CHAPTER 3

GUI Design for Android
Apps, Part 3: Designing
Complex Applications

In the previous chapter, you learned about Android interface design by creating a simple
application called GuiExam. The chapter also covered the state transition of activities, the
Context class, and an introduction to intents and the relationship between applications
and activities. You learned how to use a layout as an interface, and how button, event, and
inner event listeners work. In this chapter, you learn how to create an application with
multiple activities; examples introduce the explicit and implicit trigger mechanisms of
activities. You see an example of an application with parameters triggered by an activity
in a different application, which will help you understand the exchange mechanism for
the activity’s parameters.

Applications with Multiple Activities

The application in the previous example has only one activity: the main activity, which
is displayed when the application starts. This chapter demonstrates an application with
multiple activities, using the activity-intent mechanism, and shows the changes needed
in the AndroidManifest.xml file.

As previously described, an activity is triggered by an intent. There are two kinds of
intent-resolution methods: explicit match (also known as direct intent) and implicit match
(also known as indirect intent). A triggering activity can also have parameters and return
values. Additionally, Android comes with a number of built-in activities, and therefore a
triggered activity can come from Android itself, or it can be customized. Based on these
situations, this chapter uses four examples to illustrate different activities. For the explicit
match, you see an application with or without parameters and return values. For the
implicit match, you see an application that uses activities that come from the Android
system or are user defined.

71

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

Triggering an Explicit Match of Activities with
No Parameters

Using explicit match without parameters is the simplest trigger mechanism of the activity
intent. This section first uses an example to introduce this mechanism and later covers
more complex mechanisms.

The code framework of the activity-intent triggering mechanism for explicit
matching includes two parts: the activities of the callee (being triggered) and those of the
caller (trigger). The trigger is not limited to activities; it can also be a service, such as a
broadcast intent receiver. But because you have only seen the use of activities so far, the
triggers for all the examples in this section are activities.

1. The source code framework for the activity of the callee does
the following:

a. Defines a class that inherits from the activity.

b. Ifthere are parameters that need to be passed, then
the source code framework of the activity calls the
Activity.getIntent() function in the onCreate function
to obtain the Intent object that triggers this activity, and
then gets the parameters being passed through functions
like Intent.getData (), Intent.getXXXExtra (),
Intent.getExtras (), andsoon.

c. Writes code for the normal activity patterns.

d. [Ifthe trigger returns values, does the following before
exiting the activity:

i. Defines an Intent object

ii. Sets data values for the intent with functions like
Intent.putExtras()

iii. Sets the return code of the activity by calling the
Activity.setResult() function

e. Adds the code for the activity of the callee in the
AndroidManifest.xml file.

2. The code framework for the activity of the callee does the
following:

a. Defines the Intent object, and specifies the trigger’s
context and the class attribute of the triggered activity.

b. If parameters need to be passed to the activity, sets the
parameters for the Intent object by calling functions of
the intent like setData(), putExtras(), and so on.

72

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

c. CallsActivity.startActivity(Intent intent)
function to trigger an activity without parameters, or call
Activity.startActivityForResult(Intent intent,
int requestCode) to trigger an activity with parameters.

d. Ifthe activity needs to be triggered by the return
value, then the code framework rewrites the
onActivityResult() function of the Activity class,
which takes different actions depending on the request
code (requestCode), result code (resultCode), and
intentions (Intent) values.

In step 23, the class attribute of the triggered activity is used, which involves a Java
mechanism called reflection. This mechanism can create and return an object of the class
according to the class name. The object of the triggered activity is not constructed before
the triggering; therefore triggering the activity also means creating an object of that class
so that subsequent operations can continue. That is, triggering the activity includes the
operation of the newly created class objects.

The following two examples illustrate the code framework in detail. This section
describes the first one. In this example, the triggered activity belongs to the same application
as the activity of the trigger, and the triggered activity does not require any parameters and
does not return any values. The new activity is triggered via a button, and its activity interface
is similar to the interface of the example in the section “Exit Activities and Application.” in
Chapter 2, Figure 2-16. The entire application interface is shown in Figure 3-1.

Chacge 1o Se oo wierizce Changs 10 the sew amerface
ot odramenany TR U AT

(a) Interface when the app (b) Interface when Change (c) Interface when Close
starts To The New Interface Activity is clicked
Without Parameters is
clicked

Figure 3-1. The application interface with multiple activities in the same application
without parameters

73

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

After the application starts, the application’s main activity is displayed, as shown
in Figure 3-1(a). When the Change To The New Interface Without Parameters button is
clicked, the app displays the new activity, as shown in Figure 3-1(b). Clicking the Close
Activity button causes the interface to return to the application’s main activity, as shown

in Figure 3-1(c).

Create this example by modifying and rewriting the example in the GuiExam section

in Chapter 2, as follows:

1. Generate the corresponding layout file for the triggered
activity:

a. Right-click the shortcut menu in the res\layout
subdirectory of the application, and select New » Other
Items. A New dialog box pops up. Select the \XML\XML
File subdirectory, and click Next to continue. In the New
XML File dialog box, enter the file name (in this case
noparam_otheract.xml), and click Finish. The entire
process is shown in Figure 3-2.

Be Bt Refwctor Souce Medgate Saych Propct Bun Window Hep

BT 2w] B QG N ([N g By Seleet @ wizaed

Creste 5 new L e

1 Package Exglorer .a Wi

3 Guam -] f

& e
» g

o mh Ao 403

& i Ancrond Depencdenie

on
e
-

o] "
™ Progct.
@ Package
AteShitew * G Qe
© terface
cuive G'inm
= Arotanon
ey . Source Fekder
Delce Jva Working Set
» L Fokder
apegwer + PR
rttied Text Fie
At Test Cane
" Example. | Enter or nebect the parent ke
i [amretrax
i
¥ i ramatie-hiy -
u i il i
. o T]
O el s
oyt
. merus
i e
valueArge
AEAEnter vavll

Ve

Fle rame: freparsm_omheract wmi

Advarced >>

3 <t | wers |[Ewh | cowd

Figure 3-2. The layout file for the triggered activity

4

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

Note The file name is the name of the layout file. You must use only lowercase letters
for compilation to be successful; otherwise you will get the error “Invalid file name: must
contain only a-z0-9_.”

You can see the newly added xxx.xml file (in this case, noparam_otheract.xml) in
the project’s Package Explorer, as shown in Figure 3-3.

B DX Refschr Jouoe hevgate Seych Dot Bun findoe by

- ne e R L LaR | e vr -

B Prach e Eghores miry [L
o G a] o Paette - ey . B S St e
-y > P
. g s o]
[Pe—
T T — =

| e ks =l
| s

| s 5 v d|
| e pate Hl of
ranaen o XML contere. Feme 334 8 10k viee of Bryout 10 your document. &)

Customn & Ly ary Vaew, = =

T RO T e oot

Py

Figure 3-3. Initial interface of the application’s newly added layout file

Note The layout editor window on the right is still empty, and there is no visible
interface so far.

b. Select the Layouts subdirectory in the left palette, and
drag the layout control (in this case, Relativelayout)
onto the window in the right pane. You immediately see
a visible (phone-screen shaped) interface, as shown in
Figure 3-4.

75

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

[o' ea Bodug @oovs Roces

vt

ek e Lavout
i Fragmere =
Limmpnite
T B Mo
T e Dt
Trarmitions
el A
(Cumtom & Lbeary Views. | |« |
T Graphical Layout | 7 nopiaram_offersct ol

L Je—

Figure 3-4. Drag-and-drop layout for the newly added layout file

c. Based on the same methodology described in the section
“Using ImageView” in Chapter 2, place an ImageView and
a button in the new layout file. Set the ImageView widget’s
ID attribute to @+id/picture and the Button widget’s ID
attribute to @+1id/closeActivity. The Text property is
“Close Activity,” as shown in Figure 3-5. Finally, save the

layout file.
noparam_otheract xml =i0
L ——Palette — |k | Beeasone v | @ - | & appTheme Structure -
¥ Palette - by Cutine
- Form widgets OManacovy ¥ | @ v @S v
e e A RebaveLayout
~Largeiiten e e = 0 | CE~- BEEG CHERORECRORE | 2 peture (Imageview) - morphing
Tl S_i & Chenitn ¥ conehctiaty Ciose Acw iy
I
- “ - -
- y » v = Propertes PlAIR E
. -l JE
Text Fakds | LT T L " @entctre =4
Layouts > » - * Layout Paramet... [
— | Comm—— L
| Images B Modia | — Conkent Descrip... =
Tino & Date & insaRten =
Trarnitions | W View
Custom & Library Views |« | | =

= Graphacal Layout | | F noparam_otheract xomi

Figure 3-5. Final configuration of the newly added layout file

76

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

2. Add the corresponding Activity class for the layout file
(Java source files). To do so, right-click \src\com.example.XXX
under the project directory, and select New » Class on the
shortcut menu. In the New Java Class dialog box, for Name, enter
the Activity class name corresponding to the new layout file
(in this case, TheNoParameterOtherActivity). Click Finish to
close the dialog box. The whole process is shown in Figure 3-6.

3 e imacs =lolx
B EOt Refxtor Souce Mmgats Sepch Bromct fun Wndow beb Java Class .
cw S s R = . "
ag G eTeTaT Y B oo s v s o
Source foiger: JGLE wam e Brgwne. !
Package: T rome |
I encomngupe: | o |
A | prp———
= Mokl Fpek Camg s
SR Fogextd
=114 Speass [valang Cogect frowig I
G chawatlehugi (=
i o awabie g XK Ciete Deete i
3 i chamable- man
5 s chawable-shes b Path W memiod 2L woukd you lhe B crame”
- Geurce M Shke 5 I puk: vtate ot marStrrgl] argn)
eT—) AT r
R p— 2 toalmney
._.L-m«. F riprmes stamact metroct
- hnm-m:n
1 o
-}
) reh | Cacel

Figure 3-6. Corresponding class for the newly added layout file

You can see the newly added Java files (in this case, TheNoParameterOtherActivity.
java) and the initial code, as shown in Figure 3-7.

Lrwr Casbcam e com ewarple /guikeoam TheoDarameterOther Activity. v - Ecipse SDK T =101 x|
Eh Em Mw Source W Sagch Promct Bun Window Hep
P WS S e O e B e i BERT AL W MR Y
B | &'va POty QooMs ok
i ThehioP arameterCther Actvty java & =0
2] N ! package com.example.guiexan; =

4 i com exampie. QuEam public class TheMoParameterOtherActivity |
) Manketity Jva

© I TheoPar smeter Offws ACSWEy Java

T <

* W ANOd 4.0.3

* W Ancrod Dependences

nts

o o wable-Fedpi
i chawabie-di
i o pwabe-mmkes
L X b
i lyous
achay_man onl

i noparam_othesact el

@ meru

L s -
- vaidrge 1 _'I_I
vaesvil
& vilesvid . o O Cormcle | hB|e@-n1>v=0
ArvyosMantet oml - .

Writable Smatimst | 1:1

Figure 3-7. Corresponding class and initial source code of the newly added layout

77

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

3. Editthe newly added . java file
(TheNoParameterOtherActivity.java). This class executes
the activity of the triggered activity (callee). Its source code is
as follows (bold text is added or modified):

Line # Source Code

1 package com.example.guiexam;

2 import android.os.Bundle; // Use Bundle class

3 import android.app.Activity; // Use Activity Class

4 import android.widget.Button; // Use Button class

5 import android.view.View; // Use View class

6 dimport android.view.View.OnClickListener; // Use OnClickListener Class

7 public class TheNoParameterOtherActivity extends Activity {
8 // Define Activity subclass
9 @0Override

10 protected void onCreate(Bundle savedInstanceState) {

11 // Define onCreate method

12 super.onCreate(savedInstanceState);
13 // onCreate method of calling parent class
14 setContentView(R.layout.noparam_otheract);
15 // Set layout file
16 Button btn = (Button) findViewById(R.id.closeActivity);
17 // Set responding code for <Close Activity» Button
18 btn.setOnClickListener(new /*View.*/0OnClickListener(){
19 public void onClick(View v) {
finish();
// Close this activity
}
D;
}
}

In line 7, you add the superclass Activity for the newly created class. The code
in lines 8 through 18 is similar to the application’s main activity. Note that in line 14,
the code calls the setContentView() function to set the layout for Activity, where the
parameter is the prefix name of the new layout XML file created in the first step.

4. Edit the code for the trigger (caller) activity. The trigger
activity is the main activity of the application. The source code
isMainActivity. java, and the layout file is activity main.xml.
The steps for editing are as follows:

a. Edit the layout file, delete the original TextView
widgets, and add a button. Set its ID property to
@+id/goTONoParamNewAct and its Text property to
“Change to interface without Parameter,” as shown in
Figure 3-8.

78

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

[P — @ Guibxam

L ——Palette — e v | @neascne v | @ v | & appTheme oty -
Paette - Ty Outine
Form Widgets OManactvty » | @ v 8 >
Redatvel syout
L Asm o a - - - &
——) ol ! “ =] QOTONOPar amNewACt Crenge 1o
— - j SR Wit
>, Farpmete

1]] =
;I Propertes : i 4

Text Frokds :ﬂ ; .'-'--' /o TONOP ar ambewict :j;l
Lanpouts style :J
Composite Text Thatgeto Stera e ot Frrreeier - |
Smages b . =l
Fms & Date Content... 5|
Transitions s Tedvew []
Advanced
Custom & Library Views <]
Grapheca Layout activity _mair.amd

Figure 3-8. Layout configuration for the trigger activity

b. Edit the source code file of the trigger activity (in this
case, MainActivity.java) as follows (bold text is either
added or modified):

Line # Source Code

ON OOV B~ WN B

10
11
12
13
14
15
16
17

18
19
20
21

package com.example.guiexam;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.content.Intent; // Use Intent class
import android.widget.Button; // Use Button class
import android.view.View.OnClickListener;

import android.view.View;

public class MainActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
Button btn = (Button) findViewById(R.id.goTONoParamNewAct);
btn.setOnClickListener(new /*View.*/0OnClickListener(){
public void onClick(View v) {
Intent intent = new Intent(MainActivity.this,
TheNoParameterOtherActivity.class);
startActivity(intent);

79

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

22 @0verride

23 public boolean onCreateOptionsMenu(Menu menu) {

24 getMenuInflater().inflate(R.menu.activity_main, menu);
25 return true;

26 }

27 }

The code in line 17 defines an intent. The constructor function prototype in this case is
Intent(Context packageContext, Class<?> cls)

The first parameter is the trigger activity, in this case the main activity; this, because
itis used inside the inner classes, is preceded by class-name modifiers. The second
parameter is the class of the callee (being triggered) activity. It uses the .class attribute
to construct its object (all Java classes have the .class attribute).

Line 18 calls startActivity, which runs the intent. This function does not pass any
parameters to the triggered activity. The function prototype is

void Activity.startActivity(Intent intent)

5. Edit the AndroidManifest.xml file. Add descriptive
information for the callee activity (bold text is added) to
register the new Activity class:

Line # Source Code

1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.guiexam"

3 android:versionCode="1"

4 android:versionName="1.0" >

......

10 <application

11 android:icon="@drawable/ic_launcher"

12 android:label="@string/app_name"

13 android:theme="@style/AppTheme" >

14 <activity

15 android:name=".MainActivity"

16 android:label="@string/title activity main" >

17 <intent-filter>

18 <action android:name="android.intent.action.MAIN" />

19

20 <category android:name="android.intent.category.LAUNCHER" />

21 </intent-filter>

22 </activity>

23 <activity android:name=".TheNoParameterOtherActivity"
android:label="the other Activity"/»>

24 </application>

25

26 </manifest>

80

http://schemas.android.com/apk/res/android

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

You can also replace this XML code with the following methods:
e Method1:

<activity android:name="TheNoParameterOtherActivity"
android:label=" the other Activity"> </activity>

e Method2:
<activity android:name=".TheNoParameterOtherActivity " />
e Method3:

<activity android:name=".TheNoParameterOtherActivity">
</activity>

The content of the android: name text field is the class name of the callee’s activity:
TheNoParameterOtherActivity.

Note that if a period (.) is added before the name of the Activity class android:
name, the compiler will give you the following warning at this line in the XML file (only a
warning, not a compile error):

Exported activity does not require permission

Triggering Explicit Matching of an Activity with
Parameters of Different Applications

The previous sections introduced triggering another activity without parameters in the

same application. The activity of the trigger is that the callee allows the exchange of

parameters: the trigger can specify certain parameters to the callee, and the callee can

return those parameter values to the trigger on exit. Additionally, the callee and the

trigger can be in completely different applications. This section shows an example of

an application with parameters triggered by an activity in a different application. This

example will help you understand the exchange mechanism for the activity’s parameters.
Use the same GuiExam application from Chapter 2. The interface is shown in

Figure 3-9.

81

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

1939 AT B

MainActivity
This interface is the activity of trigger
(Caller) in GuiExam App

Today's Weather: Sunny

Evter new intermace 10
MmOy the westher

HelloAndrold
ltrggeres. ang = Henadssrow apphcation

1941 BT B

HelloAndrold

(a) Interface when the
GuiExam application starts

1941 A7 B
MainActivity

Enter new mterfece to
Change westher

(d) Interface after clicking
Confirm Change

(b) Interface after clicking
Enter New Interface To
Modify the Weather

1942 BY BT

HellsAndrold
[Thiz imterface is the activity of the Calice in
[Hesioansros sppiication

i

(e) Interface after clicking
Enter New Interface To
Modify The Weather and
entering a new value in the
Set New Weather text box

e rem e Sy sethew (Ciouay
Confrm Comcel Contem Camcel
hange Cheage Jr— Jo—

(c) Entering a new value in
the Set New Weather text
box

MainActivity

[This interface i the actrvity of Caller i Gubuam
Ry

Tosey's Westaer = Cloudy

Enter pew interface
1o change westner

(f) Interface after clicking
Cancel Change

Figure 3-9. The interface of multiple activities in different applications

82

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

As shown in Figure 3-9, the trigger activity is in the GuiExam application, where there is a
variable to accept the weather condition entry. The interface in Figure 3-9(a) displays when
the GuiExam application is opened. Click the Enter New Interface To Modify The Weather box
to trigger the activity in Hel1oAndroid. When this activity starts, it displays the new weather
condition passed in the Set New Weather text box, as shown in Figure 3-9(b). Now enter a new
weather condition value in the Set New Weather, and click OK Change to close the trigger’s
activity. The new value returned from Set New Weather refreshes the Weather variable in the
trigger’s activity, as shown in Figure 3-9(d). If you click Cancel Change, it does the same thing
and closes the activity, but the value Weather does not change, as shown in Figure 3-9(f).

The process list for the executing application is shown in Figure 3-10 (displayed in
the DDMS window of the host machine in Eclipse).

#0RO/ERSm "= @ Devices ¢ # EmO(32 S "0

orine BT Criree 3
et e ieni Pelosncl cal 17812 B

4] i

(a) When the GuiExam application starts (b) After clicking Enter New Interface To

Modify The Weather
B Devices § #0028 ($|l& "m0 § Cevices 1 oGO 2T |& "D
Hame | | I‘ _ Nome | 1|

Orine = [ook Oriine 237

com £ sripks hedoand o 17812 B0

(c) After clicking Confirm Change or (d) After the GuiExam application exits
Cancel Change

Figure 3-10. Process list in DDMS for the multiple-activity application

83

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

Figure 3-10 shows that when the application starts, only the process for the trigger,
GuiExam, is running. But when you click Enter New Interface To Modify The Weather, the
new activity is triggered and the process for the new activity HelloAndroid runs, as shown
in Figure 3-10(b). When you click Confirm Change or Cancel Change, the triggered
activity turns off, but the Hel1oAndroid process does not quit, as shown in Figure 3-10(c).
Interestingly, even though the GuiExam trigger process exits, the HelloAndroid process to
which the triggered activity belongs is still in the running state.

The build steps are as follows:

1. Modify the GuiExam code of the trigger application:

a. Edit the main layout file (activity main.xml in this case)
by deleting the original TextView widgets; then add three
new TextView widgets and a button. Set their properties
as follows: set the Text property for two TextViews to
“This interface is the activity of the Caller in GuiExam
application” and “Today’s Weather:”. Set the third
TextView's ID property to @+id/weatherInfo. The Text
property of the button is “Enter New Interface to Change
Weather’, and its ID attribute is @+id/modifyWeather.
Adjust the size and position of each widget as shown in

Figure 3-11.
& Java - GuiExam /res,layout /activity_mainaand - Ecipse SDK =1t
B Edt Refactor Source [gevgste Segch Project Bun Window Hep
i L E=RRER R Bl Bl SR | G| W e s ey

r_@— £l |[§7va D otuy @ooMs Bk

2 Package Explorer =.0 sctiaty_rman sl

Paietiy cetut +| @ Mensone ~ @~ Sinxhre =
3 GuExam &| [=Paene
G e | Form Widgets * AppTheme = | @Manicovty ~ | @ =
gk e L et i Bl et 15 -
* mh Anchosd 4.0.3 2 “Tha mtartace @ the wetnty o fhe O
+ I ANGRON) Degenckrios R p— B Taswys wesmmer i
& ausety - “Ester sew imterticr
& b bt gt . e L5
s @ GuiExam
g Th heeTace 4 The Bty 84 T Chnes 0
. Gebasr appecaton lal 3l
& o S propeies —SAS EE
Center Horgy e - -
| Toeey s westres senny
| Text Flekds Center Vertcs j_J
| Layouts Mg W P . = O]
| Conposite Wt wrap_content
| images & Medka m
| brors [
| Time & Date siyle S B
| Traneitions | vy Toxt Enter e tertoce 1 Coamget = |
* o e I . =
Ancrosanifest xmi |- Advanced . Comsan Wentper 1 _H Hint =
K& Buncher-ebong =] | Custom & Ubrary Views Kl » Content Descri... ==l
Al 1|) Graptecal Layout | F acthaty_mancmil

actvity_man xoml - GuExam et Axyout

Figure 3-11. The main layout design for the GuiExam trigger application

84

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

b. Modify the content of MainActivity.java as shown here:

Line# Source Code

W oo~NOUVT S WN PR

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

34
35
36
37
38

package com.example.guiexam;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.widget.Button; // Use Button class

import android.view.View; // Use View class

import android.view.View.OnClickListener; // Use View.OnClickListener class
import android.widget.TextView; // Use TextView class

import android.content.Intent; // Use Intentclass

public class MainActivity extends Activity {
public static final String INITWEATHER = "Sunny; // /Initial Weather
public static final int MYREQUESTCODE =100;
//Request Code of triggered Activity
private TextView tv_weather;
// The TextView Widget that displays Weather info
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
tv_weather = (TextView)findViewById(R.id.weatherInfo);
tv_weather.setText (INITWEATHER);
Button btn = (Button) findViewById(R.id.modifyWeather);
//Get Button object according to resource ID #
btn.setOnClickListener(new /*View.*/0OnClickListener(){
//Set responding code click event
public void onClick(View v) {
Intent intent = new Intent();
intent.setClassName("com.example.helloandroid”,
// the package (application) that the triggered Activity is located
"com.example.helloandroid.TheWithParameterOtherActivity");
//triggered class (full name)
String wthr = tv_weather.getText().toString();
// Acquire the value of weather TextView
intent.putExtra("weathexr",wthr); // Set parameter being
passed to Activity
startActivityForResult(intent, MYREQUESTCODE);
//Trigger Activity

s

85

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

39
40 @0Override
41 protected void onActivityResult(int requestCode, int resultCode,

Intent data) {
42 //Triggered Activity finish return
43 super.onActivityResult(requestCode, resultCode, data);
44 if (requestCode == MYREQUESTCODE) {
45 // Determine whether the specified Activity end of the xun
if (resultCode == RESULT_CANCELED)

46 { }

47 11 Select "Cancel" to exit the code, this case is empty
48 else if (resultCode == RESULT_OK) {

49 /1 Select <OK> to exit code

50 String wthr = null;

51 wthr = data.getStringExtra("weather");

// Get return value
if (wthr !'= null)
tv_weather.setText(wthr);
// Update TextView display of weather content

}
}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.activity main, menu);
return true;
}
}

The code in lines 23-28 triggers the activity with parameters in other applications.
Lines 23-25 establish the trigger intent, which uses the Intent.setClassName() function.
The prototype is

Intent Intent.setClassName(String packageName, String className);

The first parameter is the name of the package where the triggered activity is
located, and the second parameter is the class name (required to use the full name) of
the triggered activity. By using the startActivity ... function to trigger the activity, the
system can accurately locate the application and activity classes.

Line 28 attaches the parameter as additional data to the intent. Intent has a series of
putExtra functions to attach additional data and another series of getXXXExtra functions
to extract data from the intent. Additional data can also be assembled by the Bundle class.
Intent provides a putExtras function to add data and a getExtras function to get the
data. putExtra uses a property-value data pairing or variable name-value data pairing to
add and retrieve data. In this example, Intent.putExtra("weather", "XXX") saves the
data pair consisting of the name of the weather variable and the value “XXX” as additional
data for the intent.

86

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

The code line with Intent.getStringExtra("weather") gets the value of the
weather variable from the attached intent data and returns the string type.

More details about these functions and the Bundle class can be found in the
documentation on the Android web site. They are not discussed any further here.

In lines 33-46, you rewrite the onActivityResult function of the Activity class.
This function is called when the triggered activity is closed. In line 36, you first determine
which activity is closed and returned according to the request code. Then you judge
whether it is returned by an OK or a Cancel click, based on the result code and the request
code. Lines 40-50 get the negotiated variable values from the returned intent. Line 42
updates the interface based on the return value of the variable. In this function, if the user
clicks Cancel to return, you do nothing.

2. Modify the code of the callee application HelloAndroid as
shown in Figure 3-12:

a. Using the method described in the section “Triggering
Explicit Matching of an Activity with Parameters of
Different Applications earlier in this chapter, add a layout
file (in this case named param_otheract.xml), and drag
and drop a Relativelayout layout into the file.

b. Edit this layout file by adding two TextView widgets, an
EditText, and two Button widgets. Set their properties as
follows:

e Text property for the two TextView widgets: “This
interface is the activity of the caller in HelloAndroid
application” and “Set new weather as:”

e IDproperty for the EditText: @+id/editText_
NewWeather

e Text property for the two Buttons: “Confirm Changes”
and “Cancel Changes”

e ID attribute for the two Buttons: @+id/button Modify
and @+id/button_Cancel

87

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

B

Package Explorer 3

frowd /res ayout /withparam_otheractsanl - Ecipse SDK

Edt Refactor Navigate Segrch Eropct Bun Window Hep

i R RE=R g = R

=35 Helohndrod =

88

% W ere

% mh ANchoid 4,0.3
Wk Androsd Dependenoes
L ames

& drawabie-ta
s drawable il
% i drawable-mapd
2 gwibie-xhap
& i layout
i actvity_man.cml
o wathparam_otheract sl
& menu
& valoes
& vl g
& vahatsvil
B & vaus-vid
Ancroiardest xml
K_jncher-webpng
proguand-project ta
[projct propertes =

BrOTArN 53

withparam_otheract.xml 3

defuk v | DNeasOm | @D -

. et ks | = p

Images & Media |
Time & Date Contiem
Trasnaitions Coonte
Advanced |
Custom & Library Views | 4]
T Graptcal Layout | F withparam_othersctsonl

Then adjust their size and position.

c. Asdescribed in the section “Triggering Explicit

]

fou

=l

2 [@eva B 0sbug ©OOMS BiCK

= n
Structure

[ts Outine

RelatrveLayout

A5 texTView] ~Tais imvermice e
A peTView 2 et e westner ot
] buition_Mody “Costrim Ciasge™
28] bution_Cancel “Cesest Cuange*
[editText_New\Westher

i — 3

5 Properties #|n

Toxt =
Ingust Ty =
Content Des... =]
Textview]

#Depracated (Deprecated Prop
-
of 2

Figure 3-12. New layout design of the triggered (callee) application HelloAndroid

Matching of an Activity with Parameters of Different
Applications,” add the corresponding class (in this case,
TheWithParameterOtherActivity) for the new layout

file, as shown in Figure 3-13.

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

~[ol x|

Java Class g = ;
Create a new Java class.

Source folder: |HeIIoAndroid}src Browse...
Package: |com.example.heiloandroid Browse... |
[Enclosing type: | Browse..,
Name: [ThewithP arameter Cther Activity

Modifiers: ® public C defayt € private € protected

[~ abstract [~ final [static

Superclass: Ijava.lang.object Browse... |

Interfaces: Add...

Which method stubs would you like to create?
[~ public static void main(String[] args)
[Constructors from superclass
[Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[Generate comments

) [Esh | cace |

Figure 3-13. Add the corresponding class for the newly added layout file in the
HelloAndroid project

d. Edit the class file for the newly added layout file
(in this example, TheWithParameterOtherActivity. java).
The content is as follows:

Line# Source Code

1 package com.example.helloandroid;

2 import android.os.Bundle; // Use Bundle Class

3 import android.app.Activity; // Use Activity Class
4 import android.content.Intent; // Use Intent Class

5 import android.widget.Button; // Use Button Class

6 import android.view.View; // Use View Class

89

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

7 import android.view.View.OnClickListener; // Use OnClickListener Class
8 import android.widget.EditText; // Use EditText Class

9 public class TheWithParameterOtherActivity extends Activity {

10 private String m_weather;

11 // Save new weather variable

12 @0Override

13 protected void onCreate(Bundle savedInstanceState) {

14 // Define onCreate method

15 super.onCreate(savedInstanceState);

16 // method of call onCreate Super Class

17 setContentView(R.layout.withparam_otheract); // Set layout file

18 Intent intent = getIntent();

19 // Get Intent of triggering this Activity

20 m_weather = intent.getStringExtra("weather");

21 // Get extra data from Intent

22 final EditText et_weather = (EditText)
findViewById(R.id.editText_Newlleather);

23 et_weather.setText(m_weather,null);

24 // Set initial value of "New Weather" EditText according to extra data of

the Intent

25 Button btn_modify = (Button) findViewById(R.id.button_Modify);

26 btn_modify.setOnClickListener(new /*View.*/0OnClickListener(){

27 I/ Set corresponding code of <Confirm Change»

28 public void onClick(View v) {

29 Intent intent = new Intent();

30 // Create and return the Intent of Data storage

31 String wthr = et_weather.getText().toString();

32 // Get new weather value from EditText

33 intent.putExtra("weather" ,wthr);

34 // Put new weather value to return Intent

35 setResult(RESULT_OK, intent);

36 // Set <Confirm» and retuxn data

37 finish(); // Close Activity

D;
Button btn_cancel = (Button) findViewById(R.id.button_Cancel);

btn_cancel.setOnClickListener(new /*View.*/0OnClickListener(){
// Set corresponding code for <Cancel Change»
public void onClick(View v) {
setResult(RESULT_CANCELED, null);
// Set return value for <Cancel»
finish(); // Close this Activity

90

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

This code follows the framework of an activity. It sets the activity layout in line 11
such that the layout name is the same as the layout file name created in step 1 (no extension).
In lines 19-22, it first constructs an intent for the return and then adds extra data to the
Intent object as the return data. In line 21, it sets the return value of the activity and the
intent as a return data carrier. The prototype of the setResult function is

final void Activity.setResult(int resultCode, Intent data);

If resultCode is RESULT_OK, the user has clicked OK to return; and if it is
RESULT_CANCELLED, the user has clicked Cancel to return. In this condition, the return
data carrier intent can be null, which is set in line 27.

3. Modify AndroidManifest.xml, which is triggered by the
application, with the following code:

Line # Source Code

1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.helloandroid"

3 android:versionCode="1"

4 android:versionName="1.0" >

5

6 <uses-sdk

7 android:minSdkVersion="8"

8 android:targetSdkVersion="15" />

9

10 <application

11 android:icon="@drawable/ic_launcher"

12 android:label="@string/app_name"

13 android:theme="@style/AppTheme" >

14 <activity

15 android:name=".MainActivity"

16 android:label="@string/title activity main" >

17 <intent-filter>

18 <action android:name="android.intent.action.MAIN" />
19

20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>

22 </activity>

23 <activity

24 android:name="ThelWithParameterOtherActivity"s

25 <intent-filters

26 <action android:name="android.intent.action.DEFAULT" />
27 </intent-filters>

28 </activity»

29 </application>

30

31 </manifest>

91

http://schemas.android.com/apk/res/android

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

4. Lines 24-29 are new. As in previous sections, you add an
additional activity description and specify its class name, which
is the class name of the triggered activity generated in the
second step. See the section “Triggering an Explicit Match of
Activities with No Parameters” for information about modifying
the AndroidManifest.xml file. Unlike in that section, you add
not only an activity and the documentation of its name attribute,
but also the intent-filter instructions and state to accept the
default actions described in the Action element and trigger this
Activity class. The activity cannot be activated in the absence
of the intent-filter description of the activity.

5. Run the callee application to register components of the
activity. The modifications to AndroidManifest.xml file are not
registered to the Android system until the callee application,
HelloAndroid, is executed once. Thus this is an essential step to
complete the registration of its included activity.

Implicit Matching of Built-In Activities

In the examples in the previous two sections, before you trigger the activity of the same
application or different applications through the Activity.startActivity() function or
the Activity.startActivityForResult() function, the constructor of the Intent objects
explicitly specifies the class, either through the .class attribute or through the class name
in a string. This way, the system can find the class to be triggered. This approach is called
explicit intent matching. The next example shows how to trigger a class that is not specified.
Instead, the system figures it out using an approach called implicit intent matching.

In addition, Android has a number of activities that have already been implemented,
such as dialing, sending text messages, and so on. Examples in this section explain how
you use can implicit matching to trigger these built-in activities. The application interface
is shown in Figure 3-14.

92

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

23:23 BV B S08§ v 2324 BT BZ

13800138000 X

[MainActivity

;39 Add to Contact

K

2
5

* O #
&

resleag 7
il Emergency Call
Dial '
(a) Application’s start interface (b) Interface after clicking Enter Dialing
Activity

Figure 3-14. The application interface when using implicit intent to trigger a built-in
activity

The user start the GuiExam application and clicks the Enter Dialing Activity button on
the screen. It triggers dial-up activities that come with the system.

In this case, you modify the GuiExam project and use this application as a trigger.
The implicit match triggered activity is the dial-up activity. The steps to build this
example are as follows.

1. Inthelayout file (activity_main.xml) of the GuiExam
application, delete the original TextView widgets, add a
button, and set its ID attribute to @+id/goTODialAct and its
Text property to “Enter Dialing Activity” Adjust its size and
position as shown in Figure 3-15.

93

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

activity _main.xml
Palatte

3 Palette
Form Widgets
v L Medeam

OFF ¥ CheckBon &

weked Teatvin Sgnner

»

Text Felds
Layeouts
Compaosite
Images & Meda
Time & Date
Transitions
Advanced

RadvcBuatton

Custom B Library Views

B Graphicd Layout |

-

aefaut v | @ Neasone v | @
-
* AppTheme + | @ ManActhvity ~ | @ ~
15 '+

Bution Smat

s
 Entoe Dialing

Activiry .
. =)

L]

activity_mar.xml

(n]

Structura ¢

e Outine

Relatvelayout ;
] goTODIalACt (Butten) - Enter Dialing ke

il | ¢
Froperties * | 1% =
1d @~idfgoTODMlACE ==

Layout Paramotors ||
Style buttonStyle =
Text Enter Dialing =
Hint =
Cantent Description =l

® TextView [l

View 0

Deprecated (Deprecated Propert

;fJ [l

Figure 3-15. Layout file of the application for the implicit match built-in activity

2

Modify the source code file (MainActivity.java) as follows:

Line# Source Code

1 package com.example.guiexam;

2 import android.os.Bundle;

3 import android.app.Activity;

4 import android.view.Menu;

5 import android.widget.Button; // Use Button Class

6 import android.view.View; // Use View Class

7 import android.view.View.OnClickListener; // Use View.OnClickListener Class
8 import android.content.Intent; // Use Intent Class

9 import android.net.Uri; // Use URI Class

10 public class MainActivity extends Activity {

11 @0verride

12 public void onCreate(Bundle savedInstanceState) {

13 super.onCreate(savedInstanceState);

14 setContentView(R.layout.activity main);

15 Button btn = (Button) findViewById(R.id.goTODialAct);
16 btn.setOnClickListener(new /*View.*/OnClickListener(){
17 /1 Set corresponding Code for Click Activity

18 public void onClick(View v) {

19 Intent intent = new Intent(Intent.ACTION_DIAL,

Uri.parse("tel:13800138000"));

94

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

20 startActivity(intent); // Trigger corresponding Activity
21 }
22 D;
}
23
24 @0verride
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity main, menu);
27 return true;
28 }
}

The code in line 16 defines an indirect intent (that is, intent of implicit match. It is
called an indirect intent because the class that needs to be triggered is not specified in
the constructor of the object; the constructor only describes the function of the class
that needs to be triggered to complete dialing. The constructor functions for the indirect
intent are as follows:

Intent(String action)
Intent(String action, Uri uri)

These functions require the classes (activities) that can complete the specified action
when they are called. The only difference between the two is that the second function
also comes with data.

This example uses the second constructor, which requires the activity that
can complete the dialing and extra data as a string of phone numbers. Because the
application does not specify the trigger type, Android finds the class to handle this action
(for example, Activity) from the registered class list and triggers the start of the event.

If multiple classes can handle the specified action, Android pops up a selection
menu, and users can select which one to run.

The parameter action can use the system-predefined string. In the previous
example, Intent.ACTION DIAL is the string constant of ACTION_DIAL, which is defined by
the Intent class. Some system-predefined ACTION examples are shown in Table 3-1.

95

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

Table 3-1. Some System-Predefined ACTION Constants

ACTION Constant Value Description
Name
ACTION_MAIN android.intent. Start up as the initial activity of a task with

ACTION_VIEW

ACTION_EDIT

ACTION_DIAL

ACTION CALL

ACTION_SEND

ACTION_SENDTO

ACTION_ANSWER

ACTION_INSERT

ACTION_DELETE

action.MAIN

android.intent.
action.VIEW

android.intent.
action.EDIT

android.intent.
action.DIAL

android.intent.
action.CALL

android.intent.
action.SEND

android.intent.
action.SENDTO

android.intent.
action.ANSWER

android.intent.
action.INSERT

android.intent.
action.DELETE

no data input and no returned output.

Display the data in the intent URI.

Request an activity to edit data.

Start a phone dialer, and use preset
numbers in the data to dial.

Initiate a phone call, and immediately use
the number in the data URI to initiate a call.

Start an activity to send specific data (the
recipient is selected by activity resolution).

Generally, start an activity to send a
message to a contact designated in the URI.

Open an activity to process an incoming
call. Currently it is handled by a local
phone-dialing tool.

Open an activity that can insert a new
project at the addition cursor in a specific
data field. When it is called as the child
activity, it must return the URI of the newly
inserted project.

Start an activity to delete a data port at the
URI position.

ACTION_WEB_SEARCH android.intent.
action.WEB_SEARCH

Open an activity, and run a web page
search based on the text in the URI data.

The ACTION constant name is the first parameter used in the constructor of the
implicit-match intent. The value of the ACTION constant, used in the AndroidManifest.xml
statement of the activity that receives this action, is not used in this section, but is used in
the next section. You can find more information about predefined ACTION values in the
android.content.Intent help documentation.

96

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

Implicit Match that Uses a Custom Activity

The previous example used implicit matching to trigger activities that come with the
Android system. In this section, you see an example of how to use an implicit match to
trigger a custom activity.

The configuration of this example application is similar to the one in the section
“Triggering Explicit Matching of an Activity with Parameters of Different Applications.”
The triggering application is hosted in the GuiExam project, and the custom activity
triggered by implicit match is in the Hel1loAndroid application. The interface is shown in
Figure 3-16.

18:42 QY. BT 1842 BY B 7
[MainActivity
This application is the activity triggered by Caller using is application is the activity triggered by Caller
implicit Intent sing Implicit Intent

Display Activity of Implicit se Following Programs to Open

Intent

2 HelloAndroid

1) SIM Card SDK

9 Options

Use this as a default

(a) Application's start interface (b) Interface after clicking Display
Activity Of Implicit Intent

Figure 3-16. The interface of implicit match that uses a custom activity

97

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

18:42 BT b7 1842 BV BT
[MainActivity 'HelloAndroid
This application is the Activity [This interface is an Activity of HelloAndroid, and is
triggered by Caller using Implicit responsible for action triggered by ACTION_EDIT
Intent
L 2 3
= > n >
Display Activity triggered 4 5 6

by Implicit Intent

Close
Activity

c) Interface after selecting HelloAndroid (d) Interface after clicking Close
Activity

Figure 3-16. (continued)

Figure 3-16(a) shows the interface when the GuiExam trigger application starts.
When you click the Display Activity Of Implicit Intent button, the system finds qualified
candidates for activities according to the requirements of the ACTION_EDIT action and
displays a list of events of these candidates (b). When the user-defined HelloAndroid
application is selected, the activity that can receive the ACTION_EDIT action as claimed in
the intent-filter in HelloAndroid application is displayed (c). When you click the Close
Activity button, the application returns to the original GuiExam activity interface (d).

Like the previous ones, this example is based on modifying the GuiExam project.
The steps are as follows:

1. Edit the main layout file (activity main.xml). Delete the
original TextView widgets, and then add a TextViewand a
button. Set the TextView’s Text property to “This application
is the Activity triggered by Caller using Implicit Intent”. Set
the button’s Text property to “Display Activity triggered by
Implicit Intent” and its ID attribute to @+id/goToIndirectAct,
as shown in Figure 3-17.

98

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

“ Pabette delaie = | Bicancne ~| @ - — Stru ture .
» Paetts > — = m Yy Outire
Form Widgets @ Mara, AL B -
= Relatvel ayout
o >~ gD AR . tewtiema | "This application is the
e [] - yoTotndrecthct “Display Activity
@ GuiExam
This application is the Activity
triggered by Caller using Implicit
Intent
* - " N
Display Activity triggered "‘I : = -:]J
by Implicit Intent T -
Teoct Fiokds Padding Lelt =]
Layouts Content Deseription =l
o 1 :!‘-':""I.—. Fyout
fomagpes & Mocka T
Thme & Date 5 Deorecited - o
Tranvitions.
Advancid |
Curstom B Library Views 1] L | |
Figure 3-17. The main layout design for the GuiExam trigger application
2. EditMainActivity.java as follows:
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.content.Intent; // Use Intent Class

9 public class MainActivity extends Activity {

10 @0verride
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity main);
14 Button btn = (Button) findViewById(R.id.goToIndirectAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 // Set respond Code for Button Click event
17 public void onClick(View v) {
18 Intent intent = new Intent(Intent.ACTION_EDIT);
19 //Construct implicit Inent
20 startActivity(intent); // Trigger Activity
21 }
N3
22 }
23

99

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

24 @0verride

25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity main, menu);
27 return true;
}
}

The code in lines 16 and 17 defines the implicit intent and triggers the corresponding
activity, which is basically the same as the earlier code that triggers implicit activity, but
here it uses the constructor function of the intent that has no data.

3. Modify the HelloAndroid application that includes a custom
activity with the corresponding implicit intent:

a. Based on the method described in the section
“Triggering an Explicit Match of Activities with No
Parameters,” earlier in this chapter, add a layout file
(implicit_act.xml) to the project and drag and drop a
Relativelayout layout into the file.

b. Edit the layout file, and add TextView, ImageView, and
Button widgets. Set the attributes as follows:

e Text property of the TextView: “This interface is an
Activity of the HelloAndroid, which is responsible for
action triggered by the ACTION_EDIT”

e ImageView: Setup exactly as in the section “Using
ImageView” in Chapter 2.

e Text property of the Button: “Close Activity”
e IDproperty of the Button: @+id/closeActivity.

Then adjust their respective size and position, as shown in Figure 3-18.

100

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

Text Fields
_ Composite
S Jneges & Macle
| Time & Date
Transitions
Advanced
o]

defadt v | QNeasOe » | B -
AppTheme + @ (Sdect) » @ ~» |15 «

oy W EAigy

HE G&-

@ HelloAndroid

This interface is an Activity of the
HelloAndroid, and responsible for
action triggered by ACTION_EDIT

1 2 3

™ Graphica Layout| | implcft_act. xmi

Vv - G

?I 2 ¥ "

e G 4w
_ 1
| ki LY -
| o

e .
- Structure »
'ty Outine
Refatvel ayout
o textylew] ThS iterface o aa Acnvity of the
s IS0 Vw1
2+ clossActvity (BUtton) - ~Cese Activity~
4 | |
= Fropertes AR I R
1d @+aiicloseactvity =| "
Layout Parameters ||
Style buttonStyle =
Text Olose Actmvity =
Hint e
Content Description =
+ Textview]
* VW 0
* Deprecated (Deprecated Proper

Figure 3-18. Layout file for the custom activity of the corresponding implicit intent

Similar to the process described in the section of this

chapter “Triggering an Explicit Match of Activities with No
Parameters,” add the corresponding class to the project for the
new layout file (TheActivityToImplicitIntent), as shown in

Figure 3-19.

101

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

= New Java Class _ o] x|

Java Class (‘;
Create anew Java class. =
Source folder: [Hellondroid/src Browse... |

Package: |com.e:<ample.hellomdrold Browse...

[Enclosing type: |
Name: |ﬂ1eAcﬁvityToImpicitIntent
Modifiers: (& public (defaut C private € protected
[~ abstract [final [static
Superclass: [javalang.Cbiect Browse...

Browse..|
Interfaces: Add... |

Which method stubs would you like to create?
[public static voild main(String[] args)
[~ Constructors from superclass
[v Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[Generate comments

'i ?j | Einish | Cancel

Figure 3-19. New class for the custom activity of the corresponding implicit intent

5. Edit the class file for the newly added layout file
(TheActivityToImplicitIntent.java), which reads
as follows:

Linet# Source Code

1 package com.example.helloandroid;

2 import android.os.Bundle;

3 import android.app.Activity;

4 import android.widget.Button; // Use Button Class
5 import android.view.View; // Use View class

6

import android.view.View.OnClickListener; // Use View.OnClickListenexr class

102

CHAPTER 3 * GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

7 public class TheActivityToImplicitIntent extends Activity {
8 @Override
9 public void onCreate(Bundle savedInstanceState) {

10 super.onCreate(savedInstanceState);
11 setContentView(R.layout.implicit_act);
12 Button btn = (Button) findViewById(R.id.closeActivity);
13 btn.setOnClickListener(new /*View.*/OnClickListener(){
14 /1 Set response code for <Close Activity> Click
15 public void onClick(View v) {
16 finish();
17 }
18 1 H
19 }
}

6. Modify the AndroidManifest.xml file of the HelloAndroid
custom application containing the corresponding implicit
intent, as follows:

Line# Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="com.example.helloandroid"

4

5 android:versionCode="1"

6

7 android:versionName="1.0" >

8

9 <uses-sdk

10 android:minSdkVersion="8"

11 android:targetSdkVersion="15" />

12

13 <application

14 android:icon="@drawable/ic_launcher"

15 android:label="@string/app_name"

16 android:theme="@style/AppTheme" >

17 <activity

18 android:name=".MainActivity"

19 android:label="@string/title activity main" >
20 <intent-filter>

21 <action android:name="android.intent.action.MAIN" />
22

23 <category android:name="android.intent.category.LAUNCHER" />
24 </intent-filter>

25 </activity>

103

http://schemas.android.com/apk/res/android

CHAPTER 3 " GUI DESIGN FOR ANDROID APPS, PART 3: DESIGNING COMPLEX APPLICATIONS

26 <activity
27 android:name="TheActivityToImplicitIntent"
28 <intent-filter»
29 <action android:name="android.intent.action.DEFAULT" />
30 <action android:name="android.intent.action.EDIT" />
31 <category android:name="android.intent.category.DEFAULT" />
32 </intent-filter»
33 </activity»
</application>
</manifest>

The code in lines 24-32 (in bold) gives the activity information for receiving the
implicit intent. Line 26 specifies that you can receive an android.intent.action.EDIT
action. This value corresponds to the constant value of the ACTION parameter
Intent.ACTION_EDIT of the trigger’s intent constructor function (the MainActivity class
of GuiExam). This is a predetermined contact signal between the trigger and the callee.
Line 27 further specifies that the default data type can also be received.

7. Run the application HelloAndroid, which now contains a
custom activity for the corresponding implicit intent and
registers its AndroidManifest.xml file in the system.

So far, three chapters have covered Android interface design. The simple GuiExam
application has demonstrated the state transition of an activity, the Context class, intents,
and the relationship between applications and activities. You also learned how to use a
layout as an interface and how the button, event, and inner event listener work. Examples
with multiple activities introduced the explicit and implicit trigger mechanisms for
activities. You saw an example of an application with parameters triggered by an activity
in a different application, and you now understand the exchange mechanism for the
activity’s parameters.

The application interface discussed so far is basically similar to a dialog interface.
The drawback of this mode is that it is difficult to obtain accurate touchscreen input,
making it difficult to display accurate images based on the input interface. The next
chapter, which covers the last part of Android interface design, introduces the view-based
interaction style interface. In this interface, you can enter information with accurate
touchscreen input and display detailed images, as required by many game applications.

104

	Chapter 3: GUI Design for Android Apps, Part 3: Designing Complex Applications
	Applications with Multiple Activities
	Triggering an Explicit Match of Activities with No Parameters
	Triggering Explicit Matching of an Activity with Parameters of Different Applications
	Implicit Matching of Built-In Activities
	Implicit Match that Uses a Custom Activity

