
1

Chapter 1

Introduction

If you can fix a hardware bug in firmware, it’s not a bug but a 
documentation issue.

—An anonymous hardware manager

What Is Embedded Firmware? 
Since you are reading this book, you must have some understanding of what the words 
embedded and firmware mean in the context of computer technology. There are quite a 
few interesting discussions on the Web about the difference between firmware engineers 
and embedded engineers. Some say that an embedded engineer is a software engineer 
turning into a hardware engineer, and a firmware engineer is a hardware engineer turning 
into a software engineer. There is some truth to this because most firmware engineers 
learned how to design circuits in school, but there are definitely a lot of smart firmware 
engineers out there with a computer science or nonhardware degree. Regardless, writing 
firmware is a unique skill that deals with both hardware and software at the same time. 
You need to know something about signal strength, timing, voltage, and at the same time, 
data structure, algorithm, and modularity.

For the purposes covered in this book, let’s define firmware as the layer of software 
between the hardware and the operating system (OS), with the main purpose to initialize 
and abstract enough hardware so that the operating systems and their drivers can further 
configure the hardware to its full functionality. To make embedded systems run faster 
and be more robust, the relationship between the firmware and the OS is transitioning 
from isolating themselves from each other to cooperating with each other. In the past, you 
might have seen the same hardware initialized by the firmware first, and then initialized 
again by a driver in the OSas shown in Figure 1-1; but in modern systems, you see more 
effort in trying to eliminate redundancy between the firmware and the OS.



Chapter 1 ■ Introduction

2

Hardware design is also moving toward being more “software friendly” so that 
hardware takes less effort to program. Self-initializing chips and a built-in boot ROM are 
just two examples currently available in System-on-Chip (SoC). Due to the evolution 
toward software friendliness, the heavy-duty hardware initialization responsibility has 
been gradually shifted from the firmware to the drivers of the operating systems, and 
the operating systems are relying less and less on firmware to carry out the hardware 
initialization work. Some real-time operating systems (RTOS) and specialized operating 
systems, such as Android and Chrome OS, are carrying out a lot of hardware initialization 
functions with help from the hardware vendors. This is especially true when system 
designers compartmentalize their design to a set of standardized hardware components 
and constrain the hardware selection pool; in some cases, hardware configuration can be 
achieved with a GUI (graphical user interface) -based configuration tool instead of relying 
on rewriting programs in firmware or software.

The line between firmware and specialized operating systems is definitely blurring,  
if not disappearing completely. The very minimum things that firmware has to do in a 
well-coordinated environment are presenting a data structure of features that can be 
further processed by OS drivers, such as an ACPI (Advanced Configuration and Power 
Interface) table, and carrying out the tasks that can only be done more effectively by 
firmware, such as memory controller initialization. When a seamless cooperation 
between the firmware and the OS cannot be guaranteed, firmware still plays a significant 
role in the system to make sure all system features are utilized properly. Therefore, no 
matter what the design trend is, firmware remains a critical component in a system.

Let’s face it: firmware does have a troublesome reputation in the x86 world. In the dawn 
of laptop computers, System Management Mode (SMM) was created to do many things 
behind the back of the OS. System Management Interrupt (SMI) was not only nonmaskable, 
but was also not controllable by the OS. Firmware would take its own initiative to blank the 
display to save power, put the system to sleep when no user activity was detected, slow down 
the clock when running on the battery, take care of battery warnings when they happened, 
and react to Fn hot keys when they are pressed. These functions were not coordinated with 
the OS, and they just happened, seemingly at random. Obviously, none of these are bad 
features, but the amount of time it took to go through the process, and the adverse effects 
(missing timer ticks, long latency in interrupt delivery, etc.) on the OS were too much for 
the OS to ignore. Therefore, ACPI was created to allow the OS and firmware to coordinate 
and cooperate on these features. The utilization of SMM has been gradually reduced over 

Figure 1-1.  The roles of firmware and device drivers during the boot process



Chapter 1 ■ Introduction

3

the years. In addition to some SMM firmware dealing with actions requested by ACPI and 
security features, chip vendors are the only entities still using SMM to work around chip 
issues when necessary.

Where Is Firmware? 
Firmware is generally considered part of the hardware (rather than part of the software) 
because it resides inside a hardware component, which is typically a Flash storage 
device or ROM. However, when it comes to the programming language, the tools, and 
the methodology a firmware engineer follows, firmware is clearly a type of software, even 
though it is tightly coupled with hardware in most cases.

What Do Firmware Engineers Do? 
Regardless of whether firmware engineers are hardware engineers turning into software 
engineers, or the other way around, firmware engineers have a lot of interesting work 
to do. One of the most important and challenging jobs that a firmware engineer does is 
to make a new circuit board work when it is first manufactured, especially when most 
components on the new board are also new. It is not a unique case to have many new 
components on a brand-new circuit board because most hardware evolves in similar 
cycles. In chip manufacturing companies, some firmware engineers’ only job is to bring 
up and test a new chip on a new board. The combination of a new chip, new components, 
and a new board not only makes debugging work much more complicated, but also 
makes the preparation work much more challenging.

When a firmware engineer prepares for the bring-up of a new board, he or she does 
not just wait for the hardware to show up, and then write the code; he or she needs to 
read a lot of early specifications, such as datasheets, a couple of months before the new 
board shows up. Since these specifications are mostly evolving, the information may 
not be 100 percent correct. Firmware engineers need to help correct the information in 
datasheets and write programming guides as they go through the debug process. In a 
typical hardware-oriented company, firmware needs to be ready when the first circuit 
board shows up. It is not acceptable for hardware to wait for firmware because hardware 
is usually more difficult and more expensive to alter than firmware. Manufacturers want 
hardware bugs to be discovered and fixed as early as possible. In the beginning, firmware 
only needs to have enough functions to test the circuit board to determine if the new 
components can be manufactured, but it is a lot of hard work to do it right the first time.

Firmware Preparation for New Hardware
During the preparation, firmware engineers need to figure out what to program, how to 
program, and the sequence in programming the new components after they study the 
materials available to them. The obvious challenge after writing the program for the new 
components is to figure out how to test the new code before the new hardware shows 
up at the door of their lab. Many manufacturers have simulators designed to test early 
firmware and software, such as Intel’s Simics and AMD’s SimNow, but the usefulness 



Chapter 1 ■ Introduction

4

of a simulator depends on the behavioral models written to simulate the hardware. The 
accuracy and fidelity of the models in the simulation tool decide whether or not you can 
find bugs and programming errors in your early firmware.

Besides simulators, FPGA-based emulators are also frequently used to test early 
firmware and the circuitry inside a new chip. Compared to simulators, FPGA-based 
emulators are much more accurate in representing the final hardware, but since they 
are running in a much slower clock speed, timing-related issues may not be discovered 
easily, and firmware is sometimes modified to accommodate the slower clock speed; 
therefore, some parts of firmware are not well tested. In most cases, based on our 
experience, these simulators and emulators actually deliver pretty solid results, and the 
simulated and emulated firmware usually works when it is put on the real hardware for 
the first time they integrate. Even with the help of simulators, it typically takes a couple of 
days, weeks, or even months of effort to iron out all the hardware issues.

The Mystery of Bits
In the process of preparing a bring-up firmware, a firmware engineer spends a lot of 
time figuring out what needs to be programmed into the microprocessor and chipset 
by studying datasheets and specifications. In this case, literally, every bit matters. Even 
though many bits will work in their default states, a single mistake in misinterpreting the 
definition of a bit in a chip can turn the circuit board into a brick, and there are many bits 
to be programmed from their default states in order to work properly.

A datasheet is like the Bible for firmware engineers (see Figure 1-2); it has almost 
everything a firmware developer needs to know about the chip. Using a published 
datasheet from Intel as an example, the datasheet for Intel® Communications Chipset 
89xx Series, published in October 2012, contains 1,682 pages of useful register data. The 
list of tables that are used to describe the registers span across 30 pages, with about 60 
entries on each page.



Chapter 1 ■ Introduction

5

Learning and understanding what each bit does and does not do is as tedious 
as sorting sand on a beach, especially when some of the data documented in the 
datasheet does not provide as much detailed information as needed to understand how 
to use it. Sometimes, it takes a lot of trial and error in the process. There are also many 
undocumented bits that are there either for internal testing or for tuning purposes; these 
bits are usually not documented inside a datasheet. Therefore, missing critical information 
could be another challenge for firmware developers.

From time to time, a mysterious problem can stall the debug and development effort 
for a long time, and the final solution is sometimes a mysterious bit that was somehow 
discovered after scrubbing the design data. With a stabilizing feature set and better tools, 
these kinds of problems are not happening as frequently in modern chips.

It is the purpose of early-stage firmware to find the problems of a newly designed 
chip. Even though there are chip bugs that cannot be resolved without fixing the chip itself, 
more often than not, a chip problem can be resolved with fixes in firmware; chip vendors 

Figure 1-2.  An example of a datasheet page



Chapter 1 ■ Introduction

6

frequently call these kinds of fixes “work-arounds.” If there is a work-around for a chip bug, 
it usually involves a bit or a set of bits that need to be programmed or changed. Or, there 
will be an algorithm developed to work around a problem only when certain conditions 
are met. To apply a work-around with as little impact as possible to the existing software, 
designers frequently suggest the fixes to be implemented in the SMM. Since SMM code 
takes away operating cycles and time, these kinds of fixes are sometimes intrusive and 
problematic. It is ultimately up to the designers to reveal the fixes after studying the original 
design of the chip. Most of the time, the fixes are not obvious; the designers need to analyze 
and figure out if there exists a setting of bits that could fix the problem, or check if they 
should turn off certain new features that are not working properly. Even though a firmware 
engineer may accidentally find a fix to resolve an issue through a trial-and-error process, 
this is very rare these days—especially when the work-around involves an undocumented 
bit or bits. Designers ultimately hold the key to resolving a chip issue.

How do undocumented bits exist? As stated earlier, when designers design a chip, 
they put many configurable bits in a chip to help tune the chip or control features that are 
supposed to be hidden from the programmers. They keep some of these bits undocumented 
and locked so that no one can accidentally program them to cause unintentional damage 
or adverse effects. There is a nickname for these bits, called “chicken bits.” The origin of this 
phrase is unknown, but it may have something to do with the fact that these bits are scattered 
everywhere in the chip like the food for chickens; or it may imply that the designers were too 
“chicken” to show these bits to others, therefore hiding them.

There could be as many as 60,000 chicken bits in a chip, depending upon the 
complexity, the functionality, and the size of the chip. This also explains why a chip 
vendor cannot possibly document every programmable bit of a chip in a datasheet 
or a programming guide, even if they wanted to try. As a matter of fact, most of these 
chicken bits will never be documented, and a small portion of the chicken bits will be 
documented only when they are needed to work around a chip problem. Many of you 
may have heard of or even read an errata sheet from chip vendors; this errata sheet 
frequently contains information for bits that were not documented before.

Programming Guides
When designers design a new chip, they will compile of a list of registers to support 
various chip features. During the chip design phase, hardware engineers and firmware 
engineers work with designers to design, simulate, and validate the chip. By doing this 
together, the function of bits and bytes in registers are defined, refined, and documented 
so that a comprehensive programming guide can be available at the same time that 
the first chip shows up at a customer’s door, typically a manufacturer of a product 
using the chip. In Intel, this programming resource is named the BIOS Writer’s Guide 
(BWG) because it is designed to help BIOS developers write a BIOS for a PC to begin 
with. For a modern chip like Quark, the name of the document has been changed to 
the UEFI Firmware Writer’s Guide to distant itself from the term BIOS. Regardless, this 
programming guide has all the information a firmware engineer needs to know beyond 
programming a PC and for every embedded system as well.

In 1996, the BWG for the Pentium Pro was 73 pages long; but today, the BWG for  
the BayTrail SoC is 440 pages divided in two volumes; it grew more than six times in  
18 years. Not only the amount of information, but the complexity has increased as well.  



Chapter 1 ■ Introduction

7

For example, the Pentium Pro BWG describes very basic programming information that 
most people can probably figure out themselves after reading a few standard specifications 
from Intel, like SMM, BIOS INT functions, and how to handle multiprocessor initialization 
and so forth. In comparison, besides basic SMM multiprocessor topics, BayTrail BWG 
uses 34 pages just to talk about MSR (model-specific register); other information 
includes CPUID handling, the Microcode Update, SpeedStep, C-State Control, thermal 
management, and more. This list is just the information contained in volume one. In 
volume two, almost all the subjects require a domain expertise to understand, such as HD 
audio, graphics, the HPET timer, xHCI, EHCI, DDR3, ISP, P-Unit, SIO, PCIe, PCU, TCO, 
and so forth. (If you don’t recognize any of these acronyms, you get the point: modern-day 
BWGs have become very specialized repositories of information.)

The programming guide not only specifies the features that can be customized by 
the customer via programming the bits and bytes, it also methodically covers the many 
bits and bytes that must be programmed with particular values in a fixed order to support 
certain features.

Even if you have not been involved in debugging a new circuit board, you can 
imagine that finding a bit-setting error in an ocean of bits is pretty painful. Does a chip 
vendor need to put firmware engineers through a painful experience every time it 
produces a new chip? If the programming guide is done right, firmware engineers should 
not have to read through 440 pages of BWG to study what needs to be programmed just 
to get the chip up to the point of providing its features. Firmware engineers have better 
things to do than look at the programming guide to figure out which bits to flip and which 
bytes to write; they should spend their valuable time developing value-added features to 
help deliver a product with differentiating features.

The Intel® Firmware Support Package
Intel has taken the initiative to provide a way to encapsulate tedious chip initialization 
code into a package: the Intel® Firmware Support Package (Intel® FSP, for short; we will 
use Intel FSP and FSP interchangeably in this book). Obviously, there is more than one 
way to ease the programming pain associated with chip initialization. For example, 
releasing the full source code to allow people to view how it is done, or putting all the chip 
initialization code in one binary to hide the complexity, or anything in between. Intel 
has decided to go with the option to put all the chip initialization code in one place with 
the hope that, once it is used in the firmware stack of your choice, the developers will be 
able to quickly get over the chip initialization hump and move on to value-added features 
development work.

Why would Intel produce Intel FSP for the embedded designs and the Internet 
of Things (discussed shortly) in the first place? After all, Intel is already providing a 
comprehensive reference code for each reference platform, and there is also an open 
source EDK II codebase under Tianocore.org that allows people to study the UEFI 
implementation. The problem is not about having reference code out there or not; it is 
portability, scalability, and flexibility that developers are looking for, especially in the 
embedded and IoT space where UEFI and PC architecture are not playing a major role as 
things stand today.



Chapter 1 ■ Introduction

8

Intel recognizes that many developers have a hard time extracting chip initialization 
code out of an EDK II codebase or from a BIOS to port to a different firmware stack or 
to a different platform design. Going to IBV (Independent BIOS Vendors) to ask for 
help is not always an option for some customers. Intel believes that there are a lot of 
smart firmware engineers out there, and once these engineers get hold of a technical 
specification, an industry standard, or reference code, they can produce a firmware 
implementation without too much difficulty. The only thing that is missing for them is the 
chip programming information.

That said, it does not matter how smart the firmware engineer is: he or she cannot 
and will not be able to figure out how to program a new chip without help from chip 
vendors. Over the years, some smart developers have tried to reverse-engineer what has 
been done in an existing platform, but the process is long, hard, and error-prone.

In this book, we talk about Intel’s FSP solution; other chip vendors have also 
provided similar packages or mechanisms to reduce the programming burden for 
initializing basic chip functions, such as AMD’s AGESA (AMD Generic and Encapsulated 
Software Architecture), and ARM’s boot ROM concept. This book will not discuss these 
implementations, but they are efforts that chip vendors put out to ease the programming 
challenges.

Since its launch in October of 2012, Intel FSP has been widely used in many 
customers’ embedded designs, including customers who chose to convert from a 
competing architecture to Intel Architecture. As you will discover in later chapters of this 
book, Intel FSP can be easily integrated into an existing firmware stack to save you time 
and energy in figuring out the information needed to program an Intel chip.

Note■■   Keep in mind that Intel FSP is not a stand-alone firmware stack. It does not have 
all the ingredients to boot to an OS on its own; therefore, it must be integrated with a  
firmware stack, such as BIOS, coreboot, RTOS, or other proprietary bootloader solutions.

The Uniqueness of Embedded Firmware 
It is one thing to develop firmware for a general-purpose and open system such as a PC; 
it is quite another thing to develop a firmware stack for a closed system with dedicated 
functions. Over the last three decades, firmware engineers have almost perfected BIOS 
(including UEFI) for the PC. The PC BIOS has the ability to deal with devices that come and 
go anytime (plug-and-play) and to boot to any general-purpose OS (Linux, Windows), and 
it is smart enough to learn about its environment (ambient light, battery status, and user 
inactivity) to adjust itself to save energy. Arguably, it could be the most intelligent firmware 
stack ever created. Over the last three decades, we have definitely seen the evolution of 
BIOS, and we have witnessed a great improvement of quality in the BIOS realm.

Can the experience learned from the PC BIOS be applied to an embedded firmware 
design? The answer is “yes” because there are many useful industry standards created 
and implemented in the code.



Chapter 1 ■ Introduction

9

Can we use a PC BIOS stack on an embedded firmware design? The answer is 
“yes, but…” because it depends on the purpose of the design. Many embedded designs 
leverage PC architecture for cost and ecosystem support reasons. Since the designs 
inherit all the characteristics of a PC, the PC BIOS and similar technologies could still be 
the best choice for an open and general-purpose system if boot speed and the size of the 
firmware stack are not issues of concern. There are also a lot of embedded designs that 
are not based on PC architecture. In these cases, the PC BIOS and similar technologies 
can be used, but will need a lot of effort to fit into the design; there are better firmware 
solutions out there to choose from. In some cases, a PC BIOS just won’t work because the 
special need for boot speed, a small footprint, real-time performance, and so forth, are 
required.

Many mission-critical and time-sensitive designs require the system (hardware, 
firmware, and software) to be deterministic and predictable among other special 
constraints; many intelligent and dynamic configuration capabilities of a PC BIOS can be 
prohibitors for those deterministic and predictable considerations. Some closed devices 
designed without any upgradability do not need the flexibility of plug-and-play, heuristic 
training algorithm, and bus enumeration techniques that are typical in a PC BIOS; 
therefore, embedded firmware can sometimes be dramatically simplified. Finally, there 
are more embedded designs asking for faster boot time and quicker response time, which 
a typical PC BIOS cannot achieve. The rear-view camera in a vehicle, for example, needs 
to be turned on within 2 seconds after the car engine is ignited; this is for safety concerns 
and also a regulation requirement in many countries. Even though it is not impossible 
for a PC BIOS to achieve faster boot time, the hardware and firmware stack used in an IVI 
(in-vehicle infotainment) system is heavily customized to achieve this stringent boot-
time requirement. All of these unique requirements make a PC BIOS harder to fit into 
embedded applications.

The Choice of Firmware Stacks
There are quite a few firmware options in the market, such as PC BIOS (including various 
UEFI implementations), RTOS, open source stacks, and proprietary solutions. Each of 
these firmware stacks has a specific purpose to fulfill, and we will discuss their special 
usage models later in the book. We’ll also discuss how to work with different firmware 
stacks using a common chip initialization module (in the next chapter, we’ll take a look at 
a few of the options), and we will also talk about their pros and cons and how to make a 
choice based on your needs.

Welcome to the Era of the Internet of Things
Due to the fast evolution of microprocessors, embedded systems are not only becoming 
more intelligent, but also becoming more ubiquitous. Some of the devices we use today 
will start to make decisions for us and even protect us from danger someday. There are 
refrigerators that can order food for us when they are empty. There are thermostats that 
can call the police when they detect an intruder in our house. There are cars that can 
steer themselves out of danger when they are about to collide with another car. There 
are a lot of more new ideas and new devices in the works to make you safer and make 



Chapter 1 ■ Introduction

10

your life more convenient. The next wave of the technology revolution has arrived, and 
it comes in the form of built-in connectivity and intelligence. People are calling these 
intelligent and connected devices the “Internet of Things” or IoT. It takes a lot of creative 
minds to conceive, develop, and refine such an IoT, and no doubt much of the work 
needs to be done at the firmware and software level. The demand for the skill sets covered 
in this book will increase in the foreseeable future.

Technical Coverage in This Book
This book covers topics related to embedded firmware stacks and an important ingredient 
that enables them—Intel FSP. Since this book uses Intel Architecture as the centerpiece, 
we focus on how Intel FSP works and demonstrate how it can be integrated into popular 
firmware stacks; coreboot and EDK II examples are used in this book. We cover detailed 
information about each of these two firmware stacks, including the internals and how to 
work with them. The reader can pick and choose a particular subject and do a deep dive, 
or the reader can choose to learn both of the firmware stacks in a holistic way. If you are 
among the readers who are not using either the coreboot or the EDK II codebase, the 
same principles and practices also apply to your own firmware stack once you have a basic 
understanding.

This book does not cover the details of implementing specific features, such as 
power management, device enumeration, graphics, audio/video, and other non-chip 
related features. However, this book will touch upon the new Intel Quark family products 
and talk about their firmware stack and detailed firmware architecture. Even though the 
firmware strategies of some Intel products are not yet using FSP as the building block, you 
can compare and understand the differences and the rationale behind the decisions.

There are not many books out there talking about firmware because it is not a 
standard discipline that can be talked about generically. Every subject in the realm of 
firmware can be a book on its own, and there have been books about UEFI, BIOS, Fast 
Boot, and so forth, and many system requirements and constraints can dictate how a 
firmware is chosen and written; therefore, it is a topic that cannot be easily addressed 
holistically without an objective. Our objective is to show you how you can take 
advantage of Intel Architecture, and prepare a firmware stack for it regardless which 
firmware stack you choose. There might be areas that are not covered in great detail in 
this book, such as integrating Intel FSP into a RTOS codebase, but hopefully the same 
practices still apply.

The Future of Firmware
We have been witnessing an interesting phenomenon since the beginning of this century: 
open source projects are gaining momentum, led by companies such as Google and 
Facebook. Many legacy and proprietary software solutions are either disappearing or 
losing steam very quickly; open source solutions are becoming a primary interest of 
technologists at an amazing speed.

Even though this century is still young, we are riding on a fascinating wave that will 
make the 21st century a distinctly different century than any other. The phrase “open source” 
clearly connotes sharing and collaboration, in contrast to the waning business philosophy of 



Chapter 1 ■ Introduction

11

protecting intellectual properties so that “we can win as an individual company.” What has 
emerged is a new concept to tie business success to a collaborative ecosystem effort. Under 
this new model, everyone has a chance to thrive in the ecosystem because innovation is 
multiplied with the participation of many intelligent scientists, hobbyists, and engineers.

Will embedded firmware solutions be moving toward the same model that operating 
systems and computing systems are currently going through? Yes, we can tell that the open 
source model is impacting the firmware world in equal force in the last few years. Even 
some of the traditionally closed solutions are adapting themselves to the open source 
model as we write this book. For example, even though Tianocore was created as an open 
source project by Intel years ago, the community did not thrive due to lack of crucial 
components in the source tree. Until recently, many ARM developers have tapped into the 
Tianocore source code to make it workable with ARM designs. Intel has also ramped up 
its effort to provide an FSP component so that it can be successfully built for a platform in 
distribution.

However, due to its many unique characteristics, firmware is a source of intense 
debate because it is so tightly coupled with the hardware underneath, and hardware 
still has IP that companies want to protect. The questions for chip vendors will always 
be how much firmware can be benefited by the collaborative model, and how much 
firmware is so chip-specific that there is nothing that needs to be collaborated on? For 
example, if some of the chip code is fragile enough that only the designers can program 
it right, does it make a difference if the code is open or not? If it is open, does it do more 
harm than good? How about the code inside a boot ROM that is masked? Should that 
code be open as well? What about the firmware that is currently outside an SoC? Where 
is the boundary? What makes sense to be open and what does not? These questions may 
be rhetorical, but the binary distribution format will gradually move away from being a 
mechanism to hide features, and instead be a way to simplify its integration.

Putting these rhetorical questions aside for the moment, the open source model is 
a trend that all chip vendors, BIOS vendors, and software vendors will continue to adapt 
to. In the spirit of open source communities, the best of the best will emerge after all the 
debates, arguments, and brainstorming. This book was written with the aim to enable the 
open source community to thrive on its own and alongside proprietary solutions. It will 
undoubtedly fall short of some readers’ expectations, and it may disappoint a few hard-
core open source enthusiasts. However, it is still a step toward the right direction to make 
chip initialization a non-issue (or less of an issue) for open source communities.

We are all aware that the state of the art in chip engineering will continue to rapidly 
evolve. New methodologies will emerge to make firmware development easier and 
faster for the developers trying to bring innovative IoT devices to the world, and perhaps 
subsequent editions of this book will cover those developments. In the meantime, we 
welcome you to this discussion. Please read on.


	Chapter 1: Introduction
	What Is Embedded Firmware?
	Where Is Firmware?
	What Do Firmware Engineers Do?
	Firmware Preparation for New Hardware
	The Mystery of Bits
	Programming Guides
	The Intel® Firmware Support Package
	The Uniqueness of Embedded Firmware
	The Choice of Firmware Stacks
	Welcome to the Era of the Internet of Things
	Technical Coverage in This Book
	The Future of Firmware




