Skip to main content

Arylamine-Induced Hemolytic Anemia: Electron Spin Resonance Spectrometry Studies

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

A variety of arylamine derivatives (e.g. dapsone, primaquine) are known to produce hemolytic anemia in man and experimental animals. Extensive studies in the 1950’s and 60’s established that hemolytic drugs induced methemoglobinemia and loss of erythrocytic reduced glutathione (GSH), and that individuals deficient in erthrocytic glucose-6-phosphate dehydrog-enase displayed enhanced susceptibility to drug-induced hemolytic anemia (for review, see E. Beutler, 1969; E. Beutler, 1972). Since drugs such as primaquine were active in vivo but not in vitro, the concept arose that the drugs were metabolized in the liver to active/reactive metabolites which, on entry to the red cell, produced a state of “oxidative stress”. The resulting oxidative damage to critical sites within the red cell has been considered to lead to their “premature aging” and premature removal from the circulation by the spleen (A.R. Tarlov, et al., 1962; F.C. Gooden-Smith, et al., 1974; G. Cohen et al., 1964; A. Miller et al., 1970; R.W. Carrell, et al., 1975). The nature of the oxidant stress and the identity of the critical sites, however, are still unclear. Since the oxidation of hemoglobin to methemoglobin is known to be associated with the reduction of oxygen, much work has centered around the role of active oxygen species and free radicals as molecules capable of attacking cellular components (G. Cohen, et al., 1964; R.W. Carrell, et al., 1975; H.P. Misra et al., 1976; H.A. Itano, et al., 1977; B. Goldberg, et al., 1977). We have recently shown that phenylhydroxylamine (PHA) is a direct acting hemotoxin, capable of damaging the red blood cell during in vitro incubation such that, when readministered to isologous rats, the cells are rapidly sequestered by the spleen (J.H. Harrison, et al., 1986). This communication describes spin trap studies aimed at determination of whether or not free radical specie(s) are formed in the red cell in response to PHA, and if so, the identification of these specie(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beutler,E. (1969). Pharmacol. Reviews 21, 73.

    Google Scholar 

  • Beutler, E. (1972). In: The Metabolic Basis of Inherited Disease (J.B. Stanbury, J.B. Wyngaarden, and D.S. Fredrickson, eds.) McGraw Hill 3rd Edition, 1358–1388.

    Google Scholar 

  • Britigan, B.E., Cohen, M.S. and Rosen, G.M. (1987). J. Leuk. Biol. 41, 349.

    CAS  Google Scholar 

  • Buettner, G.R. (1987). Free Rad. Biol. Med. 3, 259.

    Article  CAS  PubMed  Google Scholar 

  • Buettner, G.R. (1989). In: Handbook of Methods for Oxygen Radical Research (R.A. Greenwald, ed.) CRC Press, Cleveland, Ohio.

    Google Scholar 

  • Carrell, R.W., Winterbourn, C.C., Rachmilewitz, E.A. (1975). Brit. J. Haematol. 30, 259.

    Article  CAS  Google Scholar 

  • Cohen, G. and Hochstein, P. (1964). Biochemistry 3, 895.

    Article  CAS  PubMed  Google Scholar 

  • Davies, M.J., forni, L.G. and Shuter, S.L. (1987). Chem.-Biol. Interactions 61, 177.

    Article  CAS  Google Scholar 

  • Goldberg, B. and Stern, A. (1977). Mol. Pharmacol. 13, 832.

    CAS  Google Scholar 

  • Gooden-Smith, F.C. and White, J.M. (1974). Brit. J. Haematol. 26, 573.

    Google Scholar 

  • Harrison, J.H. and Jollow, D.J. (1986). Pharmacol. Exp. Ther. 238, 1045.

    CAS  Google Scholar 

  • Harrison, J.H. and Jollow, D.J. (1986). Chromatogr. 277, 173.

    Google Scholar 

  • Itano, H.A., Hirota, K., and Vedvick, T.S. (1977). Proc. Nat. Acad. Sci. 74, 2556.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A. and Smith, H.C. (1970). Brit. J. Haematol. 19, 417.

    Article  Google Scholar 

  • Misra, H.P. and Fridovich, I. (1976). Biochemistry 15, 681.

    Article  CAS  PubMed  Google Scholar 

  • Ross, D., Norbeck, K. and Moldeus, P.J. (1985). Biol. Chem. 260, 15028.

    CAS  Google Scholar 

  • Tarlov, A.R., Brewer, G.J., Carson, P.E., and Alving, A.S. (1962). Arch. internal Med 109, 137.

    Article  Google Scholar 

  • Thornalley, P.J. and Bannister, J.V. (1989). In: Handbook of Methods for Oxygen Radical Research (R.A. Greenwald, ed.) CRC Press, Cleveland, Ohio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Bradshaw, T.P., McMillan, D.C., Crouch, R.K., Jollow, D.J. (1991). Arylamine-Induced Hemolytic Anemia: Electron Spin Resonance Spectrometry Studies. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics