
71

Chapter 3

GUI Design for Android
Apps, Part 3: Designing
Complex Applications

In the previous chapter, you learned about Android interface design by creating a simple
application called GuiExam. The chapter also covered the state transition of activities, the
Context class, and an introduction to intents and the relationship between applications
and activities. You learned how to use a layout as an interface, and how button, event, and
inner event listeners work. In this chapter, you learn how to create an application with
multiple activities; examples introduce the explicit and implicit trigger mechanisms of
activities. You see an example of an application with parameters triggered by an activity
in a different application, which will help you understand the exchange mechanism for
the activity’s parameters.

Applications with Multiple Activities
The application in the previous example has only one activity: the main activity, which
is displayed when the application starts. This chapter demonstrates an application with
multiple activities, using the activity-intent mechanism, and shows the changes needed
in the AndroidManifest.xml file.

As previously described, an activity is triggered by an intent. There are two kinds of
intent-resolution methods: explicit match (also known as direct intent) and implicit match
(also known as indirect intent). A triggering activity can also have parameters and return
values. Additionally, Android comes with a number of built-in activities, and therefore a
triggered activity can come from Android itself, or it can be customized. Based on these
situations, this chapter uses four examples to illustrate different activities. For the explicit
match, you see an application with or without parameters and return values. For the
implicit match, you see an application that uses activities that come from the Android
system or are user defined.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

72

Triggering an Explicit Match of Activities with
No Parameters
Using explicit match without parameters is the simplest trigger mechanism of the activity
intent. This section first uses an example to introduce this mechanism and later covers
more complex mechanisms.

The code framework of the activity-intent triggering mechanism for explicit
matching includes two parts: the activities of the callee (being triggered) and those of the
caller (trigger). The trigger is not limited to activities; it can also be a service, such as a
broadcast intent receiver. But because you have only seen the use of activities so far, the
triggers for all the examples in this section are activities.

1.	 The source code framework for the activity of the callee does
the following:

a.	 Defines a class that inherits from the activity.

b.	 If there are parameters that need to be passed, then
the source code framework of the activity calls the
Activity.getIntent() function in the onCreate function
to obtain the Intent object that triggers this activity, and
then gets the parameters being passed through functions
like Intent.getData (), Intent.getXXXExtra (),
Intent.getExtras (), and so on.

c.	 Writes code for the normal activity patterns.

d.	 If the trigger returns values, does the following before
exiting the activity:

    i.	 Defines an Intent object

  ii.	 Sets data values for the intent with functions like
Intent.putExtras()

iii.	 Sets the return code of the activity by calling the
Activity.setResult() function

e.	 Adds the code for the activity of the callee in the
AndroidManifest.xml file.

2.	 The code framework for the activity of the callee does the
following:

a.	 Defines the Intent object, and specifies the trigger’s
context and the class attribute of the triggered activity.

b.	 If parameters need to be passed to the activity, sets the
parameters for the Intent object by calling functions of
the intent like setData(), putExtras(), and so on.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

73

c.	 Calls Activity.startActivity(Intent intent)
function to trigger an activity without parameters, or call
Activity.startActivityForResult(Intent intent,
int requestCode) to trigger an activity with parameters.

d.	 If the activity needs to be triggered by the return
value, then the code framework rewrites the
onActivityResult() function of the Activity class,
which takes different actions depending on the request
code (requestCode), result code (resultCode), and
intentions (Intent) values.

In step 2a, the class attribute of the triggered activity is used, which involves a Java
mechanism called reflection. This mechanism can create and return an object of the class
according to the class name. The object of the triggered activity is not constructed before
the triggering; therefore triggering the activity also means creating an object of that class
so that subsequent operations can continue. That is, triggering the activity includes the
operation of the newly created class objects.

The following two examples illustrate the code framework in detail. This section
describes the first one. In this example, the triggered activity belongs to the same application
as the activity of the trigger, and the triggered activity does not require any parameters and
does not return any values. The new activity is triggered via a button, and its activity interface
is similar to the interface of the example in the section “Exit Activities and Application.” in
Chapter 2, Figure 2-16. The entire application interface is shown in Figure 3-1.

Figure 3-1.  The application interface with multiple activities in the same application
without parameters

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

74

After the application starts, the application’s main activity is displayed, as shown
in Figure 3-1(a). When the Change To The New Interface Without Parameters button is
clicked, the app displays the new activity, as shown in Figure 3-1(b). Clicking the Close
Activity button causes the interface to return to the application’s main activity, as shown
in Figure 3-1(c).

Create this example by modifying and rewriting the example in the GuiExam section
in Chapter 2, as follows:

1.	 Generate the corresponding layout file for the triggered
activity:

a.	 Right-click the shortcut menu in the res\layout
subdirectory of the application, and select New ➤ Other
Items. A New dialog box pops up. Select the \XML\XML
File subdirectory, and click Next to continue. In the New
XML File dialog box, enter the file name (in this case
noparam_otheract.xml), and click Finish. The entire
process is shown in Figure 3-2.

Figure 3-2.  The layout file for the triggered activity

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

75

Note■■   The file name is the name of the layout file. You must use only lowercase letters
for compilation to be successful; otherwise you will get the error “Invalid file name: must
contain only a-z0-9_.”

You can see the newly added xxx.xml file (in this case, noparam_otheract.xml) in
the project’s Package Explorer, as shown in Figure 3-3.

Figure 3-3.  Initial interface of the application’s newly added layout file

Note■■   The layout editor window on the right is still empty, and there is no visible
interface so far. 

b.	 Select the Layouts subdirectory in the left palette, and
drag the layout control (in this case, RelativeLayout)
onto the window in the right pane. You immediately see
a visible (phone-screen shaped) interface, as shown in
Figure 3-4.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

76

c.	 Based on the same methodology described in the section
“Using ImageView” in Chapter 2, place an ImageView and
a button in the new layout file. Set the ImageView widget’s
ID attribute to @+id/picture and the Button widget’s ID
attribute to @+id/closeActivity. The Text property is
“Close Activity,” as shown in Figure 3-5. Finally, save the
layout file.

Figure 3-5.  Final configuration of the newly added layout file

Figure 3-4.  Drag-and-drop layout for the newly added layout file

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

77

2.	 Add the corresponding Activity class for the layout file
(Java source files). To do so, right-click \src\com.example.XXX
under the project directory, and select New ➤ Class on the
shortcut menu. In the New Java Class dialog box, for Name, enter
the Activity class name corresponding to the new layout file
(in this case, TheNoParameterOtherActivity). Click Finish to
close the dialog box. The whole process is shown in Figure 3-6.

Figure 3-6.  Corresponding class for the newly added layout file

Figure 3-7.  Corresponding class and initial source code of the newly added layout

You can see the newly added Java files (in this case, TheNoParameterOtherActivity.
java) and the initial code, as shown in Figure 3-7.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

78

3.	 Edit the newly added .java file
(TheNoParameterOtherActivity.java). This class executes
the activity of the triggered activity (callee). Its source code is
as follows (bold text is added or modified):

 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle; // Use Bundle class
3 import android.app.Activity; // Use Activity Class
4 import android.widget.Button; // Use Button class
5 import android.view.View; // Use View class
6 import android.view.View.OnClickListener; // Use OnClickListener Class
 
7 public class TheNoParameterOtherActivity extends Activity {
8 // Define Activity subclass
9 @Override
10 protected void onCreate(Bundle savedInstanceState) {
11 // Define onCreate method
12 super.onCreate(savedInstanceState);
13 // onCreate method of calling parent class
14 setContentView(R.layout.noparam_otheract);
15 // Set layout file
16 Button btn = (Button) findViewById(R.id.closeActivity);
17 // Set responding code for <Close Activity> Button
18 btn.setOnClickListener(new /*View.*/OnClickListener(){
19 public void onClick(View v) {
 finish();
 // Close this activity
 }
 });
 }
 }
 

In line 7, you add the superclass Activity for the newly created class. The code
in lines 8 through 18 is similar to the application’s main activity. Note that in line 14,
the code calls the setContentView() function to set the layout for Activity, where the
parameter is the prefix name of the new layout XML file created in the first step.

4.	 Edit the code for the trigger (caller) activity. The trigger
activity is the main activity of the application. The source code
is MainActivity.java, and the layout file is activity_main.xml.
The steps for editing are as follows:

a.	 Edit the layout file, delete the original TextView
widgets, and add a button. Set its ID property to
@+id/goTONoParamNewAct and its Text property to
“Change to interface without Parameter,” as shown in
Figure 3-8.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

79

b.	 Edit the source code file of the trigger activity (in this
case, MainActivity.java) as follows (bold text is either
added or modified):

 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.content.Intent; // Use Intent class
6 import android.widget.Button; // Use Button class
7 import android.view.View.OnClickListener;
8 import android.view.View;
 
9 public class MainActivity extends Activity {
10 @Override
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 Button btn = (Button) findViewById(R.id.goTONoParamNewAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 public void onClick(View v) {
17 Intent intent = new �Intent(MainActivity.this,

TheNoParameterOtherActivity.class);
18 startActivity(intent);
19 }
20 });
21 }

Figure 3-8.  Layout configuration for the trigger activity

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

80

22 @Override
23 public boolean onCreateOptionsMenu(Menu menu) {
24 getMenuInflater().inflate(R.menu.activity_main, menu);
25 return true;
26 }
27 }
 

The code in line 17 defines an intent. The constructor function prototype in this case is

Intent(Context packageContext, Class<?> cls)

The first parameter is the trigger activity, in this case the main activity; this, because
it is used inside the inner classes, is preceded by class-name modifiers. The second
parameter is the class of the callee (being triggered) activity. It uses the .class attribute
to construct its object (all Java classes have the .class attribute).

Line 18 calls startActivity, which runs the intent. This function does not pass any
parameters to the triggered activity. The function prototype is

void Activity.startActivity(Intent intent)

5.	 Edit the AndroidManifest.xml file. Add descriptive
information for the callee activity (bold text is added) to
register the new Activity class:

 
Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.guiexam"
3 android:versionCode="1"
4 android:versionName="1.0" >
...
10 <application
11 android:icon="@drawable/ic_launcher"
12 android:label="@string/app_name"
13 android:theme="@style/AppTheme" >
14 <activity
15 android:name=".MainActivity"
16 android:label="@string/title_activity_main" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23 <�activity android:name=".TheNoParameterOtherActivity"

android:label="the other Activity"/>
24 </application>
25
26 </manifest>
 

http://schemas.android.com/apk/res/android

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

81

You can also replace this XML code with the following methods:

Method 1:•	

 <activity android:name="TheNoParameterOtherActivity"
android:label=" the other Activity"> </activity>

Method 2:•	

<activity android:name=".TheNoParameterOtherActivity " />

Method 3:•	

<activity android:name=".TheNoParameterOtherActivity">
</activity>

The content of the android: name text field is the class name of the callee’s activity:
TheNoParameterOtherActivity.

Note that if a period (.) is added before the name of the Activity class android:
name, the compiler will give you the following warning at this line in the XML file (only a
warning, not a compile error):
 
Exported activity does not require permission

Triggering Explicit Matching of an Activity with
Parameters of Different Applications
The previous sections introduced triggering another activity without parameters in the
same application. The activity of the trigger is that the callee allows the exchange of
parameters: the trigger can specify certain parameters to the callee, and the callee can
return those parameter values to the trigger on exit. Additionally, the callee and the
trigger can be in completely different applications. This section shows an example of
an application with parameters triggered by an activity in a different application. This
example will help you understand the exchange mechanism for the activity’s parameters.

Use the same GuiExam application from Chapter 2. The interface is shown in
Figure 3-9.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

82

Figure 3-9.  The interface of multiple activities in different applications

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

83

As shown in Figure 3-9, the trigger activity is in the GuiExam application, where there is a
variable to accept the weather condition entry. The interface in Figure 3-9(a) displays when
the GuiExam application is opened. Click the Enter New Interface To Modify The Weather box
to trigger the activity in HelloAndroid. When this activity starts, it displays the new weather
condition passed in the Set New Weather text box, as shown in Figure 3-9(b). Now enter a new
weather condition value in the Set New Weather, and click OK Change to close the trigger’s
activity. The new value returned from Set New Weather refreshes the Weather variable in the
trigger’s activity, as shown in Figure 3-9(d). If you click Cancel Change, it does the same thing
and closes the activity, but the value Weather does not change, as shown in Figure 3-9(f).

The process list for the executing application is shown in Figure 3-10 (displayed in
the DDMS window of the host machine in Eclipse).

Figure 3-10.  Process list in DDMS for the multiple-activity application

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

84

Figure 3-10 shows that when the application starts, only the process for the trigger,
GuiExam, is running. But when you click Enter New Interface To Modify The Weather, the
new activity is triggered and the process for the new activity HelloAndroid runs, as shown
in Figure 3-10(b). When you click Confirm Change or Cancel Change, the triggered
activity turns off, but the HelloAndroid process does not quit, as shown in Figure 3-10(c).
Interestingly, even though the GuiExam trigger process exits, the HelloAndroid process to
which the triggered activity belongs is still in the running state.

The build steps are as follows:

1.	 Modify the GuiExam code of the trigger application:

a.	 Edit the main layout file (activity_main.xml in this case)
by deleting the original TextView widgets; then add three
new TextView widgets and a button. Set their properties
as follows: set the Text property for two TextViews to
“This interface is the activity of the Caller in GuiExam
application” and “Today’s Weather:”. Set the third
TextView’s ID property to @+id/weatherInfo. The Text
property of the button is “Enter New Interface to Change
Weather”, and its ID attribute is @+id/modifyWeather.
Adjust the size and position of each widget as shown in
Figure 3-11.

Figure 3-11.  The main layout design for the GuiExam trigger application

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

85

b.	 Modify the content of MainActivity.java as shown here:
 
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.widget.TextView; // Use TextView class
9 import android.content.Intent; // Use Intentclass
 
10 public class MainActivity extends Activity {
11 public static final String INITWEATHER = "Sunny; // /Initial Weather
12 public static final int MYREQUESTCODE =100;
13 //Request Code of triggered Activity
14 private TextView tv_weather;
15 // The TextView Widget that displays Weather info
16 @Override
17 public void onCreate(Bundle savedInstanceState) {
18 super.onCreate(savedInstanceState);
19 setContentView(R.layout.activity_main);
20 tv_weather = (TextView)findViewById(R.id.weatherInfo);
21 tv_weather.setText(INITWEATHER);
22 Button btn = (Button) findViewById(R.id.modifyWeather);
23 //Get Button object according to resource ID #
24 btn.setOnClickListener(new /*View.*/OnClickListener(){
25 //Set responding code click event
26 public void onClick(View v) {
27 Intent intent = new Intent();
28 intent.setClassName("com.example.helloandroid",
29 // the package (application) that the triggered Activity is located
30 "com.example.helloandroid.TheWithParameterOtherActivity");
31 //triggered class (full name)
 String wthr = tv_weather.getText().toString();
32 // Acquire the value of weather TextView
33 intent.putExtra("weather",wthr); // �Set parameter being

passed to Activity
34 startActivityForResult(intent, MYREQUESTCODE);
35 //Trigger Activity
36 }
37 });
38 }

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

86

39
40 @Override
41 protected void onActivityResult(�int requestCode, int resultCode,

Intent data) {
42 //Triggered Activity finish return
43 super.onActivityResult(requestCode, resultCode, data);
44 if (requestCode == MYREQUESTCODE) {
45 // Determine whether the specified Activity end of the run
 if (resultCode == RESULT_CANCELED)
46 { }
47 // Select "Cancel" to exit the code, this case is empty
48 else if (resultCode == RESULT_OK) {
49 // Select <OK> to exit code
50 String wthr = null;
51 wthr = data.getStringExtra("weather");
 // Get return value
 if (wthr != null)
 tv_weather.setText(wthr);
 // Update TextView display of weather content
 }
 }
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
 }
 

The code in lines 23–28 triggers the activity with parameters in other applications.
Lines 23–25 establish the trigger intent, which uses the Intent.setClassName() function.
The prototype is

Intent Intent.setClassName(String packageName, String className);

The first parameter is the name of the package where the triggered activity is
located, and the second parameter is the class name (required to use the full name) of
the triggered activity. By using the startActivity ... function to trigger the activity, the
system can accurately locate the application and activity classes.

Line 28 attaches the parameter as additional data to the intent. Intent has a series of
putExtra functions to attach additional data and another series of getXXXExtra functions
to extract data from the intent. Additional data can also be assembled by the Bundle class.
Intent provides a putExtras function to add data and a getExtras function to get the
data. putExtra uses a property-value data pairing or variable name-value data pairing to
add and retrieve data. In this example, Intent.putExtra("weather", "XXX") saves the
data pair consisting of the name of the weather variable and the value “XXX” as additional
data for the intent.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

87

The code line with Intent.getStringExtra("weather") gets the value of the
weather variable from the attached intent data and returns the string type.

More details about these functions and the Bundle class can be found in the
documentation on the Android web site. They are not discussed any further here.

In lines 33–46, you rewrite the onActivityResult function of the Activity class.
This function is called when the triggered activity is closed. In line 36, you first determine
which activity is closed and returned according to the request code. Then you judge
whether it is returned by an OK or a Cancel click, based on the result code and the request
code. Lines 40–50 get the negotiated variable values from the returned intent. Line 42
updates the interface based on the return value of the variable. In this function, if the user
clicks Cancel to return, you do nothing.

2.	 Modify the code of the callee application HelloAndroid as
shown in Figure 3-12:

a.	 Using the method described in the section “Triggering
Explicit Matching of an Activity with Parameters of
Different Applications earlier in this chapter, add a layout
file (in this case named param_otheract.xml), and drag
and drop a RelativeLayout layout into the file.

b.	 Edit this layout file by adding two TextView widgets, an
EditText, and two Button widgets. Set their properties as
follows:

·· Text property for the two TextView widgets: “This
interface is the activity of the caller in HelloAndroid
application” and “Set new weather as:”

·· ID property for the EditText: @+id/editText_
NewWeather

·· Text property for the two Buttons: “Confirm Changes”
and “Cancel Changes”

·· ID attribute for the two Buttons: @+id/button_Modify
and @+id/button_Cancel

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

88

Then adjust their size and position.

c.	 As described in the section “Triggering Explicit
Matching of an Activity with Parameters of Different
Applications,” add the corresponding class (in this case,
TheWithParameterOtherActivity) for the new layout
file, as shown in Figure 3-13.

Figure 3-12.  New layout design of the triggered (callee) application HelloAndroid

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

89

d.	 Edit the class file for the newly added layout file
(in this example, TheWithParameterOtherActivity.java).
The content is as follows:

 
Line# Source Code
1 package com.example.helloandroid;
2 import android.os.Bundle; // Use Bundle Class
3 import android.app.Activity; // Use Activity Class
4 import android.content.Intent; // Use Intent Class
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View Class

Figure 3-13.  Add the corresponding class for the newly added layout file in the
HelloAndroid project

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

90

7 import android.view.View.OnClickListener; // Use OnClickListener Class
8 import android.widget.EditText; // Use EditText Class
 
9 public class TheWithParameterOtherActivity extends Activity {
10 private String m_weather;
11 // Save new weather variable
12 @Override
13 protected void onCreate(Bundle savedInstanceState) {
14 // Define onCreate method
15 super.onCreate(savedInstanceState);
16 // method of call onCreate Super Class
17 setContentView(R.layout.withparam_otheract); // Set layout file
18 Intent intent = getIntent();
19 // Get Intent of triggering this Activity
20 m_weather = intent.getStringExtra("weather");
21 // Get extra data from Intent
22 final EditText �et_weather = (EditText)

findViewById(R.id.editText_NewWeather);
23 et_weather.setText(m_weather,null);
24 // �Set initial value of "New Weather" EditText according to extra data of

the Intent
25 Button btn_modify = (Button) findViewById(R.id.button_Modify);
26 btn_modify.setOnClickListener(new /*View.*/OnClickListener(){
27 // Set corresponding code of <Confirm Change>
28 public void onClick(View v) {
29 Intent intent = new Intent();
30 // Create and return the Intent of Data storage
31 String wthr = et_weather.getText().toString();
32 // Get new weather value from EditText
33 intent.putExtra("weather",wthr);
34 // Put new weather value to return Intent
35 setResult(RESULT_OK, intent);
36 // Set <Confirm> and return data
37 finish(); // Close Activity
 }
 });
 Button btn_cancel = (Button) findViewById(R.id.button_Cancel);
 btn_cancel.setOnClickListener(new /*View.*/OnClickListener(){
 // Set corresponding code for <Cancel Change>
 public void onClick(View v) {
 setResult(RESULT_CANCELED, null);
 // Set return value for <Cancel>
 finish(); // Close this Activity
 }
 });
 }
 }
 

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

91

This code follows the framework of an activity. It sets the activity layout in line 11
such that the layout name is the same as the layout file name created in step 1 (no extension).
In lines 19–22, it first constructs an intent for the return and then adds extra data to the
Intent object as the return data. In line 21, it sets the return value of the activity and the
intent as a return data carrier. The prototype of the setResult function is

final void Activity.setResult(int resultCode, Intent data);

If resultCode is RESULT_OK, the user has clicked OK to return; and if it is
RESULT_CANCELLED, the user has clicked Cancel to return. In this condition, the return
data carrier intent can be null, which is set in line 27.

3.	 Modify AndroidManifest.xml, which is triggered by the
application, with the following code:

 
Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.helloandroid"
3 android:versionCode="1"
4 android:versionName="1.0" >
5
6 <uses-sdk
7 android:minSdkVersion="8"
8 android:targetSdkVersion="15" />
9
10 <application
11 android:icon="@drawable/ic_launcher"
12 android:label="@string/app_name"
13 android:theme="@style/AppTheme" >
14 <activity
15 android:name=".MainActivity"
16 android:label="@string/title_activity_main" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23 <activity
24 android:name="TheWithParameterOtherActivity">
25 <intent-filter>
26 <action android:name="android.intent.action.DEFAULT" />
27 </intent-filter>
28 </activity>
29 </application>
30
31 </manifest>
 

http://schemas.android.com/apk/res/android

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

92

4.	 Lines 24–29 are new. As in previous sections, you add an
additional activity description and specify its class name, which
is the class name of the triggered activity generated in the
second step. See the section “Triggering an Explicit Match of
Activities with No Parameters” for information about modifying
the AndroidManifest.xml file. Unlike in that section, you add
not only an activity and the documentation of its name attribute,
but also the intent-filter instructions and state to accept the
default actions described in the Action element and trigger this
Activity class. The activity cannot be activated in the absence
of the intent-filter description of the activity.

5.	 Run the callee application to register components of the
activity. The modifications to AndroidManifest.xml file are not
registered to the Android system until the callee application,
HelloAndroid, is executed once. Thus this is an essential step to
complete the registration of its included activity.

Implicit Matching of Built-In Activities
In the examples in the previous two sections, before you trigger the activity of the same
application or different applications through the Activity.startActivity() function or
the Activity.startActivityForResult() function, the constructor of the Intent objects
explicitly specifies the class, either through the .class attribute or through the class name
in a string. This way, the system can find the class to be triggered. This approach is called
explicit intent matching. The next example shows how to trigger a class that is not specified.
Instead, the system figures it out using an approach called implicit intent matching.

In addition, Android has a number of activities that have already been implemented,
such as dialing, sending text messages, and so on. Examples in this section explain how
you use can implicit matching to trigger these built-in activities. The application interface
is shown in Figure 3-14.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

93

The user start the GuiExam application and clicks the Enter Dialing Activity button on
the screen. It triggers dial-up activities that come with the system.

In this case, you modify the GuiExam project and use this application as a trigger.
The implicit match triggered activity is the dial-up activity. The steps to build this
example are as follows.

1.	 In the layout file (activity_main.xml) of the GuiExam
application, delete the original TextView widgets, add a
button, and set its ID attribute to @+id/goTODialAct and its
Text property to “Enter Dialing Activity”. Adjust its size and
position as shown in Figure 3-15.

Figure 3-14.  The application interface when using implicit intent to trigger a built-in
activity

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

94

2.	 Modify the source code file (MainActivity.java) as follows:
 
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View Class
7 import android.view.View.OnClickListener; // Use View.OnClickListener Class
8 import android.content.Intent; // Use Intent Class
9 import android.net.Uri; // Use URI Class
 
10 public class MainActivity extends Activity {
11 @Override
12 public void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
14 setContentView(R.layout.activity_main);
15 Button btn = (Button) findViewById(R.id.goTODialAct);
16 btn.setOnClickListener(new /*View.*/OnClickListener(){
17 // Set corresponding Code for Click Activity
18 public void onClick(View v) {
19 �Intent intent = new Intent(Intent.ACTION_DIAL,

Uri.parse("tel:13800138000"));

Figure 3-15.  Layout file of the application for the implicit match built-in activity

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

95

20 startActivity(intent); // Trigger corresponding Activity
21 }
22 });
 }
23
24 @Override
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity_main, menu);
27 return true;
28 }
 }
 

The code in line 16 defines an indirect intent (that is, intent of implicit match. It is
called an indirect intent because the class that needs to be triggered is not specified in
the constructor of the object; the constructor only describes the function of the class
that needs to be triggered to complete dialing. The constructor functions for the indirect
intent are as follows:
 
Intent(String action)
Intent(String action, Uri uri)
 

These functions require the classes (activities) that can complete the specified action
when they are called. The only difference between the two is that the second function
also comes with data.

This example uses the second constructor, which requires the activity that
can complete the dialing and extra data as a string of phone numbers. Because the
application does not specify the trigger type, Android finds the class to handle this action
(for example, Activity) from the registered class list and triggers the start of the event.

If multiple classes can handle the specified action, Android pops up a selection
menu, and users can select which one to run.

The parameter action can use the system-predefined string. In the previous
example, Intent.ACTION_DIAL is the string constant of ACTION_DIAL, which is defined by
the Intent class. Some system-predefined ACTION examples are shown in Table 3-1.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

96

The ACTION constant name is the first parameter used in the constructor of the
implicit-match intent. The value of the ACTION constant, used in the AndroidManifest.xml
statement of the activity that receives this action, is not used in this section, but is used in
the next section. You can find more information about predefined ACTION values in the
android.content.Intent help documentation.

Table 3-1.  Some System-Predefined ACTION Constants

ACTION Constant
Name

Value Description

ACTION_MAIN android.intent.
action.MAIN

Start up as the initial activity of a task with
no data input and no returned output.

ACTION_VIEW android.intent.
action.VIEW

Display the data in the intent URI.

ACTION_EDIT android.intent.
action.EDIT

Request an activity to edit data.

ACTION_DIAL android.intent.
action.DIAL

Start a phone dialer, and use preset
numbers in the data to dial.

ACTION_CALL android.intent.
action.CALL

Initiate a phone call, and immediately use
the number in the data URI to initiate a call.

ACTION_SEND android.intent.
action.SEND

Start an activity to send specific data (the
recipient is selected by activity resolution).

ACTION_SENDTO android.intent.
action.SENDTO

Generally, start an activity to send a
message to a contact designated in the URI.

ACTION_ANSWER android.intent.
action.ANSWER

Open an activity to process an incoming
call. Currently it is handled by a local
phone-dialing tool.

ACTION_INSERT android.intent.
action.INSERT

Open an activity that can insert a new
project at the addition cursor in a specific
data field. When it is called as the child
activity, it must return the URI of the newly
inserted project.

ACTION_DELETE android.intent.
action.DELETE

Start an activity to delete a data port at the
URI position.

ACTION_WEB_SEARCH android.intent.
action.WEB_SEARCH

Open an activity, and run a web page
search based on the text in the URI data.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

97

Implicit Match that Uses a Custom Activity
The previous example used implicit matching to trigger activities that come with the
Android system. In this section, you see an example of how to use an implicit match to
trigger a custom activity.

The configuration of this example application is similar to the one in the section
“Triggering Explicit Matching of an Activity with Parameters of Different Applications.”
The triggering application is hosted in the GuiExam project, and the custom activity
triggered by implicit match is in the HelloAndroid application. The interface is shown in
Figure 3-16.

Figure 3-16.  The interface of implicit match that uses a custom activity

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

98

Figure 3-16(a) shows the interface when the GuiExam trigger application starts.
When you click the Display Activity Of Implicit Intent button, the system finds qualified
candidates for activities according to the requirements of the ACTION_EDIT action and
displays a list of events of these candidates (b). When the user-defined HelloAndroid
application is selected, the activity that can receive the ACTION_EDIT action as claimed in
the intent-filter in HelloAndroid application is displayed (c). When you click the Close
Activity button, the application returns to the original GuiExam activity interface (d).

Like the previous ones, this example is based on modifying the GuiExam project.
The steps are as follows:

1.	 Edit the main layout file (activity_main.xml). Delete the
original TextView widgets, and then add a TextView and a
button. Set the TextView’s Text property to “This application
is the Activity triggered by Caller using Implicit Intent”. Set
the button’s Text property to “Display Activity triggered by
Implicit Intent” and its ID attribute to @+id/goToIndirectAct,
as shown in Figure 3-17. 

Figure 3-16.  (continued)

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

99

2.	 Edit MainActivity.java as follows:
 
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.content.Intent; // Use Intent Class
 
9 public class MainActivity extends Activity {
10 @Override
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 Button btn = (Button) findViewById(R.id.goToIndirectAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 // Set respond Code for Button Click event
17 public void onClick(View v) {
18 Intent intent = new Intent(Intent.ACTION_EDIT);
19 //Construct implicit Inent
20 startActivity(intent); // Trigger Activity
21 }
 });
22 }
23

Figure 3-17.  The main layout design for the GuiExam trigger application

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

100

24 @Override
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity_main, menu);
27 return true;
 }
 }
 

The code in lines 16 and 17 defines the implicit intent and triggers the corresponding
activity, which is basically the same as the earlier code that triggers implicit activity, but
here it uses the constructor function of the intent that has no data.

3.	 Modify the HelloAndroid application that includes a custom
activity with the corresponding implicit intent:

a.	 Based on the method described in the section
“Triggering an Explicit Match of Activities with No
Parameters,” earlier in this chapter, add a layout file
(implicit_act.xml) to the project and drag and drop a
RelativeLayout layout into the file.

b.	 Edit the layout file, and add TextView, ImageView, and
Button widgets. Set the attributes as follows:

·· Text property of the TextView: “This interface is an
Activity of the HelloAndroid, which is responsible for
action triggered by the ACTION_EDIT”

·· ImageView: Set up exactly as in the section “Using
ImageView” in Chapter 2.

·· Text property of the Button: “Close Activity”

·· ID property of the Button: @+id/closeActivity.

Then adjust their respective size and position, as shown in Figure 3-18.

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

101

4.	 Similar to the process described in the section of this
chapter “Triggering an Explicit Match of Activities with No
Parameters,” add the corresponding class to the project for the
new layout file (TheActivityToImplicitIntent), as shown in
Figure 3-19.

Figure 3-18.  Layout file for the custom activity of the corresponding implicit intent

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

102

5.	 Edit the class file for the newly added layout file
(TheActivityToImplicitIntent.java), which reads
as follows:

 
Line# Source Code
1 package com.example.helloandroid;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.widget.Button; // Use Button Class
5 import android.view.View; // Use View class
6 import android.view.View.OnClickListener; // Use View.OnClickListener class
 

Figure 3-19.  New class for the custom activity of the corresponding implicit intent

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

103

7 public class TheActivityToImplicitIntent extends Activity {
8 @Override
9 public void onCreate(Bundle savedInstanceState) {
10 super.onCreate(savedInstanceState);
11 setContentView(R.layout.implicit_act);
12 Button btn = (Button) findViewById(R.id.closeActivity);
13 btn.setOnClickListener(new /*View.*/OnClickListener(){
14 // Set response code for <Close Activity> Click
15 public void onClick(View v) {
16 finish();
17 }
18 });
19 }
 }
 

6.	 Modify the AndroidManifest.xml file of the HelloAndroid
custom application containing the corresponding implicit
intent, as follows:

 
Line# Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2
3 package="com.example.helloandroid"
4
5 android:versionCode="1"
6
7 android:versionName="1.0" >
8
9 <uses-sdk
10 android:minSdkVersion="8"
11 android:targetSdkVersion="15" />
12
13 <application
14 android:icon="@drawable/ic_launcher"
15 android:label="@string/app_name"
16 android:theme="@style/AppTheme" >
17 <activity
18 android:name=".MainActivity"
19 android:label="@string/title_activity_main" >
20 <intent-filter>
21 <action android:name="android.intent.action.MAIN" />
22
23 <category android:name="android.intent.category.LAUNCHER" />
24 </intent-filter>
25 </activity>

http://schemas.android.com/apk/res/android

Chapter 3 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

104

26 <activity
27 android:name="TheActivityToImplicitIntent">
28 <intent-filter>
29 <action android:name="android.intent.action.DEFAULT" />
30 <action android:name="android.intent.action.EDIT" />
31 <category android:name="android.intent.category.DEFAULT" />
32 </intent-filter>
33 </activity>
 </application>
 
 </manifest>
 

The code in lines 24–32 (in bold) gives the activity information for receiving the
implicit intent. Line 26 specifies that you can receive an android.intent.action.EDIT
action. This value corresponds to the constant value of the ACTION parameter
Intent.ACTION_EDIT of the trigger’s intent constructor function (the MainActivity class
of GuiExam). This is a predetermined contact signal between the trigger and the callee.
Line 27 further specifies that the default data type can also be received.

7.	 Run the application HelloAndroid, which now contains a
custom activity for the corresponding implicit intent and
registers its AndroidManifest.xml file in the system.

So far, three chapters have covered Android interface design. The simple GuiExam
application has demonstrated the state transition of an activity, the Context class, intents,
and the relationship between applications and activities. You also learned how to use a
layout as an interface and how the button, event, and inner event listener work. Examples
with multiple activities introduced the explicit and implicit trigger mechanisms for
activities. You saw an example of an application with parameters triggered by an activity
in a different application, and you now understand the exchange mechanism for the
activity’s parameters.

The application interface discussed so far is basically similar to a dialog interface.
The drawback of this mode is that it is difficult to obtain accurate touchscreen input,
making it difficult to display accurate images based on the input interface. The next
chapter, which covers the last part of Android interface design, introduces the view-based
interaction style interface. In this interface, you can enter information with accurate
touchscreen input and display detailed images, as required by many game applications.

	Chapter 3: GUI Design for Android Apps, Part 3: Designing Complex Applications
	Applications with Multiple Activities
	Triggering an Explicit Match of Activities with No Parameters
	Triggering Explicit Matching of an Activity with Parameters of Different Applications
	Implicit Matching of Built-In Activities
	Implicit Match that Uses a Custom Activity

