
© CA 2016
A. Ravichandran et al., DevOps for Digital Leaders, DOI 10.1007/978-1-4842-1842-6_3

 DevOps
Foundations
 Culture, Lean Thinking, Metrics

 Blink during a Formula 1 pit-stop and you’ll probably miss it. But this wasn’t always
the case. Fifty years ago, a pit-crew would take over a minute to change the wheels
and refuel. Today, anything more than three seconds is considered a fail.

 It’s the same in software development, where teams once tasked with updat-
ing enterprise applications at a sedate pace must now deliver new software
services as a continuous flow of value to customers.

 The problem for today’s enterprise, however, is that software teams don’t
work like Formula 1 pit-crews. Rather than working in tandem, IT teams often
work serially—development codes, then QA tests, and finally IT operations
monitors. However, with application software released, enhanced, and retired
over more compressed timeframes (months and even days), this stop-start
method of development falls short. It’s as ineffective as each member of a
Formula 1 pit-crew replacing a tire and checking wheel nut tension before
the next one could start—the race would be over before the car left the pits.

 While we can celebrate the heroics and skill of great racing car drivers, what sets
successful constructors apart is their ability to build a winning culture irrespec-
tive of role and responsibility, be that driver, team manager, telemetry engineer, or
aerodynamics chief, everyone is focused on a singular goal—winning races. It’s why
drivers thank the teams before they spray champagne on the podium.

 C H A P T E R

3

Chapter 3 | DevOps Foundations28

 Like Formula 1 drivers, technological advancements have improved the effi-
ciency and effectiveness of IT professionals. However, in organizations that
traditionally measure and incentivize based on technical specialization within
functional areas, relying on tools alone will never build the collaborative cul-
ture needed for business growth and profitability.

 What Characterizes DevOps Culture?
 DevOps is very different from traditional thinking because it places great
emphasis on culture. It instills a shared sense of vision across multiple teams,
directly aligned to the business and its customers. To this end, maverick
behavior, such a cutting corners and allowing defect ridden code to go into
production, or blaming operations when a software release fails, is counter to
a DevOps thinking. With DevOps unified IT is the hero and no one is singu-
larly to blame for problems.

 But this is challenging in IT because of the friction existing between develop-
ment and other IT teams—especially IT operations. On the one hand, devel-
opers are focused on accelerating change by faster delivery of applications,
while the operational mantra has been resilience and stability at all costs, even
if that means holding back change.

 Evidence suggests, however, that while both these goals are equally important,
they are not mutually exclusive. For example, the 2016 Puppet Labs “State of
DevOps” report illustrated that high-performing IT organizations are well
able to achieve faster software delivery along with increased resilience and
stability. 1 Clearly, DevOps high performers have ended the divisional “turf
wars” by enacting strategies to re-shape entrenched silo thinking and behav-
iors into a more powerful collective force.

 Since DevOps culture involves creating new shared values and behaviors
across IT teams, leadership must play an active role in driving these character-
istics across the entire organization.

 Focusing on Products over Politics
 Traditionally, IT teams have been organized in technical silos. Interaction and
communication has been conducted through overly engineered and rigid
processes. Software changes run the gauntlet of lengthy change-management
processes, human intervention, and change review boards. Though not wrong
per se, these elements were designed to cater to situations where change
was less frequent but occurred in greater volumes, requiring more rigor to
ensure operational stability and compliance.

 1 https://puppet.com/blog/2016-state-of-devops-survey-here

https://puppet.com/blog/2016-state-of-devops-survey-here

DevOps for Digital Leaders 29

 A strong DevOps culture, however, is characterized by systems thinking. That
is, a collective emphasis on service as a whole, not on discreet functional
elements or processes. Rather than persist with technical fiefdoms, DevOps
aims to break down barriers—organizing by product over structure and con-
tinuously driving improvements in context of a products lifecycle, from the
inception of an idea to full production status. Strong leaders recognize this by
promoting open communication, using shared metrics, and establishing (even
automating) feedback mechanisms within and across teams.

 Building Trust and Respect
 Over many years, respect has been garnered by individual contributors. Be
that superhuman developers who crank out code, or on-call operations staff
who fix problems at 4:00am. In a thriving DevOps culture, hero worship-
ping takes a back seat to collective respect. With DevOps, everyone should
respect the contributions of others and no one should be afraid of speaking
up for fear of abuse and vilification.

 This is critical, because from healthcare to aerospace, studies have shown that
bad practices and behaviors can over time become accepted as normal prac-
tices—often with disastrous consequences (see Chapter 8 for further discus-
sion on strategies to combat normalized bad practices). In IT this happens all
the time due to power games and lack of respect. Even if new staff witness
blatantly suboptimal practices, they’ll be loath to report it for fear of rebuke
and retribution by managers, eventually accepting the situation and practicing
it themselves. DevOps leaders should be mindful of this and work across the
product lifecycle to identify situations where violations are tolerated because
people are afraid to speak up or look mean.

 Trust also plays an important role in DevOps culture. Just as the Formula 1
driver trusts his pit-crew to fit four wheels securely, so must cross-functional
trust be established across IT. For development, this means trusting that the
production performance information from operations can actually help in
software refactoring and reducing technical debt. For operations, it means
trusting new application design patterns will help the business scale. Everyone
from security to enterprise architecture is part of the trust equation, and as
the speed of software delivery accelerates, no DevOps program will be suc-
cessful without it.

 Increase Empathy Everywhere
 It’s well understood how important the role of empathy plays in today’s app-
centric software design. Without understanding the emotional and physical
needs of customers, together with their behavioral patterns, businesses risk
substantial losses from their software investments. This explains why many

http://dx.doi.org/10.1007/978-1-4842-1842-6_8

Chapter 3 | DevOps Foundations30

organizations conduct rigorous design experiments before any full software
release. This is illustrated in the extreme by Google’s “50 Shades of Blue” user
interface testing exercise. 2

 Yet despite this, empathy is lacking within many enterprise IT departments.
Teams usually operate in separate locations, so development and operations
teams have few face-to-face opportunities necessary to share each other’s
pains, surface concerns, or raise issues.

 There are many simple but effective strategies leaders can use to build empa-
thy. Not the least this should include building closer ties between develop-
ment and support. Even with the greatest software and delivery processes it’s
important to understand their perspective and what they experience when
dealing with customers.

 ■ Tip When developing products or new features, put yourself in the position of the customer

and support staff by examining all the situations where they might need help.

 Staff (including developers) should understand the importance of enabling
a great customer experience. To that end, consider working directly with
customers directly in the field in a variety of adverse situations. What hap-
pens when as a customer you’re trying to board an airplane and the scanner
breaks? Or what’s the impact when a mobile app crashes or bad network
coverage means you can’t call road side assistance?

 Obviously it’s not always practical or feasible for developers to work this closely
with clients; however, with analytics tools, staff can put themselves in the “shoes”
of the customers and gain realistic insights into the customer experience.

 Open Communication Channels
 In 1968 a computer programmer, Melvin Conway, postulated that organizations
that design systems are constrained to produce designs which are copies of
the communication structures of these organizations. 3 In a DevOps context,
what’s now dubbed Conway’s Law has great relevance, especially in situations
where organizational structures and closed communication channels prevent
developers and operations from agreeing on IT performance objectives (e.g.,
increased change frequency and improved reliability). In such cases, it’s pos-
sible for team-based activities to be prioritized over more important cross-
functional improvement strategies.

 2 https://www.theguardian.com/technology/2014/feb/05/why-google-
engineers-designers
 3 Melvin E. Conway, "How do Committees Invent?," Datamation 14 (5) (April 1968): 28–31.

https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
http://www.melconway.com/Home/Committees_Paper.html
https://en.wikipedia.org/wiki/Datamation#Datamation

DevOps for Digital Leaders 31

 There are many possible solutions to this problem. The technology teams
at Netflix and Amazon structure themselves around small teams, with each
one responsible for a small part of an overall system. Spotify promotes col-
laboration across team boundaries via agile development squads, chapters,
and guilds, with a separate IT operations team providing all teams the support
needed to release software themselves.

 Looking beyond technology-centric companies, there are other examples of
businesses thriving because they’ve modified communication structures. Take
Zara for example.

 Year after year in the fickle world of retail fashion and apparel, Zara continues
to increase revenue and profit. For Zara, flexible responsiveness to customer
demand, backed by a tightly integrated supply chain, is fueled by teamwork
and collaboration. In retail stores, managers use real-time intelligence to
place orders and feedback information directly to the point of manufacture.
Different teams (including design, product management, and merchandising)
use shared spaces and work closely together. With increased emphasis on
communication from initial garment design to distribution to the shop floor,
Zara has shortened product lead times and doesn’t unnecessarily commit
large volumes of product in advance of a fashion season.

 Considering approaches like these, cross-functional IT collaboration could be
improved when:

• Leaders apportion budget to practical co-location strate-
gies. This should be more than simple staff re-housing
and include shared work spaces and lounges, together
with team huddle areas and common wall whiteboards.

• IT operations team members regularly participate in agile
standup meetings in order to appreciate the value of
deploying code quickly and how their current activities
help or hinder release processes.

• Development teams attend operational post-mortems
or workshops to gain better insights into the problems
caused by poorly performing or insecure software.

• IT operations works with developers to establish perfor-
mance monitoring in pre-production so as to detect prob-
lems earlier where they are easier and less costly to fix.

• Developers are placed on the after-hours support roster
to better appreciate the impact of problematic software
code on users and customers.

• Support specialists share critical application experience
analytics obtained during mobile app engagements with
customers.

Chapter 3 | DevOps Foundations32

 Additional Factors
 Changing IT culture isn’t easy. Right or wrong, people have pre-conceived
notions and firmly entrenched ideas. Any sudden shift in workplace practices
and it’s only natural that people will feel threatened and push back. Addressing
this means patiently working with people to enact the necessary behavioral
change or move people to different jobs.

 With DevOps and cultural change, it’s critical to start with a clean state.
Rather than dive head first into massive IT workforce transformation pro-
grams, leaders should first assess the cultural landscape from a business per-
spective. This involves understanding the primary goal of the business and
then analyzing whether prevailing behaviors support it. Although seemingly
obvious, many organizations miss or neglect this critical step. If, for example,
a company defines its goals too broadly, people working in different IT teams
will interpret them in different ways and shape activities accordingly, often to
the detriment of each other and the business.

 In a broader sense, culture will also be influenced by an organizations’ business
model and operational perspective. There are three classes to consider:

 Run the business —In this model the overarching strat-
egy of the business is on continuing operations in much
the same way—only better, faster, and cheaper. Here the
focus for IT is operational excellence—adopting new
technologies, yes, but using them to pound out efficien-
cies across processes like warehousing and logistics.

 For these organizations, IT culture is characterized by
discipline and rigidity—all fine to support efficiency
improvements, but inadequate in a world where old
business rules are constantly being challenged by dis-
ruptive technology.

 Grow the business —The business strategy shifts from
doing more of the same to conducting the same busi-
ness in radically different ways. Netflix presents a good
example of this model. Five years ago, Netflix delivered
DVDs through the mail, now they stream entertain-
ment over the web—even creating their own content.
Customers still turn to Netflix for entertainment, but
the way in which Netflix is addressing that need has
fundamentally changed.

 For organizations in this category, the culture also
needs to change. For Netflix, their DVD-delivery model
required strong operational oversight over processes
like inventory management and distribution to drive

DevOps for Digital Leaders 33

efficiencies and increase customer satisfaction. Now
however, their streaming model and content genera-
tion programs requires teams rapidly delivering new
services based on quickly analyzing customer prefer-
ences and optimizing web performance and through-
put. Obviously if a company’s cultural behaviors and
values are still skewed toward driving efficiency in one
operational area, pivoting to the new model will be
difficult.

 Transform the business —This model carries the most
promise and risk because it involves changing the very
fabric of a company. Businesses don’t just conduct
the same types of business in new ways, they rein-
vent themselves completely. For Amazon that’s meant
moving to being a mega cloud computing provider
from selling books. For Walgreens, it’s meant going
from selling medicine over the counter to treating ill-
nesses in stores.

 With strategic transformation examples like these,
the business is introduced to new dynamics and com-
petitors. Now, IT performance will not only be judged
on growing the business of today, but also on creating
the core business in the future. To this end, a DevOps
culture built on open communication and collabora-
tion, trust, respect, and empathy isn’t just important
for short-term growth, it’s essential for long-term
business sustainability.

 Once business models and goals are clearly understood and communicated,
any required IT behaviors and values needed to support them can be influ-
enced through the development of fully aligned IT goals and metrics. These
could include shortening lead times for new products to support faster time-
to-market, increasing mobile app customer conversions to support increased
revenue objectives, or helping the current business scale by making better use
of cloud infrastructure.

 Lean Thinking to Reduce Waste
 Fuel strategies play a significant role in Formula 1 racing. A car with a half-full
tank can be as much as three seconds faster than a rival vehicle with a fully
loaded fuel cell. Extra fuel equals extra weight, so teams go to great lengths to
calculate the exact amount of fuel needed under full race conditions.

Chapter 3 | DevOps Foundations34

 Though beautifully engineered and continuously refined, racing car engines
are still flagrantly wasteful. Like your car at home, the dynamics of internal
combustion still mean that only a certain percentage of fuel stored in the
tank is converted into useful energy. The rest is lost as heat and friction
and explains why teams constantly refine chassis designs to reduce aero-
dynamic drag.

 Beyond the frenzied world of Formula 1, many elements contribute toward
engine waste in the cars we lesser mortals drive. Running an air conditioner
consumes fuel without contributing to motion. Friction in engine pistons
wastes fuel, as does tire pressure and extra luggage. All told, as little as 14
percent of passenger car fuel is converted into useful energy. Clearly, this gas
guzzling engineering throwback is rife for disruption from electric cars and
advances in battery technology—time will tell.

 In many ways software development is as wasteful as the internal combus-
tion engine. Friction between development and operation causes delays.
Manually assembling multiple components and configurations within our own
software factories leads to lost time. Carrying excess inventory in the form
of unneeded infrastructure capacity adds extra cost. Add to this constraints
preventing access to critical systems and data during testing, and defects can
accumulate across the software lifecycle.

 Lean and Value Creation
 The traditional view of IT value has been internally-shaped. For decades, sys-
tems and applications have been designed, built, tested, and released to cus-
tomers, citizens, and end users where they hopefully influenced behaviors. All
this has changed. With the advent of cloud, mobility, and social computing,
consumers rather than producers call the shots. This means businesses find
themselves in the position of having to respond to the behaviors and desires
of their customers.

 For IT, this redefinition of business value means teams must focus on two
essential strategies. First, they must continuously reexamine the software ser-
vices they deliver from the perspective of the customer, and second, they
must constantly strive to minimize any interference or waste across the entire
software factory. This includes everything that impedes the flow of value to
customers and incurs more cost.

 This notion of value being “pulled” by customers and waste elimination is not
new. Lean pioneers and practitioners such as Toyota, Motorola, and Xerox
redefined manufacturing by applying these principles; understanding that many
forms of waste exist across production processes. And, because they add no
value to customers, must be clinically removed.

DevOps for Digital Leaders 35

 But can Lean principles be applied in IT, where, unlike traditional manufactur-
ing, waste isn’t visible across a factory floor through telltale signs like excess
physical inventory or idle machinery? Often due to its intangible nature, waste
in IT can be hard to identify yet alone eliminate.

 Interestingly, the delivery of software bares many similarities to a manufac-
turing process. In IT, we have the means to respond to value triggers from
our customers by quickly designing, developing, and releasing software ser-
vices. And, since the software delivery lifecycle represents a manufacturing
production line within a software factory, we have the guiding context upon
which identify all elements of waste that add no value to the business and its
customers.

 Eight Elements of Waste
 As illustrated in Table 3-1 , there are eight elements of waste or “Muda” (using
Lean terminology) that severely impact the IT group’s ability to increase the
value of software services.

 Table 3-1. Eight Elements of Waste (D.O.W.N.T.I.M.E)

 Type of Waste Examples Business Outcomes

 D efects Badly designed and poor quality code

 Non-functional performance issues

 Lost customers and revenue;

negative brand impact

 O verproduction Delivering features customers don’t

need or want

 Procuring extra capacity due

to unanticipated performance

requirements

 Delays, cost over-runs, and

budget problems

 W aiting Excessive release backlogs and

bottlenecks

 Infrastructure and data not available

for testing

 Change reviews; security and

compliance audits

 Slow time-to-market and

value; lost opportunities

 N on-value added

processing

 Lengthy problem resolution and

fire-fighting

 Team-based activities prioritized over

program-level objectives

 Morale issues; high-staff

turnover

 T ransportation Frequent release rollbacks

 Development/QA handoffs

 Application launch delays;

increased cycle times

(continued)

Chapter 3 | DevOps Foundations36

 Examining this table it should be noted that there are close relationships
and linkages between elements. For example, undetected code defects
resulting in performance problems may result in an organization purchas-
ing additional hardware capacity, which leads to excess inventory , which
increases the support burden. In situations like this, waste begets waste
and technical debt accumulates to such an extent it becomes difficult to
pay off. The result is that essential development is tied up on maintenance
and support activities.

 Originally coined by Ward Cunningham in the Agile Manifesto, technical debt
has tended to be reviewed from a development perspective 4 . After all, if soft-
ware defects can be identified and eradicated during early stages of develop-
ment, then production related problems (which could be significantly costlier
to fix) can be avoided.

 But technical debt can also be created in IT operations. For example, failing
to document or visualize business services (and supporting applications an
infrastructure) means teams could take longer triaging problems. Here the
waste is non-value added processing , which again (because of linkages) results
in more waste. In this case, increased transportation because a release has to
be rolled back.

 Using the eight elements of waste list, DevOps practitioners can begin a pro-
cess of identifying waste elements across the software lifecycle. It’s important
to understand that “toxicity” levels will vary, so mechanisms must be devel-
oped to continuously reveal new situations and conditions that can potentially
introduce more waste.

 Type of Waste Examples Business Outcomes

 I nventory (excess) Underutilized resources

 Partially completed work and

excessive work in progress

 Increased capital and

operational costs

 M otion Developers constantly switching

 Relearning and rework

 Lost productivity; talent

erosion

 E mployee

knowledge (unused)

 Closed retrospectives and stand-up

meetings

 No feedback established from

service management (e.g., call center/

service desk)

 Missed opportunities to drive

improvements

Table 3-1. (continued)

 4 The Agile Manifesto: http://www.agilemanifesto.org/

http://www.agilemanifesto.org/

DevOps for Digital Leaders 37

 It’s also critical not to restrict the exercise to new development. These may
become the debt burden of the future, but could only represent a small part
of the portfolio. Legacy infrastructure and production applications should also
be included because, even though they change less frequency, they often incur
significant management costs and overheads.

 Finally, debt and the associated waste should be reviewed as a continuum,
with special attention paid to integrations between new customer facing apps
and essential back-end business processes. For most enterprises, multi-chan-
nel engagement creates tremendous opportunity for value creation, but will
introduce more waste if they’re not integrated and coordinated with existing
back-end systems, applications, and call-center services.

 Waste Removal Strategies
 Today’s mobile and API-centric forms of service delivery mean that custom-
ers assess value based on extremely high levels of functional and operational
quality. They also expect businesses to deliver additional value in the form of
continuous change. With customer experience so important, it’s critical to
begin waste identification from the perspective of the customer; monitoring
and analyzing the usage and behaviors of applications and determining what
elements impact the total experience. This is especially important for mobile
applications, since factors beyond the control of IT departments (e.g., car-
rier network latency and cloud service performance) can quickly erode value,
however good the functional quality.

 Some immediate practices cross-functional teams can apply to help identify
and eliminate waste, include the following.

 Prevent Defects by Removing Constraints

 When development and testing is constrained due to lack of access to depen-
dencies (e.g., middleware, web services, and test data), defects can quickly
work their way into the code base. This is illustrated in a Service Virtualization
survey, which identified that on average, participants require access to 52
dependent elements for development or testing, yet have unrestricted access
to only 23 of these. 5

 To circumvent these issues, many development teams often attempt work-
arounds by hand coding (mocks and stubs), but this doesn’t provide for
realistic application behavior, causing test validation errors and the late

 5 VOKE Market Snapshot™ Report: Service Virtualization; https://www.ca.com/au/
register/forms/collateral/voke-market-snapshot-report-service-virtual
ization.aspx

https://www.ca.com/au/register/forms/collateral/voke-market-snapshot-report-service-virtualization.aspx
https://www.ca.com/au/register/forms/collateral/voke-market-snapshot-report-service-virtualization.aspx
https://www.ca.com/au/register/forms/collateral/voke-market-snapshot-report-service-virtualization.aspx

Chapter 3 | DevOps Foundations38

discovery of defects. Discussed further in Chapter 5 , a more scalable
approach is to incorporate Service Virtualization into parallel develop-
ment and test activities.

 Focus on Value to Prevent Overproduction

 New application features don’t necessarily mean more customer conversa-
tions and increased revenue. Unnecessary features can result in additional
maintenance overheads and cost. There are many methods DevOps practi-
tioners can use to reduce this form of waste, including:

• Incorporating application experience analytics into moni-
toring strategies to identify mobile app functions and fea-
tures that are not used

• Split or A/B testing and funnel or cohort analysis

• Refactoring code elements to reduce complexity, remem-
bering that the cheapest and most reliable components
are those that don’t exist!

 Smoothing Flow to Reduce Wait Times

 Like waste element #1, this waste can eventuate due to delays waiting on
dependencies during development and testing. In the VOKE report mentioned
above, 81 percent of participants identified development delays of waiting
for a dependency in order to develop software, reproduce, or fix a defect.
Additionally, 84 percent of participants identified QA delays of waiting for a
dependency in order to begin testing, start a new test cycle, test a required
platform, or to verify a defect.

 ■ Caution Never underestimate the wait times associated with accessing test data, since a

massive 20 percent of the average software delivery lifecycle is wasted waiting for data, locating

it, or creating it manually when none exists.

 Excessive wait times may also be due to problems managing highly complex
release and deployment processes. However good the code, its ultimate value
will be determined by how quickly it can be deployed into production. Manual
processes and fragile scripting not only compromise these goals, but also
increase the potential for defect code being released. These issues can be
addressed by:

• Ensuring all key stakeholders possessing the knowledge
to move a service swiftly across lifecycle are involved
early and often

http://dx.doi.org/10.1007/978-1-4842-1842-6_5

DevOps for Digital Leaders 39

• Using smaller batch sizes so that value is delivered to
customers at regular intervals

• Developing and automating reusable and repeatable pro-
cesses to simplify and streamline application releases

 Limit Non-Value Added Processing Through Data-Driven
Insights

 Fixing application problems provides limited value to customers. Rather than
wait for problems to occur in a production, IT operations should be involved
much earlier in the development lifecycle.

 Using tools to share information is especially valuable. By leveraging applica-
tion performance change impact analysis during a build process, for example,
developers can quickly determine any adverse performance conditions their
code is introducing.

 Reduce Transportation Cost by Automating Deployments

 When work is manually handed off from one team to another (e.g., developer
to test/QA, QA to operations), critical knowledge can be lost. This could
lead to additional delays or the highest transportation cost of all—release
rollbacks.

 There are many strategies to address these issues, including:

• Reducing the number of handoffs by automating standard
tasks and activities

• Ensure release automation tools provide an extensive
set of action packs and plug-ins so as to fully deploy at
an application level, while also integrating key supporting
processes (e.g., configuration management)

• Build more knowledge as releases progress (e.g.,
establishing application performance management in
pre-production)

 Eliminate Excess Inventory Across the Software Factory

 Minimizing inventory is the hallmark of Lean thinking. As in traditional manu-
facturing, there are many waste indicators in IT’s own software factory. In
development, partially completed work can become obsolete before it finds
its way into production and should be exposed to ensure it doesn’t degrade
or corrupt the code base. In operations, excess on-premise server infrastruc-
ture acquired as a fail-safe to address unanticipated performance problems
could be avoided by establishing monitoring in pre-production.

Chapter 3 | DevOps Foundations40

 ■ Note Costs can accumulate substantially when agile teams acquire specialist tools. Work

collaboratively to assess whether the additional cost (training or support) offsets the value delivered

to one team.

 Prevent Unnecessary Motion with Parallel Development

 While transportation waste is associated with the unnecessary movement
of software, motion waste involves the unnecessary movement of people. A
good example is task switching, where an API developer might shift focus to
a new project rather than wait for testing dependencies to become available.

 Apart from adding more waste (e.g., delays), task switching can introduce
many more problems, especially related to the productivity of developers due
to constant interruptions.

 Some simple strategies to reduce this waste, especially task switching, include:

• Try to ensure teams have all of the knowledge, tools, and
data needed to complete their assigned work

• Simulate and virtualize all dependencies so that develop-
ment teams can code and test in parallel

• Since as much as 50 percent of testing is wasted by teams
trying to locate test data or create it manually, consider
supplementing constraint-removal strategies with test
data management (see Chapter 5)

• Aim to eliminate unimportant work, meetings, and inter-
ruptions. If it isn’t delivering value, ask why your team is
doing it!

 Incorporate Employee Knowledge Using Feedback Loops

 While the feedback of production information is important to drive software
improvements and improve supportability, it isn’t the only place where knowl-
edge can be transferred.

 Service desks and call-center processes should also include mechanisms
to deliver (to development) important information gained from custom-
ers on their usage and response to new application features and functions.
Knowledge transfer should also be bi-directional. For example, application
experience analytics could (when integrated with incident management pro-
cesses or even social media) become an early warning mechanism to trigger
coordinated responses in the event of mobile app usage problems.

http://dx.doi.org/10.1007/978-1-4842-1842-6_5

DevOps for Digital Leaders 41

 DevOps Metrics
 With any IT-driven methodology or program, measuring the effectiveness
in a business context is critical. But since DevOps isn’t a formal framework,
organizations have little guidance in determining what metrics should be
used.

 This can be problematic and lead to a number of suboptimal practices:

• Efficiency status-quo —The IT team falls back to metrics
traditionally used to demonstrate technical proficiency in
meeting stability and resilience goals. Although these are
not necessarily wrong, DevOps metrics should also dem-
onstrate how new processes and automated technolo-
gies are impacting the business—for example by speeding
time-to-market and reducing lead times.

• Outputs over outcomes —Organizations gravitate to
metrics that are commonly used in assessing team-
level productivity. These can include output-based
metrics like number of features delivered or servers
provisioned. Metrics in this class can be counterpro-
ductive unless balanced with outcome-centric indica-
tors that show results achieved against desired quality
levels.

• Low-hanging fruit —Organizations select metrics that are
easily obtained but not necessarily useful. Since DevOps
success is predicated on cultural change, businesses must
also measure what’s harder to determine but potentially
more valuable—namely, how the adoption of DevOps
behaviors and values at an organizational level is impact-
ing the business.

 Anti-Pattern Metrics
 Before embarking on a metrics refresh, organizations should consider all exist-
ing measures and their applicability in a DevOps context. Particular atten-
tion should be given to carefully review those metrics and incentives that are
counter to DevOps principles, as illustrated in Table 3-2 .

Chapter 3 | DevOps Foundations42

 Suitability Checklist
 When reviewing and developing DevOps metrics, it’s also important to con-
sider each against a general suitability checklist:

• Obtainable —Culture and behavioral improvements are
important to measure, but metrics may be difficult to
obtain or quantify. Seek out other related data points to
help expose —e.g., staff retention rates/transfers as an
indicator of employee morale.

• Reviewable —Every metric must stand up to rigorous
scrutiny in a business context. Carefully review metrics
that can be easily collected, but add no tangible value—
e.g., lines of code produced per developer.

• Incorruptible —Determine whether each metric can be
influenced by team and employee bias. Seek out any
associated incentives that can work against a collabora-
tive DevOps culture—e.g., existing SLA bonuses inhibit-
ing change.

 Table 3-2. Problematic Metric Classes

 Metric Class Examples Adverse Effects

 Vanity Metrics Lines of code

produced

 Function points

created

 May be counterproductive since they reward the

wrong types of behavior—especially if incentives

are linked to the metric.

 Producing more code and features without

validation can inhibit other valuable activities such

as refactoring and design simplification.

 Intra-Team
Metrics

 Agile team

leaderboards

 Deployments/

changes prevented

 Beware of metrics that pit-teams against

each other and use vanity metrics as scoring

mechanisms.

 Strike a balance with metrics and rewards that

influence positive inter-team behaviors—such as

code sharing, peer reviews, and mentoring.

 Pay particular attention to metrics that promote

an anti-DevOps culture, such as rating operational

effectiveness on the ability to prevent releases and

deployments.

 Traditional
Metrics

 Mean-time-

between-failure

(MTBF)

 FTEs: Servers

 With faster delivery of services, some failure is to

be expected.

 Always consider that improving responsiveness

can be more important (and less costly) than

trying to prevent failures.

DevOps for Digital Leaders 43

• Actionable— Any metric must support improved decision
making. Exposing A/B testing results can for example be
a valuable way to quickly determine the effectiveness of
new functionality.

 Wherever possible, metrics should also be shareable and have relevance
across the software lifecycle to both development and operations. For exam-
ple, generating security scores at a cross-functional team and divisional level
can be used to inform teams about the risks of their actions.

 Metrics that Matter
 Having determined what not to measure, the next stage is to develop a can-
didate list of metrics supporting the DevOps program. One common mistake
is to measure too many elements, falling back to what’s easily collectable.
Additionally, metrics applicable to DevOps may be new to organizations (e.g.,
the speed of deployment, rate of change, and customer responsiveness), so
it’s important to think broadly how changes to work practices, process and
technology can support these goals.

• People —Staff related metrics can be the most difficult to
collect but are still powerful change indicators. Strong
consideration should be given to internal metrics like
staff retention rates and training, together with mentor-
ing and knowledge building (e.g., open source contribu-
tions and wiki development).

• Process —It’s important to consider how existing prac-
tices will help or hinder new targets being achieved, pay-
ing special attention to existing bottlenecks (e.g., security
audits only conducted after testing will impact deploy-
ment rates).

• Technology— Good metrics are those that help teams
drive improvements, even after failures (e.g., what is the
percentage of failed releases and what percentage of
these were due to code defects, manual processing, con-
figuration errors, etc.).

 When developing metrics, it’s important to maintain balance. Defaulting to
metrics skewed toward one particular area (e.g., operational or development
efficiencies) can have a negative effect in terms of behavioral improvement

 Figure 3-1 illustrates four dimensions and sample metrics that can be used to
measure the effectiveness of a DevOps initiative.

Chapter 3 | DevOps Foundations44

 Culture, Collaboration, and Sharing

 Metrics in this category are especially valuable because they provide an ongo-
ing indicator of acceptance/resistance to DevOps. Some metrics in this dimen-
sion will be easier to collect (e.g., staff retention rates/turnover) than others
(e.g., employee morale). It’s important therefore to look at measures across
other dimensions to understand how they impact this area. For example,
are mean-time-to-recover (MTTR) improvements positively impacting staff
morale, absenteeism rates, and responsiveness to change? Consideration may
also be given to automated surveys and employee feedback, as long as these
are fully transparent and actionable.

 Efficiency and Effectiveness

 Metrics here normally focus on elements of development capacity and opera-
tional capabilities. While traditional metrics such as server to sysadmin ratios
have been used, many organizations are now adopting more customer-centric
ratios like full-time-equivalent (FTE) to customers.

 Examining full costs on a transactional or application basis is another good
candidate metric, as it’s focused on improving data center efficiencies (e.g.,
energy and cooling). Other metrics such as cost of release are also good
since these can expose inefficiencies associated with acquiring, prepar-
ing, and maintaining physical infrastructure for development, testing, and
production.

Efficiency & Effectiveness Quality & Velocity

Customer & Business Value

NPS (Net promoter scores)
Customer conversion (by App / function)

Lead times
Revenue per user story

FTE to Customer ratios MTTR Cycle times

Rollback rates Deployment frequency

Operational support costs
Change / release cost burden

Culture, Collaboration and Sharing
Staff retention Morale / job satisfaction Mentoring

Cost per transaction / app

Wiki / open source contributions

 Figure 3-1. DevOps metrics dimensions

DevOps for Digital Leaders 45

 Quality and Velocity

 This dimension looks to measure data points with respect to service deliv-
ery. For organizations starting on a DevOps initiative, many indicators (e.g.,
percentage of deployments rolled-back due to code defects/outages/negative
user reactions) could initially be high. This may be a result of the extra time
needed to adopt new processes, combined with remediating existing techni-
cal debt and waste elements these metrics expose. However, with DevOps’
focus on establishing quality right from the start of development, this should
reduce over time.

 When paired, these metrics also provide additional insights. For example, if
the rate of rollbacks still increases during periods of low change volume it could
be indicative of serious problems, e.g., errors due to manual/scripted release
processes, task switching, and excessive handoffs.

 Other useful metrics in this dimension include:

• Cycle time —Measures the length of time it takes to com-
plete a stage or series of stages in a release operation. This
can be extremely valuable in exposing any bottlenecks.

• MTTR —This can be broken down into detection, diag-
nosis, and recover phases. MTTR is a great indicator of
how effective teams are in handling changes. For complex
deployments, there will be spikes, but this metric should
be trending down as DevOps becomes established.

 Customer and Business Value

 This category of metrics are externally focused and help measure how
DevOps supports business goals—like increased customer loyalty and faster
time-to-market. The manufacturing concept of lead time provides DevOps
practitioners with an analogous metric (time taken from when code starts
development to successful production deployment) and determines how well
DevOps is at meeting the need for rapid delivery of high-quality software ser-
vices. This metric is especially important to scrutinize because long lead times
could be indicative of code defects or testing constraints.

 Another interesting candidate is Net Promoter Score (NPS), which is a sim-
ple management method to measure customer loyalty. While this metric has
traditionally been used in other areas of the business (e.g., marketing), its
inclusion is valid since the loyalty of customers is increasingly determined by
how quickly high-quality software services and updates can be delivered to
via web sites and/or mobile apps.

Chapter 3 | DevOps Foundations46

 Additional Methods and Techniques
 With metrics developed across each of the four dimensions discussed previ-
ously, teams can begin a process of determining the relationships between
them. This is important so teams gain insight into what processes enhance-
ments and tools are needed to meet targets or address capability gaps.

 One simple and effective approach, as illustrated in Figure 3-2 , is business
impact mapping. This involves determining which DevOps processes will be
needed to support a business or customer experience goal, together with the
underpinning metrics, targets, and initiatives/tools across multiple dimensions
that support this outcome.

Net Promoter
Score (NPS)

(achieve 8+)

CONTINUOUS
DELIVERY

AGILE
OPERATIONS

Release Automation

Test-driven
development

Transaction tracing

Application
Performance
Management

Cycle Times –
reduce by n%

Software Defect Rates –
reduce by n%

Response times –
n% faster

Restoration times –
speed MTTR by n%

Metrics - Targets DevOps FocusBusiness Metric/Goal Supporting
Initiatives

 Figure 3-2. Metrics, targets, and initiatives linked to business outcomes

 Figure 3-2 illustrates that an organization is seeking to achieve a Net Promoter
Score of 8+. To support this goal, IT needs to deliver software releases and
new functionality faster, together with ensure a high-quality customer experi-
ence. Metrics and targets have therefore been set within the quality and veloc-
ity dimension, together with targets and supporting process/tool initiatives.

 As DevOps metrics programs develop, practitioners should also:

• Have regular and ongoing target reviews to ensure that
goals are not completely unrealistic or that existing pro-
cesses and tools are not delivering improvements.

• Consider removing persistent “green light” metrics when
targets have been consistently achieved.

• Avoid having every metric focused on velocity without
paying attention to customer satisfaction and loyalty.

DevOps for Digital Leaders 47

• Strive to prevent vanity metrics and operational or team-
centric bias creeping back into the program and distort-
ing the true performance picture.

• Beware of ranking teams based on targets—the best way
to compare teams is to measure things like customer loy-
alty (as described) and how successful teams are in meet-
ing their commitments.

• Give strong consideration to metrics, targets, and initia-
tives that foster peer review and openness.

• Carefully build incentives and reward programs that rein-
force the value of a strong collaborative culture.

• Involve business counterparts right from the start to
ensure customer and business data is held to the same
standard as operational/efficiency metrics.

• Match tools to the DevOps program, especially those
that can monitor and respond to real-time conditions
(such as transaction times, response times, and mobile
app crashes), but can also proactively detect and prevent
adverse conditions (such as code defects and release bot-
tlenecks) that impact performance.

 Summary
 At its heart, DevOps is about building a generative organizational culture
where business improvement is placed above everything else. But as this
chapter has illustrated that won’t always be straightforward, especially in
organizations beset by divisional friction and lack of direction. By leveraging
this chapter’s guidance, especially with regard to building high-trust teams, an
outcome-based metrics program and Lean thinking, organizations have a solid
foundation upon which to guide their DevOps programs.

 In Chapters 4 - 7 , we’ll look closely at the automated tooling needed to sup-
port this goal and how businesses can refit and re-engineer their own soft-
ware factories to manufacture high-quality software innovations, at speed. In
these chapters, we’ll examine critical tooling strategies across the software
lifecycle continuum—Build, Test, Deploy, and Manage.

http://dx.doi.org/10.1007/978-1-4842-1842-6_4
http://dx.doi.org/10.1007/978-1-4842-1842-6_7

	Chapter
3: DevOps Foundations
	What Characterizes DevOps Culture?
	Focusing on Products over Politics
	Building Trust and Respect
	Increase Empathy Everywhere
	Open Communication Channels
	Additional Factors

	Lean Thinking to Reduce Waste
	Lean and Value Creation
	Eight Elements of Waste
	Waste Removal Strategies
	Prevent Defects by Removing Constraints
	Focus on Value to Prevent Overproduction
	Smoothing Flow to Reduce Wait Times
	Limit Non-Value Added Processing Through Data-Driven Insights
	Reduce Transportation Cost by Automating Deployments
	Eliminate Excess Inventory Across the Software Factory
	Prevent Unnecessary Motion with Parallel Development
	Incorporate Employee Knowledge Using Feedback Loops

	DevOps Metrics
	Anti-Pattern Metrics
	Suitability Checklist
	Metrics that Matter
	Culture, Collaboration, and Sharing
	Efficiency and Effectiveness
	Quality and Velocity
	Customer and Business Value

	Additional Methods and Techniques

	Summary

