Skip to main content

The Radiobiological Significance of Spatial and Temporal Distribution of Energy Absorbed from Ionizing Radiations

  • Chapter
Physical and Chemical Mechanisms in Molecular Radiation Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 58))

  • 215 Accesses

Abstract

The cells of higher organisms respond in a non-linear fashion to the energy absorbed from ionizing radiation. However, there appears to be no indication of a dependence that is of a higher power than the square of the absorbed energy. This relatively simple alternative permits operational definitions of two types of injuries, termed lesions and sublesions, and a basic description in terms of dual radiation action. There are, however, various complicating factors and uncertainties. Further progress requires the development of a modified microdosimetry that incorporates energy transport, a more complete treatment of saturation and especially a specific identification of what is probably damage to DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DS 86. Radiation Effects Research Foundation,Hiroshima (1987).

    Google Scholar 

  2. L. J. Goodman and M. Pearlman. Depth Dose Studies at the ORNL DOSAR Facility. U.S. Atomic Energy Commission, Washington, DC (1966).

    Google Scholar 

  3. H. H. Rossi. Limitation and Assessment in Radiation Protection. L.S. Taylor Lecture No. 8, NCRP, Bethesda, Maryland (1984).

    Google Scholar 

  4. E. L. Lloyd, M. A. Gemmell, C. B. Henning, D. S. Gemmell and B. J. Zabransky. Cell Survival Following Multiple-Hack Alpha Particle Irradiation. Int. J. Radiat. Biol. 35: 23–31 (1979).

    Article  CAS  Google Scholar 

  5. R. P. Bird, N. Rohrig, R. C. Colvett, C. R. Geard and S. Marino. Inactivation of Synchronized Chinese Hamster V-79 Cells with Charged Particle Back Segments. Radiat. Res. 82: 277 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. E. A. Blakely, F. Q. Ngo, S. B. Curtis and C. A. Ibbias. Heavy-Ion Radiobiology: Cellular Studies. Adv. in Rad. Biol. 11: 295, Academic Press (1984).

    CAS  Google Scholar 

  7. H. H. Rossi. Microdosimetry and Radiobiology. Radiat. Prot. Dosim. 13 (1–4): 259–265 (1985).

    Google Scholar 

  8. E. L. Powers, J. T. Lyman and C. A. Tbbias. Some Effects of Accelerated Charged Particles on Bacterial Spores. Int. J. Radiat. Biol. 14: 313–330 (1968).

    Article  CAS  Google Scholar 

  9. G. W. Barendsen. Mechanism of Action of Different Ionizing Radiations on the Proliferative Capacity of Mammalian Cell. Theoretical and Experimental Biophysics 1: 167 (1967).

    Google Scholar 

  10. P. W. Tbdd. Reversible and Irreversible Effects of Ionizing Radiations on the Reproductive Integrity of Mammalian Cells Cultured In Vitro. Thesis, University of California, Lawrence, Rad. Lab., UCRL 11614, Berkeley, California (1964).

    Google Scholar 

  11. A. M. Kellerer and D. Chmelevsky. Concepts of Microdosimetry III. Rad. Environ. Biophys. 12: 321 (1975).

    Article  CAS  Google Scholar 

  12. H. H. Rossi and M. Zaider. Saturation in Dual Radiation Action, Quantitative Mathem. Models in Radiat. Biot, 111–118 Springer, New York (1987).

    Google Scholar 

  13. D. Chmelevsky. Distributions et Moyennes des Grandeurs Microdosimetriques A L’Echelle Du Nanometre - Methodes De Calcul Et Resultats, Thesis, U de Tbulouse, France (1976).

    Google Scholar 

  14. O. Hug and A. M. Kellerer. Stochastik der Strahlenwirkung, Springer, New York (1966).

    Book  Google Scholar 

  15. J. L. Bateman, H. H. Rossi, A. M. Kellerer, C. V. Robinson and V. P. Bond. Dose-Dependence of Fast Neutron RBE for Lens Opacification in Mice. Radiat. Res. 51: 381–390 (1972).

    Article  PubMed  CAS  Google Scholar 

  16. J. B. Storer, L. J. Serrano, E. B. Darden, Jr., M. C. Jerrigan and R. L. Ullrich. Life Shortening in RFM and Balb/c Mice as a Function of Radiation Quality. Dose and Dose Rate. Radiat. Res. 78: 122–161 (1979).

    Article  PubMed  CAS  Google Scholar 

  17. H. H. Smith, H. H. Rossi and A. M. Kellerer. Relation Between Mutation Yield and Cell Lethality Over a Wide Range of X-ray and Fission Neutrons in Maize, Biological Effects of Neutron Radiation, IAIA (1974).

    Google Scholar 

  18. A. M. Kellerer and H. H. Rossi. The Theory of Dual Radiation Action. Curr. Topics Radiat. Res. Q. 8: 85–158 (1972).

    CAS  Google Scholar 

  19. H. H. Rossi and A. M. Kellerer. Biological Implications of Microdosimetry: I, Témporal Aspects. In Proc. 4th Symp. on Microdosimetry, ed. J. Booz, pp. 315–326, EUR 5122. Verbania Pallanza, Italy, Commission of the European Communities, Brussels (1973).

    Google Scholar 

  20. A. M. Kellerer and H. H. Rossi. A Generalized Formulation of Dual Radiation Action. Radiat. Res. 75: 471–488 (1978).

    Article  Google Scholar 

  21. H. H. Rossi. Biophysical Studies with Spatially Correlated Ions, 1, Background and Theoretical Considerations. Radiat. Res. 78: 185–291 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. A. M. Kellerer, Y-M. P. Lam and H. H. Rossi. Biophysical Studies with Spatially Correlated Ions, 4, Analysis of Cell Survival Data for Diatomic Deuterium. Radiat. Res. 83: 511–528 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. M. Zaider and D. J. Brenner. The Application of Rack Calculations to Radiobiology, III Analysis of the Molecular Beam Experiment Results. Radiat. Res. 100: 213–221 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. D. T. Goodhead, J. Thacker and R. Cox. Effectiveness of 0.3 keV Carbon Ultrasoft X-rays for the Inactivation and Mutation of Cultured Mammalian Cells. Int. J. Radiat. Biol. 36: 101–114 (1979).

    Article  CAS  Google Scholar 

  25. D. J. Brenner and M. Zaider. Modification of the Theory of Dual Radiation Action for Attenuated Fields, II, Application to the Analysis of Soft X-ray Result. Radiat. Res. 99: 492–501 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. W. C. Roesch. Models of the Radiation Sensitivity of Mammalian Cells. In Proc. Third Symp. Neutron Dosimetry in Biology and Medicine, pp. 1–27. Commission of the European Communities, Brussels (1977).

    Google Scholar 

  27. K. H. Chadwick and H. P. Leenhouts. The Molecular Model for Cell Survival Following Radiation. In The Molecular Theory of Radiation Biology, pp. 25–50. Springer-Verlag, New York (1981).

    Chapter  Google Scholar 

  28. C. A. Tbbias. The Repair-Misrepair Model in Radiobiology: Comparison to Other Models. Radiat. Res. Suppl., 8:104, S-77 (1985).

    Google Scholar 

  29. S. B. Curtis. Lethal and Potentially Lethal Lesions Induced by Radiation - A Unified Repair Model. Radiat. Res. 106: 252 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. W. Sontag. A Cell Survival Model with Saturable Repair After Irradiation. Radiat. Environ. Biophys. 26: 63 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. D. Harder. Pairwise Lesion Interaction - Extension and Confirmation of Lea’s Model. In Proc. Eighth Int. Congr. Radiation Research, p. 318, Edinburgh. Taylor and Francis, New York (1987).

    Google Scholar 

  32. M. Zaider and H. H. Rossi. Indirect Effects in Dual Radiation Action. Radiat. Phys. Chem. 32: 143–148 (1988).

    CAS  Google Scholar 

  33. M. Zaider and H. H. Rossi. Saturation Effects for Sparsely Ionizing Particles. DOE Progress Report 10/1/79–9/30/80, Tèchnical Information Center, U.S. Department of Energy, Oak Ridge, Tènnessee (1980).

    Google Scholar 

  34. A. M. Kellerer, E. J. Hall, H. H. Rossi and P. Media. RBE as a Function of Neutron Energy II, Statistical Analysis. Radiat. Res. 65: 172–186 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. E. J. Hall, W. Gross, R. F. Dvorak, A. M. Kellerer and H. H. Rossi. Survival Curves and Age Response Functions for Chinese Hamster Cells Exposed to X-rays or High LET Alpha Particles. Radiat. Res. 52: 88–98 (1972).

    Article  PubMed  CAS  Google Scholar 

  36. H. H. Rossi and A. M. Kellerer. The Dost Rate Dependence of Oncogenic Tìansformation by Neutrons May Be Due to Variation of Response During the Cell Cycle. Int. J. Rad. Biol. 50 (2): 353–361 (1986).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Rossi, H.H. (1991). The Radiobiological Significance of Spatial and Temporal Distribution of Energy Absorbed from Ionizing Radiations. In: Glass, W.A., Varma, M.N. (eds) Physical and Chemical Mechanisms in Molecular Radiation Biology. Basic Life Sciences, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7627-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7627-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7629-3

  • Online ISBN: 978-1-4684-7627-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics