
1

Chapter 1

GUI Design for Android
Apps, Part 1: General
Overview

Since its emergence in the 1980s, the concept of the graphical user interface (GUI) has
become an indispensable part of human-computer interaction (HCI). As embedded
systems have evolved, they have gradually adopted this concept as well. The Android
embedded OS running on the Intel Atom hardware platform is at the forefront of this
movement.

Because resources are limited, the GUI design of Android systems is more
challenging than that of desktop systems. In addition, users have more rigorous demands
and expectations for a high-quality user experience. Interface design has become one
of the important factors in determining the success of systems and applications on the
market. This chapter introduces how to develop user interfaces suitable for typical user
interaction on Android embedded systems.

Overview of GUIs for Embedded Applications
These days, the user interface (UI) and user experience (UX) of software are increasingly
important factors in determining whether software will be accepted by users and
achieve market success. UX designs are based on the types of input/output or interaction
devices and must comply with their characteristics. Compared to desktop computer
systems, Android systems have different interaction devices and modalities. If a desktop’s
UI designs are copied indiscriminately, an Android device will present a terrible UI
and unbearable UX, unacceptable to users. In addition, with greater expectations
for compelling user experiences, developers must be more meticulous and careful
in designing system UIs and UXs, making them comply with the characteristics of
embedded applications.

This chapter first introduces the general GUI design method for desktop systems and
then shows how designing UIs for embedded systems is different. The aim is to help you
quickly master general methods and principles of GUI design for Android applications.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

2

Characteristics of Interaction Modalities of Android
Devices
A general-purpose desktop computer has powerful input/output (or interaction)
devices such as a large, high-resolution screen, a full keyboard and mouse, and diverse
interaction modalities. Typical desktop computer screens are at least 17 inches, with
resolutions of at least 1,280 × 960 pixels. The keyboard is generally a full keyboard or
an enhanced keyboard. On full keyboards, letters, numbers, and other characters are
located on corresponding keys—that is, full keyboards provide keys corresponding to all
characters. Enhanced keyboards have additional keys. The distance between keys on a
full keyboard is about 19 mm, which is convenient for users to make selections.

The GUI interactive mode of desktop computers based on screen, keyboard, and
mouse is referred to as WIMP (windows, icons, menus, and pointers), which is a style of
GUI using these elements as well as interactive elements including buttons, toolbars, and
dialog boxes. WIMP depends on screen, keyboard, and mouse devices to complete the
interaction. For example, a mouse (or a device similar to a mouse, such as a light pen) is
used for pointing, a keyboard is used to input characters, and a screen shows the output.

In addition to screens, keyboards, mice, and other standard interaction hardware,
desktop computers can be equipped with joysticks, helmets, data gloves, and other
multimedia interactive devices to achieve multimedia computing functions. By installing
cameras, microphones, speakers, and other devices, and by virtue of their powerful
computing capabilities, users can interact with desktop computers in the form of voice,
gestures, facial expressions, and other modalities.

Desktop computers are also generally equipped with CD-ROM/DVDs and other
large-capacity portable external storage devices. With these external storage devices,
desktop computers can release software and verify ownership and certificates through
CD/DVD.

As a result of the embeddability and limited resources of embedded systems, as well
as user demand for portability and mobility, Android systems have interaction modalities,
methods, and capabilities that are distinct from those of desktop systems. Due to these
characteristics and conditions, interaction on Android systems is more demanding and
more difficult to achieve than it is on desktop systems.

The main differences between Android devices and desktop computers are
described next.

Screens of Various Sizes, Densities, and Specifications
Instead of large, high-resolution screens like those on desktop computers, Android device
screens are smaller and have various dimensions and densities measured in dots per
inch (DPI). For example, the K900 smartphone’s screen is 5.5 inches with a resolution of
1920 ×1080 pixels, and some smartphone screens are only 3.2 inches.

The aspect ratio of Android device screens is not the conventional aspect ration of
16:9 or 4:3 used by desktop computers. If Android devices adopted the interaction mode
of desktop computers, many problems would result, such as a blurry display and errors in
selecting targets.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

3

Keypads and Special Keys
Desktop computers have full keyboards, where a key corresponds to every character and
the generous distance between keys makes typing convenient. If an Android device has a
keyboard, it’s usually a keypad instead of the full keyboard. Keypads have fewer keys than
full keyboards; several characters generally share one key. A keypad’s keys are smaller
and more tightly spaced than on full keyboards, making it harder to select and type
characters. As a result, keypads are less convenient to use than full keyboards. In addition,
some keypads provide special keys that are not found on standard full keyboards, so users
must adjust their input on the Android device.

Generally speaking, on Android devices, keys and buttons are a unified concept.
Whether you press a button or a key, the action is processed as a keyboard event
with a uniform numbering scheme. Keyboard events in Android have corresponding
android.view.KeyEvent classes. Figure 1-1’s button/key callouts correspond to the
event information listed in Table 1-1.

Figure 1-1.  Keyboard and buttons of an Android phone

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

4

Table 1-1.  Android Event Information Corresponding to Key and Button Events

Key/Button Key Code Another Name Key Event

Key ① in
Figure 1-1

24 KEYCODE_VOLUME_UP {action=0 code=24
repeat=0 meta=0
scancode=115 mFlags=8}

Key ② in
Figure 1-1

25 KEYCODE_VOLUME_DOWN {action=0 code=25
repeat=0 meta=0
scancode=114 mFlags=8}

Key ③ in
Figure 1-1

82 KEYCODE_MENU {action=0 code=82
repeat=0 meta=0
scancode=139 mFlags=8}

Key ④ in
Figure 1-1

No response

Key ⑤ in
Figure 1-1

4 KEYCODE_BACK {action=0 code=4 repeat=0
meta=0 scancode=158
mFlags=8}

Key ⑥ in
Figure 1-1

No response

A–Z 29–54 KEYCODE_A–KEYCODE_Z

0–9 7–16 KEYCODE_0–KEYCODE_9

Key ⑨ in
Figure 1-1

19 KEYCODE_DPAD_UP

Key 11 in
Figure 1-1

20 KEYCODE_DPAD_DOWN

Key 12 in
Figure 1-1

21 KEYCODE_DPAD_LEFT

Key 10 in
Figure 1-1

22 KEYCODE_DPAD_RIGHT { action=ACTION_DOWN,
keyCode=KEYCODE_DPAD_
RIGHT, scanCode=106,
metaState=0, flags=0x8,
repeatCount=0,

eventTime=254791,
downTime=254791,
deviceId=0, source=0x301 }

(continued)

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

5

Key/Button Key Code Another Name Key Event

Key 13 in
Figure 1-1

23 KEYCODE_DPAD_CENTER { action=ACTION_DOWN,
keyCode=KEYCODE_DPAD_
CENTER, scanCode=232,
metaState=0, flags=0x8,
repeatCount=0,

eventTime=321157,
downTime=321157,
deviceId=0, source=0x301 }

Key ⑦ in
Figure 1-1

5 KEYCODE_CALL { action=ACTION_DOWN,
keyCode=KEYCODE_
CALL, scanCode=231,
metaState=0, flags=0x8,
repeatCount=0,
eventTime=331714,

downTime=331714,
deviceId=0, source=0x301 }

Key ⑧ in
Figure 1-1

6 KEYCODE_ENDCALL

Table 1-1.  (continued)

See help documents like that for android.view.KeyEvent for details. Table 1-1’s
contents are excerpts.

Touch Screens and Styluses, in Place of Mice
A touch screen is an input device covering a display device to record touch positions.
By using the touch screen, users can have a more intuitive reaction to the information
displayed. Touch screens are widely applied to Android devices and replace a mouse
for user input. The most common types of touch screens are resistive touch screens,
capacitive touch screens, surface acoustic wave touch screens, and infrared touch
screens, with resistive and capacitive touch screens being most often applied to Android
devices. Users can directly click videos and images on the screen to watch them.

A stylus can be used to perform functions similar to touch. Some styluses are
auxiliary tools for touch screens and replace fingers, helping users complete elaborate
pointing, selecting, line drawing, and other operations, especially when the touch screen
is small. Other styluses implement touch and input functions along with other system
components. With the first type of auxiliary tool styluses, users can touch and input
characters with fingers. But the second type of stylus is an indispensable input tool and is
used instead of fingers.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

6

Touch and styluses can perform most functions that mice typically do, such as click
and drag, but can’t achieve all the functions of mice, such as right-click and left-click/
right-click at the same time. When designing embedded applications, you should control
the interaction mode within the range of functions that touch screens or styluses can
provide and avoid operations that are not available.

Onscreen Keyboards
Onscreen keyboards, also known as virtual keyboards or soft keyboards, are displayed on
the screen via software. Users tap the virtual keys like they would tap the keys on physical
keyboards.

Few Multimodal Interactions
Multimodal interaction refers to human-computer interaction with the modes involving
the five human senses. It allows the user to interact through input modalities such as
speech, handwriting, and hand gesture. Because computing capability is limited, Android
devices generally do not adopt multimodal interaction.

Few Large-Capacity Portable External Storage Devices
Most Android devices do not have the CD-ROM/DVD drives, hard disks, or other large-
capacity portable storage peripherals such as solid-state drives (SSDs) that are usually
configured on desktop computers. These devices cannot be used on Android devices to
install software or verify ownership and certificates. However, Android devices usually
support microSD cards, which now have capacities of up to 128 GB; and more and
more cloud-based storage solutions such as Dropbox, One Drive, and Google Drive are
being developed for Android devices, with Android-compatible client apps available for
download from Google Play Store.

UI Design Principles for Embedded Systems
This section introduces interactive design issues and corrective measures to take when
transforming traditional desktop applications to embedded applications.

Considerations of Screen Size
Compared to desktop computer systems, Android systems have smaller screens with
different display densities and aspect ratios. Such screen differences result in many
problems when migrating applications from desktop systems to Android systems.
If developers reduce desktop system screens proportionally, the graphic elements
become too small to be seen clearly. In particular, it is often difficult to see the text and
icons, select and click some buttons, and place some application pictures on the screen
appropriately. If developers migrate application graphic elements to Android systems
without changing their sizes, the screen space is limited and can only accommodate a few
of the graphic elements.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

7

Size of Text and Icons
Another problem is the size of text and icons. When an application is reduced from a
typical 15-inch desktop screen to a typical 5- or 7-inch phone or tablet screen, its text is
too small to be seen clearly. In addition to the size of the text font, the text window (such
as a chat window) also becomes too small to read the text. Trying to reduce the font size
to suit smaller windows makes the text hard to recognize.

Therefore, the design of embedded systems should use as few text prompt messages
as possible; for example, replace the text with graphic or sound information. In addition,
where text is necessary, the text size should be adjustable. On Android, some predefined
fonts and icons are available in the res directory, such as drawable-hdpi, drawable-mdpi,
and drawable-xhdpi.

Clickability of Buttons and Other Graphical Elements
Similar to the problem of small text, buttons and other graphical elements also bring
interaction problems when migrating applications. On desktop systems, the size of
buttons is designed for mouse clicks, whereas on Android systems, the button size should
be suitable for fingers (on touch screens) or styluses. Therefore, when porting a Windows-
based app to support Android devices, the application UI needs to be redesigned; and
predefined drawables provided by the Android SDK should be selected in order to suit
fingers or styluses.

Developers should use bigger and clearer buttons or graphic elements to avoid
such problems and leave enough gap between graphic elements to avoid errors, which
are common when a small touch screen is used for selecting by fingers or styluses. In
addition, if an application has text labels near buttons, the labels should be part of the
clickable area connected with the buttons, so the buttons are easier to click.

Size of Application Windows
Many applications, such as games, use windows with fixed sizes instead of windows
that automatically adjust to fill any size screen. When these applications are migrated to
Android systems, because the screen’s aspect ratio does not match its resolution, part of
the picture may not be seen, or part of the area may not be reachable.

These problems may be more complicated on smartphones and tablets because
their screens have various densities such as small (426 dp × 320 dp), normal (470 dp ×
320 dp), large (640 dp × 480 dp), and extra large (960 dp × 720 dp). Their aspect ratios are
diverse and different from those commonly adopted by desktop systems.

One good way to solve such problems is to place the entire application window
proportionally on the smartphone or tablet screen, such as the large and extra-large
screens, which are typically 640 × 480 pixels and 960 × 720 pixels; or rearrange the UI to
make full use of the entire widescreen area; or make the entire app window a scrollable
view. In addition, you can allow users to use multiple touch fingers touch to zoom in,
zoom out, or move the application window on the screen.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

8

Considerations Arising from Touch Screens and Styluses
As mentioned earlier, touch screens and styluses are used on many Android systems to
perform some traditional mouse functions. Such input devices are called tap-only touch
screens. However, tap-only touch screens cannot provide all mouse functions. There is no
right button, and the current finger/stylus location cannot be captured when the screen is
not touched. So, desktop applications that allow functions such as cursor moves without
clicking, different operations for left-clicks and right-clicks, and so on, cannot be realized
on Android systems using touch screens and styluses.

The following sections talk about several problems often seen when migrating
applications from desktop systems to Android systems using tap-only touch screens.

Correctly Interpreting the Movement and Input of the Cursor
(Mouse) on Tap-Only Touch Screens
Many applications need mouse movement information when no mouse key is pressed.
This operation is called moving the cursor without clicking. For example, a lot of PC
shooting games1 simulate the user’s field of vision such that moving the mouse without
clicking is interpreted as moving the game player’s vision field; but the cursor should
always stay in the middle of the new vision field. However, an embedded device with
a tap-only touch screen does not support the operation of moving the cursor without
clicking. Once the user’s finger touches the screen, a tap event is triggered. When the user
moves a finger on the screen, a series of tap events at different positions is triggered; these
events are interpreted by the existing game code as additional interaction events (that is,
moving the aiming position of the game player’s gun).

The original interaction mode needs to be modified when migrating this type of
application to Android systems. For example, this problem can be modified into a click
operation: once the user touches the screen, the game screen should immediately switch
to the vision field, in which the cursor is located at the screen center. This way, the cursor
is always displayed at the screen center and not at the position the user actually touched.
One advantage you benefit from on mobile platforms is that most smartphones and
tablets on the market are equipped with sensors such as accelerometers, gyroscopes, GPS
sensors, and compasses, and they allow applications to read data from the sensors. As a
result, developers have more options than just touch input.

More generally, if an application needs to track the cursor’s movement from
point A to point B, the tap-only touch screen can define this input by the user clicking first
point A and then point B, without the need to track the movement between point A
and point B.

1A typical example is the game Counter-Strike (CS).

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

9

Setting Screen Mapping Correctly
Many applications run in full-screen mode. If such applications do not perfectly fill the
entire tap-only touch screen (that is, they are smaller or bigger than the screen), input
mapping errors result: there is a deviation between the display position and the click
position.

One situation that often occurs in migrating a full-screen application to a tap-only
touch screen with a low aspect ratio is the application window being centered on the
screen with blank space showing on both sides. For example, when a desktop application
window with a resolution of 640 × 480 (or 800 × 600) pixels is migrated to a tap-only touch
screen with a resolution of 960 × 720 (or 1280 × 800, a WXGA on Dell Venue 8) pixels, it
appears on the screen as shown in Figure 1-2. The resulting mapping errors cause the app
to incorrectly respond to user interaction. When the user taps the position of the yellow
arrow (the target), the position identified by the application is the point where the red
explosion icon is located. These kinds of errors also occur when the user taps a button.

Figure 1-2.  Screen-mapping errors due to a low aspect ratio

You should consider the position-mapping logic and take this blank space into
consideration, even if the blank space is not part of the migrating application’s window.
By making these changes, the tap-only touch screen can map the touch position correctly.

Another situation occurs when the desktop full-screen window is migrated to a
tap-only touch screen with a higher aspect ratio. The height of the original application
window does not fit on the tap-only touch screen, and mapping errors occur in the
vertical direction instead of the horizontal direction.

Figure 1-3 shows the original application window filling the screen horizontally
but not vertically on a tap-only touch screen with a higher aspect ratio. Here, when the
user taps the position of the yellow arrow (the target), the position identified by the
application is the point where the red explosion icon is located. These errors are caused
by the difference in shape between the physical display and the application window.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

10

One solution is to ensure that the OS accurately maps the tap-only touch screen
to the entire visible area of the screen. The OS provides special services to complete
the screen stretching and mouse position mapping. Another solution is to consider, at
the beginning of application development, allowing configuration options to support
preconfigured display densities and aspect ratios provided by the Android SDK, such as
screens with a resolution of 640 × 480, 960 × 720, or 1,080 × 800 pixels. This way, if the
final dimension deformation is acceptable, the application may automatically stretch the
window to cover the whole screen.

How to Solve Hover-Over Problems
Many applications allow hover-over operations: that is, users can place the mouse over a
certain object or locate the mouse over an application icon to trigger an animated item or
display a tooltip. This operation is commonly used to provide instructions for new players
in games; but it is not compatible with the characteristics of tap-only touch screens,
because they do not support the mouse hover-over operation.

You should consider selecting an alternative event to trigger animations or tips. For
example, when the user touches the operation of applications, relevant animated themes
and tips are triggered automatically. Another method is to design an interface interaction
mode that temporarily interprets tap events as mouse hover-over events. For example, the
action of pressing a certain button and moving the cursor would not be interpreted as a
tap operation.

Figure 1-3.  Screen-mapping errors due to a high aspect ratio

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

11

Providing Right-Click Functionality
As mentioned before, tap-only touch screens generally do not support right-click
operations on mice. A commonly used alternative is a delayed touch (much longer than
the tap time) to represent a right-click. This could result in the wrong operation occurring
if the user accidentally releases their finger too soon. In addition, this method cannot
perform simultaneous left-click and right-click (also known as double-click).

You should provide a user-interaction interface that can replace the right-click
function: for example, using double-click or installing a clickable control on the screen to
replace the right-click.

Keyboard Input Problems
As mentioned earlier, desktop computers use full keyboards, whereas Android systems
usually have much simpler keypads, button panels, user-programmable buttons, and
a limited number of other input devices. These limitations cause some problems when
designing embedded applications that are not seen in desktop systems.

Restricting the Input of Various Commands
The keyboard limitations on Android systems make it difficult for users to type
a large number of characters. Therefore, applications that require users to input
many characters, especially those depending on command input, need appropriate
adjustments when migrating to an Android system.

One solution is to provide an input mode that restricts the number of characters
by reducing the number of commands or selectively using convenient tools like menu
item shortcut keys. A more flexible solution is to create command buttons on the screen,
especially context-sensitive buttons (that is, buttons that appear only when needed).

Meeting Keyboard Demand
Applications need keyboard input, such as naming a file, creating personal data, saving
progress, and supporting online chat. Most applications tend to use the screen keyboard
to input characters, but the screen keyboard does not always run or show at the front of
the application interface, making character-input problems hard to solve.

One solution is to either design a mode without explicit conflict with the onscreen
keyboard application (for example, not using the full-screen default operation mode) for
applications, or provide an onscreen keyboard in the UI that appears only when needed.
Another simple way of minimizing keyboard input is to provide default text string values,
such as default names of personal data and default names of saved files, and allow users
to select by touching. To obtain other information required by the text string (for example,
prefix and suffix of file names), you can add a selection button that provides a list of
character strings you’ve established, from which the user can select. The name of a saved

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

12

file can also be uniquely obtained by combining various user information items extracted
from the screen or even using the date-time stamp. Some text input services (such as a
chat service) should be disabled if they are not the core functions of an application. This
will not cause any negative impact on the user experience.

Software Distribution and Copyright Protection Problems
Desktop computers are generally equipped with CD-ROM/DVD drives, and their
software is generally distributed via CD/DVD. In addition, for anti-piracy purposes,
CD/DVD installation usually requires users to verify the ownership of the disk or load
contents dynamically from the CD/DVD, especially video files. However, Android systems
(smartphones and tablets, for instance) generally do not have CD-ROM/DVD drives;
Android does support an external microSD card, but directly installing an application
from it is still not supported.

A good solution is to allow users to download or install applications via the Internet
instead of installing from CD/DVD. Consumers buy and install applications directly
from application stores such as the Apple App store, Google Play, and Amazon Appstore.
This popular software release model allows mobile developers to use certificates, online
accounts, or other software-based ways to verify ownership, instead of physical CD/
DVDs. Similarly, you should consider providing the option of placing content on an
online cloud service instead of requiring users to download videos and other content
from a CD/DVD.

Android Application Overview
The following sections describe the application file framework and component structure
of Android applications.

Application File Framework
Figure 1-4 shows the file structure after the generation of the HelloAndroid app (this is an
Eclipse screen shot).

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

13

Figure 1-4.  Example file structure of an Android project

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

14

Even if you are not using Eclipse, you can directly access the project folder and see
the same file structure, as listed next:
 
E:\Android Dev\workspace\HelloAndroid>TREE /F
E:.
│ .classpath
│ .project
│ AndroidManifest.xml
│ ic_launcher-web.png
│ proguard-project.txt
│ project.properties
│
├─.settings
│ org.eclipse.jdt.core.prefs
│
├─assets
├─bin
│ │ AndroidManifest.xml
│ │ classes.dex
│ │ HelloAndroid.apk
│ │ resources.ap_
│ │
│ ├─classes
│ │ └─com
│ │ └─example
│ │ └─helloandroid
│ │ BuildConfig.class
│ │ MainActivity.class
│ │ R$attr.class
│ │ R$dimen.class
│ │ R$drawable.class
│ │ R$id.class
│ │ R$layout.class
│ │ R$menu.class
│ │ R$string.class
│ │ R$style.class
│ │ R.class
│ │
│ └─res
│ ├─drawable-hdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-ldpi
│ │ ic_launcher.png
│ │

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

15

│ ├─drawable-mdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ └─drawable-xhdpi
│ ic_action_search.png
│ ic_launcher.png
│
├─gen
│ └─com
│ └─example
│ └─helloandroid
│ BuildConfig.java
│ R.java
│
├─libs
│ android-support-v4.jar
│
├─res
│ ├─drawable-hdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-ldpi
│ │ ic_launcher.png
│ │
│ ├─drawable-mdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-xhdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─layout
│ │ activity_main.xml
│ │
│ ├─menu
│ │ activity_main.xml
│ │
│ ├─values
│ │ dimens.xml
│ │ strings.xml
│ │ styles.xml
│ │

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

16

│ ├─values-large
│ │ dimens.xml
│ │
│ ├─values-v11
│ │ styles.xml
│ │
│ └─values-v14
│ styles.xml
│
└─src
 └─com
 └─example
 └─helloandroid
 MainActivity.java
 

Let’s explain the features of this Android project file structure:

•	 src directory: Contains all source files.

•	 R.java file: Is automatically generated by the Android SDK
integrated in Eclipse. You do not need to modify its contents.

•	 Android library: A set of Java libraries used by Android
applications.

•	 assets directory: Stores mostly multimedia files and other files.

•	 res directory: Stores preconfigured resource files such as
drawable layouts used by applications.

•	 values directory: Stores mostly strings.xml, colors.xml, and
arrays.xml.

•	 AndroidManifest.xml: Equivalent to an application configuration
file. Contains the application’s name, activity, services, providers,
receivers, permissions, and so on.

•	 drawable directory: Stores mostly image resources used by
applications.

•	 layout directory: Stores mostly layout files used by applications.
These layout files are XML files.

Similar to general Java projects, a src folder contains all the .java files for a project;
and a res folder contains all the project resources, such as application icons (drawable),
layout files, and constant values.

The next sections introduce the AndroidManifest.xml file, a must-have of every
Android project, and the R.java file in the gen folder, which is included in other Java
projects.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

17

AndroidManifest.xml
The AndroidManifest.xml file contains information about your app essential to the
Android system, which the system must have before it can run any of the app’s code. This
information includes activities, services, permissions, providers, and receivers used in the
project. An example is shown in Figure 1-5.

Figure 1-5.  The content of AndroidManifest.xml displayed in Eclipse

The file’s code is as follows:
 
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

http://schemas.android.com/apk/res/android

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

18

 <activity
 android:name=".MyMainActivity"
 android:label="@string/title_activity_my_main" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>
 

The AndroidManifest.xml file is a text file in XML format, with each attribute
defined by a name = value pair. For example, in Android, label = "@ string / title_
activity_my_main", label indicates the name of the Android application as
activity_my_main.

An element consists of one or more attributes, and each element is enclosed by the
start (<) and end (/>) tags:
 
<Type Name [attribute set]> Content </ type name> 
<Type Name Content /> 
 

The format [attribute set] can be omitted; for example, the <intent-filter> ...
</ intent-filter> text segment corresponds to the activity content of the element, and
<action... />corresponds to the action element.

XML elements are nested in layers to indicate their affiliation, as shown in the previous
example. The action element is nested within the intent-filter element, which illustrates
certain aspects of the properties or settings of intent-filter. Detailed information about
XML is beyond the scope of this book, but many excellent XML books are available.

In the example, intent-filter describes the location and time when an activity
is launched and creates an intent object whenever an activity (or OS) is to execute an
operation. The information carried by the intent object can describe what you want to
do, which data and type of data you want to process, and other information. Android
compares the intent-filter data exposed by each application and finds the most
suitable activity to handle the data and operations specified by the caller.

Descriptions for the main attribute entries in the AndroidManifest.xml file are listed
in Table 1-2.

Table 1-2.  The Main Attribute Entries in the AndroidManifest.xml File

Parameter Description

Manifest Root node that contains all contents in the package.

xmlns:android Contains the manifest of the namespace.

xmlns:android=http://schemas.android.com/apk/res/android.
Makes various standard properties usable in the file and provides
data to most elements.

(continued)

http://schemas.android.com/apk/res/android

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

19

Parameter Description

package Package of manifest application.

Application Contains the root node of the application-level component
manifest in the package. This element can also contain some global
and default properties for the application, such as label, icon,
theme, and necessary permissions. One manifest may contain zero
or one (no more than one) element.

android:icon Icon of the application.

android:label Name of the application.

Activity Name of the initial page to load when users start the application.
It is an important tool for user interaction. Most other pages are
displayed when other activities are performed or manifested by
other activity flags.

Note: Each activity must have a corresponding <activity> flag
whether it is used externally or in its own package. If an activity
has no corresponding flag, you cannot operate it. In addition, to
support a searching activity, an activity can contain one or several
<intent-filter> elements to describe the operations it supports.

android:name Default activity launched by the application.

intent-filter Is formed by manifesting the intent value supported by a
designated component. In addition to specifying different types
of values, intent-filter can specify properties for describing a
unique label, icon, or other information required by an operation.

Action Intent action supported by a component.

Category Intent category supported by a component. The default activity
launched by the application is designated here.

uses-sdk Related to the SDK version used by the application.

Table 1-1.  (continued)

R.java
The R.java file is generated automatically when a project is created. It is a read-only file
and cannot be modified. R.java is an index file defining all resources of the project. For
example:
 
/* AUTO-GENERATED FILE. DO NOT MODIFY.

 */
package com.example.helloandroid;
public final class R {
 public static final class attr {
 }

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

20

 public static final class dimen {
 public static final int padding_large=0x7f040002;
 public static final int padding_medium=0x7f040001;
 public static final int padding_small=0x7f040000;
 }
 public static final class drawable {
 public static final int ic_action_search=0x7f020000;
 public static final int ic_launcher=0x7f020001;
 }
 public static final class id {
 public static final int menu_settings=0x7f080000;
 }
 public static final class layout {
 public static final int activity_my_main=0x7f030000;
 }
 public static final class menu {
 public static final int activity_my_main=0x7f070000;
 }
 public static final class string {
 public static final int app_name=0x7f050000;
 public static final int hello_world=0x7f050001;
 public static final int menu_settings=0x7f050002;
 public static final int title_activity_my_main=0x7f050003;
 }
 public static final class style {
 public static final int AppTheme=0x7f060000;
 }
}
 

You can see that many constants are defined in this code. The names of these
constants are the same as the file names in the res folder, which proves that the R.java
file stores the index of all resources of the project. With this file, it is more convenient
to use resources in applications and identify the resources required. Because this file
does not allow manual editing, you only need to refresh the project when adding new
resources to it. The R.java file automatically generates the index of all resources.

Definition File of Constants
The values subdirectory of the project contains a definition file for the strings, colors,
and array constants; the string constant definitions are in the strings.xml file. These
constants are used by other files in the Android project.

Eclipse provides two graphic view tabs, Resources and strings.xml, for the strings.xml
file. The Resources tab provides a structured view of the name-value, and the strings.xml
tab directly displays the contents of a text file format. The strings.xml file of the
HelloAndroid example is shown in Figure 1-6.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

21

Figure 1-6.  IDE graphic view of the strings.xml file of HelloAndroid

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

22

The file content is as follows:
 
<resources>
 
 <string name="app_name">HelloAndroid</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>
 
</resources>
 

The code is very simple; it only defines four string constants (resources).

Layout Files
Layout files describe the size, location, and arrangement of each screen widget
(combination of window and gadget). A layout file is the “face” of the application. Layout
files are text files in XML format.

Widgets are visual UI elements, such as buttons and text boxes. They are equivalent
to controls and containers in the Windows system terminology. Buttons, text boxes, scroll
bars, and so forth are widgets. In the Android OS, widgets generally belong to the View
class and its descendant classes and are stored in the android.widget package.

An application has a main layout file corresponding to the application’s screen
display at startup. For example, the layout file and the main interface of the HelloAndroid
example are shown in Figure 1-7. When an application is created, Eclipse automatically
generates a layout file for the application’s main screen display. The file is located in the
project folder’s res\layout directory. The file name in the generated application projects
is specified in the next section: in this case, the source code file name corresponds to the
[Layout Name] key, so the file is named activity_main.xml.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

23

Figure 1-7.  The main graphic layout and user interface

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

24

When you click the design window (in this case, activity_main.xml), you can see
the corresponding contents of the XML-formatted text file, as shown in Figure 1-8.

Figure 1-8.  The main layout file of the HelloAndroid example

The contents of the file are as follows:
 
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:padding="@dimen/padding_medium"
 android:text="@string/hello_world"
 tools:context=".MainActivity" /> 
 
</RelativeLayout>
 

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

25

In this code, there are several layout parameters:

•	 <RelativeLayout>: The layout configuration for the relative
position.

•	 android:layout_width: Customizes the screen width of the
current view; match_parent represents the parent container
(in this case, the activity) match; fill_parent fills the entire
screen; wrap_content, expressed as text fields, changes
depending on the width or height of this view.

•	 android:layout_height: Customizes the screen height occupied
by the current view.

Two other common parameters, not shown in this layout file, are as follows:

•	 android:orientation: Here means the layout is arranged
horizontally.

•	 android:layout_weight: Give a value for the importance
assigned to multiple views of a linear layout. All views are given a
layout_weight value; the default is zero.

Although the layout file is an XML file, you do not have to understand its format or
directly edit it, because the Android Development Tools and Eclipse provide a visual
design interface. You simply drag and drop widgets and set the corresponding properties
in Eclipse, and your actions are automatically recorded in the layout file. You can
see how this works when you walk though the application development example in
following sections.

Source Code File
When a project is built, Eclipse generates a default .java source code file that contains
the application basic runtime code for the project. It is located in the project folder under
the src\com\example\XXX directory (where XXX is the project name). The file name of the
generated application projects in this case is the source code file name that corresponds
to the [Activity Name] key, so the file is named MainActivity.java.

The content of MainActivity.java is as follows:
 
package com.example.flashlight;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.view.MenuItem;
import android.support.v4.app.NavUtils;
 

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

26

public class MyMainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_my_main, menu);
 return true;
 }
}

Component Structure of Applications
The Android application framework provides APIs for developers. Because the
application is built in Java, the first level of the program contains the UI needs of the
various controls. For example, views (View components) contain lists, grids, text boxes,
buttons, and even an embedded web browser.

An Android application usually consists of five components:

Activity•	

Intent receiver•	

Service•	

Content provider•	

Intent and intent filters•	

The following sections discuss each components a bit more.

Activity
Applications with visual UIs are implemented using activities. When a user selects an
application from the main screen or an application launcher, it starts an action or an
activity. Each activity program typically takes the form of a separate interface (screen).
Each activity is a separate class that extends and implements the activity’s base class. This
class is shown as the UI, consisting of View components responding to events.

Most programs have multiple activities (in other words, an Android application is
composed of one or more activities). Switching to another interface loads a new activity.
In some cases, a previous activity may give a return value. For example, an activity that
lets the user select a photo returns the photo to the caller.

When a user opens a new interface, the old interface is suspended and placed in the
history stack (interface-switching history stack). The user can go back to an activity that
has been opened in the history stack interface. A stack that has no historical value can be
removed from the history stack interface. Android retains all generated interfaces in the
history stack for running the application, from the first interface to the last one.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

27

An activity is a container, which itself is not displayed in the UI. You can roughly
imagine an activity as a window in the Windows OS, but the view window is not only for
displaying but also for completing a task.

Intent and Intent Filters
Android achieves interface switching through a special class called intent. An intent
describes what the program does. The two most important parts of the data structure are
the action and the data processed in accordance with established rules (data). Typical
operations are MAIN (activity entrance), VIEW, PICK, and EDIT. Data to be used in the
operation is presented using a Universal Resource Identifier (URI). For example, to view a
person’s contact information, you need to create an intent using the VIEW operation, and
the data is a pointer to the person’s URI.

A class associated with an intent is called an IntentFilter. An intent encapsulates
a request as an object; IntentFilter then describes what intentions an activity (or,
say, an intent receiver, explained in a moment) can process. In the previous example,
the activity that shows a person’s contact information uses an IntentFilter, and it
knows how to handle the data VIEW operation applied to this person. The activity in the
AndroidManifest.xml file using IntentFilter is usually accomplished by parsing the
intent activity switch. First, it uses the startActivity (myIntent) function to start the
new activity, next it systematically checks the IntentFilter of all installed programs,
and then it finds the activity that is the best match with the myIntent corresponding to
IntentFilter. This new activity receives the message from intent and then starts. The
intent-resolution process occurs in real time in the startActivity called. This process
has two advantages:

The activity emits only one •	 intent request and can reuse the
function of other components.

The activity can always be replaced by an equivalent new activity •	
of the IntentFilter.

Service
A service is a resident system program that has no UI. You should use a service for any
application that needs to run continuously, such as a network monitor or checking for
application updates.

The two ways of using a service are start-stop mode and bind-unbind mode. The
process flow chart and functions are shown in Table 1-3.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

28

When two modes are in mixed use—for example, one mode calls startService()
and other modes call bindService()—then only when both the stopService call and the
unbindService call occur will the service be terminated.

A service process has its own life cycle, and Android tries to keep a service process
that has been started or bound. The service process is described as follows:

If the service is the implementation process of the method •	
onCreate(), onStart, or onDestroy(), then the main process
becomes a foreground process to ensure that this code is not
stopped.

If the service has started, the value of its importance is lower •	
than that of the visible process but above all invisible processes.
Because only a few processes are visible to the user, as long as the
memory is not particularly low, the service does not stop.

If multiple clients have bound to the service, as long as any one of •	
the clients is visible to the user, that service is visible.

Broadcast Intent Receiver
When you want to execute some code associated with external events, such as have a task
performed in the middle of the night or respond to a phone ringing, use IntentReceiver.
Intent receivers have no UI and use NotificationManager to inform users that their
event has happened. An intent receiver is declared in the AndroidManifest.xml file
but can also be declared using Context.registerReceiver(). The program does not
have to run continuously to wait for IntentReceiver to be called. When an intent

Table 1-3.  The Usage Model of a Service

Mode Start End Visit Notes

Start/
stop

Context.
startService()

Context.
stopService()

Even if the process
of the startService
call is ended, the
service is still there
until the process calls
stopService() or the
service causes its own
demise (stopSelf()
is called).

Bind/
unbind

Context.
bindService()

Context.
unbindService()

Context.
Service
Connection()

When calling
bindService(), the
process is dead; then
the service it binds to
must be ended.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

29

receiver is triggered, the system starts your program. Programs can also use
Context.broadcastIntent() to send their intent broadcast to other programs.

Android applications can be used to handle a data element or to respond to an
event (such as receiving text messages). Android applications are deployed to the
device together with an AndroidManifest.xml file. AndroidManifest.xml contains the
necessary configuration information, so the application is properly installed on the
device. AndroidManifest.xml also includes the necessary class names and the types
of events that can be handled by the application, as well as the necessary permissions
to run the application. For example, if an application needs to access the network—to,
say, download a file—the manifest file must be explicitly listed in the license. Many
applications may enable this particular license. This declarative security can help reduce
the possibility of damage to equipment from malicious applications.

Content Provider
You can think of content providers as database servers. A content provider’s task is to
manage persistent data access, such as a SQLite database. If the application is very
simple, you might not need to create a content-provider application. If you want to build
a larger application or need to build applications to provide data for multiple activities or
applications, you can use the content provider for data access.

If you want other programs to use their own programs’ data, a content provider
is very useful. The content-provider class implements a series of standard methods
that allows other programs to store and read data that can be processed by the content
provider.

Android Emulator
Android does not use the ordinary Java virtual machine (JVM); it uses the Dalvik virtual
machine (DVM) instead. The DVM and JVM are fundamentally different. The DVM takes
up less memory, is specifically optimized for mobile devices, and is more suitable for
mobile phones used in embedded environments. Other differences are as follows:

The general JVM is based on the stack-based virtual machine, but •	
the DVM is a register-based virtual machine. The latter is better
because applications can achieve maximum optimization based
on the hardware, which is more in line with the characteristics of
mobile devices.

The DVM can run multiple virtual machine instances simultaneously •	
in limited memory, so that each DVM application executes as a
separate Linux process. In the general JVM, all applications run in a
shared JVM, and therefore individual applications are not running
as separate processes. With each application running as a separate
process, the DVM can be prevented from closing all programs in the
event of the collapse of the virtual machine.

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

30

The DVM provides a less restrictive license platform than the •	
general JVM. The DVM and JVM support different generic code.
The DVM does not run standard Java bytecode, but rather Dalvik
executable format (.dex). Java code compilation of Android
applications actually consists of two processes. The first step is to
compile the Java source code into normal JVM executable code,
which uses the file-name suffix .class. The second step is to
compile the bytecode into Dalvik execution code, which uses the
file-name suffix .dex. The first step compiles the source code files
under the src subdirectory in the project directory into .class
files in the bin\class directory; and the second step moves the
files from the bin\class subdirectory to classes.dex files in
the bin directory. The compilation process is integrated into the
Eclipse build process; however, you can also use the command
line to compile manually.

Introducing Android Runtime (ART)
ART is an Android runtime that first became available in Google Android KitKat (4.4) as a
preview feature. It is also called Dalvik version 2 and is under active development in the
Android Open Source Project (AOSP). All smartphones and tablets with Android KitKat
keep Dalvik as the default runtime. This is because some OEMs still do not support ART
in Android implementations, and most third-party applications are still built based on
Dalvik and have not yet added support for the new ART.

As described by Google on the Android developer site, most existing apps should
work when running with ART. However, some techniques that work on Dalvik do not
work on ART. The differences between Dalvik and ART are shown in Table 1-4.

Table 1-4.  Dalvik vs. ART Summary

Dalvik ART

Application APK package with DEX class file Same as Dalvik

Compile Type Dynamic compilation (JIT) Ahead-of-time compilation
(AOT)

Functionality Stable and went through
extensive QA

Basic functionality and stability

Installation Time Faster Slower due to compilation

App Launch Time Mostly slower due to JIT
compilation and interpretation

Mostly faster due to AOT
compilation

Storage Footprint Smaller Larger, with precompiled binary

Memory Footprint Larger due to JIT code cache Smaller

Chapter 1 ■ GUI Design for Android Apps, Part 1: General Overview

31

ART offers some new features to help with application development, performance
optimization, and debugging, such as support for the sampling profiler and debugging
features like monitoring and garbage collection. Transitioning from Dalvik to ART is
likely to take some time, and Dalvik and ART will both be provided in Android to allow
smartphone and tablet users to select and switch. However, future 64-bit Android will be
based on ART.

Summary
This chapter introduced the general GUI design method for desktop systems and then
showed how designing the UI and UX for embedded systems is different. You should now
understand the general methods and principles of GUI design for Android applications
and be ready to learn about the Android-specific GUI. The next chapter describes the
state transition of activities, the Context class, intent, and the relationship between
applications and activities.

	Chapter 1: GUI Design for Android Apps, Part 1: General Overview
	Overview of GUIs for Embedded Applications
	Characteristics of Interaction Modalities of Android Devices
	Screens of Various Sizes, Densities, and Specifications
	Keypads and Special Keys
	Touch Screens and Styluses, in Place of Mice
	Onscreen Keyboards
	Few Multimodal Interactions
	Few Large-Capacity Portable External Storage Devices

	UI Design Principles for Embedded Systems
	Considerations of Screen Size
	Size of Text and Icons
	Clickability of Buttons and Other Graphical Elements

	Size of Application Windows
	Considerations Arising from Touch Screens and Styluses
	Correctly Interpreting the Movement and Input of the Cursor (Mouse) on Tap-Only Touch Screens
	Setting Screen Mapping Correctly
	How to Solve Hover-Over Problems
	Providing Right-Click Functionality

	Keyboard Input Problems
	Restricting the Input of Various Commands
	Meeting Keyboard Demand

	Software Distribution and Copyright Protection Problems

	Android Application Overview
	Application File Framework
	AndroidManifest.xml
	R.java
	Definition File of Constants
	Layout Files
	Source Code File

	Component Structure of Applications
	Activity
	Intent and Intent Filters
	Service
	Broadcast Intent Receiver

	Content Provider
	Android Emulator
	Introducing Android Runtime (ART)

	Summary

