioning

or configuration management). Take a system-level approach to understanding the flow of value

and inhibitor across every stage—involving people, processes, and technology.

 Demonstrate Business Benefits and ROI
 Stakeholders, influencers, and decision makers need to understand the under-
lying business benefits of adopting release automation tools to support con-
tinuous delivery.

 Two key metric categories that are used to indicate IT performance and can
be useful in supporting a case include the speed or throughput with which
applications are delivered and the quality or stability of the releases.

 ■ Tip Seek out real-world customer examples from companies that have achieved significant

improvements in both release throughput and quality. ING is one such example. They increased

release frequency to over 12,000 a month, achieving faster time-to-market with less than six

weeks cycle time, but with a greater than 50 percent reduction in incidents. 6

 Any solution must also demonstrate positive economic impact to the depart-
ment and business—both short term and long term. To support this, CA
Technologies commissioned Forrester Consulting to conduct a Total Economic
Impact™ (TEI) study and examine the potential return on investment (ROI)
that enterprises may realize by implementing CA Release Automation. 7

 5 Full story: http://www.ca.com/content/dam/ca/us/files/case-studies/city-
index-bets-on-ca-release-automation-for-it-operations.PDF
 6 http://www.slideshare.net/CAinc/case-study-ing-builds-highly-available-
continuous-delivery-pipeline-with-microservices-and-containers
 7 http://www.ca.com/au/collateral/industry-analyst-report/the-total-
economic-impact-of-ca-release-automation.html

http://www.ca.com/content/dam/ca/us/files/case-studies/city-index-bets-on-ca-release-automation-for-it-operations.PDF
http://www.ca.com/content/dam/ca/us/files/case-studies/city-index-bets-on-ca-release-automation-for-it-operations.PDF
http://www.slideshare.net/CAinc/case-study-ing-builds-highly-available-continuous-delivery-pipeline-with-microservices-and-containers
http://www.slideshare.net/CAinc/case-study-ing-builds-highly-available-continuous-delivery-pipeline-with-microservices-and-containers
http://www.ca.com/au/collateral/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.html
http://www.ca.com/au/collateral/industry-analyst-report/the-total-economic-impact-of-ca-release-automation.html

Chapter 6 | Deploy102

 To better understand the benefits, costs, and risks associated with an imple-
mentation, Forrester interviewed five organizations that had implemented
this solution in their enterprise. Taken as a whole, this composite company
reported a 389 percent return on investment, $8.44 million net present
value, with a 2.8-month payback. The study also illustrated that the com-
posite organization’s configuration management and testing team saved time
and effort on deployments, with savings of six FTEs quantified at $1.22 mil-
lion over three years.

 ■ Note To help determine business benefits and ROI, seek out tools that calculate the full

economic impact of release automation. Comprehensive tools provide total benefit analysis,

assessing metrics such as increased staff productivity, reduced release errors, improved time-to-

value, and reduced auditing and compliance costs.

 Execute Tactically, Grow Strategically
 Starting small is okay: It’s not in anyone’s interests to embark on a lengthy
company-wide committee to investigate introducing release automation. It’s
often easier to showcase business value through a pilot.

 With this is mind, consider selecting a suitable project to act as your pilot.
Many departments start small with a low-risk application that is important but
not business critical. The aim is to start a groundswell of support, gather com-
pelling metrics, and then apply lessons learned across larger teams and proj-
ects. The Western Union Shared-Service Enterprise IT Operations team took
a grass roots approach to DevOps adoption, starting small and measurable.
The team used release automation tools to release software into production
and then used this as a lever to open the door for broader conversations with
its development partners. 8

 Summary
 In this chapter, we discussed the automated methods needed to advance con-
tinuous delivery maturity—taking teams from manual, scripted processes to
more automated, standardized, efficient and agile methods, all while continu-
ously improving both the quality of releases and the applications they deliver.

 8 Presentation - https://www.youtube.com/watch?v=JW2eukJuOqw

https://www.youtube.com/watch?v=JW2eukJuOqw

DevOps for Digital Leaders 103

 We also described how as the lynchpin in a continuous delivery ecosystem,
release automation solutions must be capable of orchestrating many pro-
cesses and tools. The ultimate goal is complete continuous delivery optimi-
zation across the enterprise and zero-touch deployments, from planning to
production.

 In the next chapter, we'll examine the DevOps strategies needed to build
more agile operations—strategies that extend beyond basic monitoring of
applications and infrastructure toward optimizing the all-important customer
experience.

	Chapter
6: Deploy
	Case Study: Citrix
	Obstacles to Continuous Delivery
	Development Challenges
	Operations Challenges
	Finding Common Ground

	Continuous Delivery Maturity
	Level 1: (Manual)
	Level 2: (Scripting)
	Level 3: (Automated)
	Level 4: (Continuous)
	Level 5: (Optimized)

	Accelerating Maturity: Three Ways
	The First Way: Connect End-to-End Release Management
	The Second Way: Operationalize Feedback Loops
	The Third Way: Optimize the Continuous Delivery Pipeline

	Essential Toolchain Integrations
	Release Automation: Capability Checklist
	Dependency Management
	Pipeline Visibility with Notifications
	Flexible Approval Processes

	Recommendations and Action Plan
	Demonstrate Business Benefits and ROI
	Execute Tactically, Grow Strategically

	Summary

