Skip to main content

Molecular Targets of Chemical Mutagens

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

Most mutagens are biologically active by virtue of their chemical reactivity. The pioneering work of the Millers (reviewed in Miller and Miller, 1974, 1981) and others (Searle, 1984 and references therein) clearly established that most chemical mutagens (or their metabolites) are electrophilic and covalently bind to cellular macromolecules. Proteins were first identified as cellular targets (Miller, 1951), and it was soon recognized that RNA and DNA are also extensively damaged by mutagens (for reviews see: Searle, 1984; Miller and Miller, 1974). Theoretically, every cellular nucleophile is a potential target for damage by electrophilic mutagens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abersold, P. M. (1983). Mutation induction by 5-fluorodeoxyuridine in synchronous Chinese hamster cells. Cancer Res. 39, 808–810.

    Google Scholar 

  • Adams, R. L. P., Knowler, J. T., and Leader, D. P. (1986). The Biochemistry of the Nucleic Acids. Chapman and Hall, New York.

    Book  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1989). Molecular Biology of the Cell. Garland Publishing, Inc., New York.

    Google Scholar 

  • Arecco, A., Mun, B.-J., and Mathews, C. K. (1988). Deoxyribonucleotide pools as targets for mutagenesis by N-methyl-N-nitrosourea. Mutation Res. 200, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Arpaia, E., Ray, P. N., and Siminovitch, L. (1983). Isolations of mutants of CHO cells resistant to 6-(p-hydrophenylazo)-uracil, II. Mutants auxotrophic for deoxypyrimidines. Somat. Cell. Genet. 9, 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Ashman, C. R., and Davidson, R. L. (1981). Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance. Moil. Cell. Biol. 1, 254–260.

    CAS  Google Scholar 

  • Ayusawa, D., Iwata, K., and Seno, T. (1983). Unusual sensitivity to bleomycin and joint resistance to 9-p-D-arabinofuranosyladenine and 1–6-D-arabinofuranosylcytosine of mouse FM3A cell mutants with altered ribonucleotide reductase and thymidylate synthase. Cancer Res. 43, 814–818.

    CAS  PubMed  Google Scholar 

  • Baranowska, H., Zaborowska, D., and Zuk, J. (1987). Decreased u.v. mutagenesis in an excision-deficient mutant of yeast. Mutagenesis 2, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Basu, A. K., and Essigmann, J. M. (1988). Site-specifically modified oligodeoxynucleotides as probes for the structural and biological effects of DNA damaging agents. Chemical Research in Toxicology 1, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Basu, A. K., and Essigmann, J. M. (1990). Site-specifically alkylated oligodeoxynucleotides: Probes for mutagenesis, DNA repair and the structural effects of DNA damage. Mutation Res., in press.

    Google Scholar 

  • Bebenek, K., Abbotts, J., Roberts, J. D., Wilson, S. H., and Kunkel, T. A. (1989). Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J. Biol. Chem. 264, 16948–16956.

    CAS  PubMed  Google Scholar 

  • Beckman, R. A., Mildvan, A. S., and L.A., L. (1985). On the fidelity of DNA replication: Manganese mutagenesis in vitro. Biochemistry 24, 5810–5817.

    Article  CAS  PubMed  Google Scholar 

  • Bernad, A., Blanco, L., Lzaro, J. M., Martin, G., and Salas, M. (1989). A conserved 3’ → 5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59, 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Bhanot, O. S., and Ray, A. (1986). The in vivo mutagenic frequency and specificity of 06-methylguanine in 4)X174 replicative form DNA. Proc. Natl. Acad. Sci. USA 83, 7348–7352.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, D. K., Andersen, J., and Kolodner, R. D. (1989). Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc. Natl. Acad. Sci. USA 86, 3713–3717.

    Article  CAS  PubMed  Google Scholar 

  • Brigati, D. J., Myerson, D., Leary, J. J., Spalholz, B., Travis, S. Z., Fong, C. K. Y., Hsiung, G. D., and Ward, D. C. (1983). Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin-labeled hybridization probes. Virology 126, 32–50.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T. C., and Jiricny, J. (1987). A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell 50, 945–950.

    Article  CAS  PubMed  Google Scholar 

  • Busbee, D. L., Joe, C. O., Norman, J. O., and Rankin, P. W. (1984). Inhibition of DNA synthesis by an electrophilic metabolite of benzo[alpyrene. Proc. Natl. Acad. Sci. USA 81, 5300–5304.

    Article  CAS  PubMed  Google Scholar 

  • Byrnes, J. J., Downey, K. M., Que, B. G., Lee, M. Y. W., Black, V. L., and So, A. G. (1977). Selective inhibition of the 3’ to 5’ exonuclease activity associated with DNA polymerases: A mechanism of mutagenesis. Biochemistry 16, 3740–3746.

    Article  CAS  PubMed  Google Scholar 

  • Caras, I. W., Maclnnes, M. A., Persing, D. H., Coffino, P., and Martin Jr., D. W. (1982). Mechanism of 2-aminopurine mutagenesis in mouse T-lymphosarcoma cells. Moi. Cell. Biol. 2, 1096–1103.

    CAS  Google Scholar 

  • Carothers, A. M., Steigerwalt, R. W., Urlaub, G., Chasin, L. A., and Grunberger, D. (1989). DNA base changes and RNA levels in N-acetoxy-2-acetylaminofluoreneinduced dihydrofolate reductase mutants of Chinese hamster ovary cells. J. Mol. Biol. 208, 417–428.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, R. W., Sledziewska-Gojska, W., Hirani-Hojatti, S., and Borowy-Borowski, H. (1985). UVRA and recA mutations inhibit a site-specific transition produced by a single 06-methylguanine in gene G of bacteriophage 4X174. Proc. Natl. Acad. Sci. USA 82, 7173–7177.

    Article  CAS  PubMed  Google Scholar 

  • Chan, J. Y. H., and Becker, F. F. (1979). Decreased fidelity of DNA polymerase activity during N-2-fluorenylacetamide hepatocarcinogenesis. Proc. Nati. Acad. Sci. USA 76, 814–818.

    Article  CAS  Google Scholar 

  • Chan, J. Y. H., and Becker, F. F. (1981). Fidelity of DNA synthesis in vitro by carcinogen-reacted DNA polymerases and carcinogen modified templates. J. Supramol. Struc. Supp1. 5, 209.

    Google Scholar 

  • Cleaver, J. E. (1982). Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methansfulfonate. Cancer Res. 42, 860–863.

    CAS  PubMed  Google Scholar 

  • Correia, I. S., and Tyrrell, R. M. (1979). Lethal interaction between ultraviolet radiations and methyl methane sulfonate in repair proficient and repair deficient strains of Escherichia coliDD. Photochem. Photobiol. 29, 521–526.

    Article  CAS  PubMed  Google Scholar 

  • Cox, E. C. (1976). Bacterial mutator genes and the control of spontaneous mutation. Ann. Rev. Genet. 10, 135–156.

    Article  CAS  PubMed  Google Scholar 

  • Das, S. K., Benditt, E. P., and Loeb, L. A. (1983). Rapid changes in deoxynucleoside triphosphate pools in mammalian cells treated with mutagens. Biochem. Biophys. Res. Comm. 114, 458–464.

    Article  CAS  PubMed  Google Scholar 

  • Das, S. K., and Loeb, L. A. (1984). UV irradiation alters deoxynucleoside triphosphate pools in Escherichia coli. Mutation Res. 131, 97–100.

    CAS  Google Scholar 

  • Demple, B., Sedgwick, B., Robins, P., Totty, N., Waterfield, M. D., and Lindahl, T. (1985). Active site and complete sequence of the suicidal methyltransferase that counters alkylation mutagenesis. Proc. Natl. Acad. Sci. USA 82, 2688–2692.

    Article  CAS  Google Scholar 

  • Dolan, M. E., Morimoto, K., and Pegg, A. E. (1985). Reduction of 06-alkylguanineDNA alkyltransferase activity in HeLa cells treated with 06-alkylguanines. Cancer Res. 45, 6413–6417.

    CAS  PubMed  Google Scholar 

  • Doshi, R., and Preston, B. D. (1990). Effect of oxidative exonuclease damage on the fidelity of T7 DNA polymerase. Proc. Amer. Assoc. Cancer Res. 31, 100.

    Google Scholar 

  • Drake, J. W. (1969). Comparative rates of spontaneous mutation. Nature 221, 1132.

    Article  CAS  PubMed  Google Scholar 

  • Elledge, S. J., and Davis, R. W. (1987). Indentification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7, 2783–2793.

    CAS  PubMed  Google Scholar 

  • Fersht, A. R. (1979). Fidelity of replication of phage 4X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc. Natl. Acad. Sci. USA 76, 4946–4950.

    Article  CAS  PubMed  Google Scholar 

  • Friedberg, E. C. (1985). DNA Repair. W.H. Freeman and Company, New York.

    Google Scholar 

  • Fuchs, R. P. P., Schwartz, N., and Duane, M. P. (1981). Hot spots of frameshift mutations induced by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene. Nature 294, 657–659.

    Article  CAS  PubMed  Google Scholar 

  • Gentil, A., Margot, A., and Sarasin, A. (1984). Apurinic sites cause mutations in simian virus 40. Mutation Res. 129, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Gentil, A., Margot, A., and Sarasin, A. (1986). 2-(N-acetoxy-N-acethylamino)fluorene mutagenesis in mammalian cells: Sequence-specific hot spot. Proc. Natl. Acad. Sci. USA 83, 9556–9560.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, M. F. (1988). DNA replication fidelity: kinetics and thermodynamics. Mutation Res. 200, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Gruenert, D. C., and Cleaver, J. E. (1981). Repair of ultraviolet damage in human cells also exposed to agents that cause strand breaks, crosslinks, monoadducts and alkylations. Chem.-Biol. Interact. 33, 163–177.

    Article  CAS  PubMed  Google Scholar 

  • Haynes, R. H., and Kunz, B. A. (1988). Metaphysics of regulated deoxyribonucleotide biosynthesis. Mutation Res. 200, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Hibner, U., and Alberts, B. M. (1980). Fidelity of DNA replication catalysed in vitro on a natural DNA template by the T4 bacteriophage multi)enzyme complex. Nature 285, 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Hoar, D. I., and Dimnik, L. S. (1985). Induction of mitochondrial mutations in human cells by methotrexate. In Genetic Consequences of Nucleotide Pool Imbalance (F. J. de Serres, Ed.), pp. 265–282. Plenum Press, New York.

    Chapter  Google Scholar 

  • Hochauser, S. J., and Weiss, B. (1978). Escherichia coli mutants defective in deoxyuridine triphosphatase. J. Bacteriol. 134, 157–166.

    Google Scholar 

  • Hopkins, R. L., and Goodman, M. F. (1985). Ribonucleoside and deoxyribonucleoside triphosphate pools during 2-aminopurine mutagenesis in T4 mutator-, wild type-, and antimutator-infected Escherichia coli. J. Biol. Chem. 260, 6618–6622.

    CAS  Google Scholar 

  • Hyodo, M., Ito, N., and Suzuki, K. (1984). Deoxynucleoside triphosphate pool of mouse FM3A cell lines unaffected by mutagen treatment. Biochem. Biophys. Res. Commun. 122, 1160–1165.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Sanchez, A. (1976). The effect of nitrosoguanidine upon DNA synthesis in vitro. Molec. Gen. Genet. 145, 113–117.

    CAS  Google Scholar 

  • Karran, P. (1985). Possible depletion of a DNA repair enzyme in human lymphoma cells by subversive repair. Proc. Natl. Acad. Sci. 82, 5285–5289.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, E. R. (1986). Altered CTP synthetase activity confers resistance to 5- bromodeoxyuridine toxicity and mutagenesis. Mutation Res. 161, 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Kazmers, I. S., Mitchell, B. S., Dadonna, P. E., Wotring, L. L., Townsend, L. B., and Kelley, W. N. (1981). Inhibition of purine nucleoside phosphorylase by 8- aminoguanosine: Selective toxicity for T lymphoblasts. Science 214, 1137–1139.

    Article  CAS  PubMed  Google Scholar 

  • Klenow, H., and Overgaard-Hansen, K. (1981). Differential effects of N-carboxymethylisatoylation on the DNA polymerase activity, the 5’ 3’- exonuclease activity and the 3’→5’-exonuclease activity of DNA polymerase I of Escherichia coll. Biochim. Biophys. Acta 654, 187–193.

    CAS  Google Scholar 

  • Kornberg, A. (1980). DNA Replication. W.H. Freeman & Co., San Francisco.

    Google Scholar 

  • Kraemer, K. H., and Seidman, M. M. (1989). Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutation Res. 220, 61–72.

    CAS  PubMed  Google Scholar 

  • Kramer, B., Kramer, W., Williamson, M. S., and Fogel, S. (1989). Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Molec. Cell. Biol. 9, 4432–4440.

    CAS  PubMed  Google Scholar 

  • Kunkel, T. A. (1985). The mutational specificity of DNA polymerase-f3 during in vitro DNA synthesis. Production of frameshift base substitution, and deletion mutations. J. Biol. Chem. 260, 5787–5796.

    CAS  PubMed  Google Scholar 

  • Kunkel, T. A. (1988). Exonucleolytic proofreading. Cell 53, 837–840.

    Article  CAS  PubMed  Google Scholar 

  • Kunkel, T. A., and Bebenek, K. (1988). Recent studies of the fidelity of DNA synthesis. Biochem. Biophys. Acta 951, 1–15.

    CAS  PubMed  Google Scholar 

  • Kunkel, T. A., and Loeb, L. A. (1979). On the fidelity of DNA replication. Effect of divalent metal ion activators and deoxyribonucleoside triphosphate pools on in vitro mutagenesis. J. Biol. Chem. 254, 5718–5725.

    CAS  PubMed  Google Scholar 

  • Kunkel, T. A., Meyer, R. R., and Loeb, L. A. (1979). Single-strand binding protein enhances fidelity of DNA synthesis in vitro. Proc. Natl. Acad. Sci. USA 76, 6331–6335.

    Article  CAS  PubMed  Google Scholar 

  • Kunkel, T. A., Schaaper, R. M., Beckman, R. A., and Loeb, L. A. (1981). On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. J. Biol. Chem. 256, 9883–9889.

    CAS  PubMed  Google Scholar 

  • Kunkel, T. A., Silber, J. R., and Loeb, L. A. (1982). The mutagenic effect of deoxynucleotide substrate imbalances during DNA synthesis with mammalian DNA polymerases. Mutation Res. 94, 413–419.

    Article  CAS  PubMed  Google Scholar 

  • Kunz, B. A. (1982). Genetic effects of deoxyribonucleotide pool imbalances. Environ. Mutagenesis 4, 695–725.

    Article  CAS  Google Scholar 

  • Kunz, B. A. (1988). Mutagenesis and deoxyribonucleotide pool imbalance. Mutation Res. 200, 133–147.

    Article  CAS  PubMed  Google Scholar 

  • Kunz, B. A., Taylor, G. R., and Haynes, R. H. (1986). Intrachromosomal recombination is induced in yeast by inhibition of thymidylate biosynthesis. Genetics 114, 375–392.

    CAS  PubMed  Google Scholar 

  • Lahue, R. S., Au, K. G., and Modrich, P. (1989). DNA mismatch correction in a defined system. Science 245, 160–164.

    Article  CAS  PubMed  Google Scholar 

  • Langer, P. R., Waldrop, A. A., and Ward, D. C. (1981). Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637.

    Article  CAS  PubMed  Google Scholar 

  • Larson, K., Sahm, J., Shendar, R., and Strauss, B. (1985). Methylation-induced blocks to in vitro DNA replication. Mutation Res. 150, 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Lasken, R. S., and Goodman, M. F. (1984). The biochemical basis of 5-bromouracilinduced mutagenesis. J. Biol. Chem. 259, 11491–11495.

    CAS  PubMed  Google Scholar 

  • Lebkowski, J. S., Clancy, S., Miller, J. H., and Calos, M. P. (1985). The lacl shuttle: Rapid analysis of the mutagenic specificity of ultraviolet light in human cells. Proc. Natl. Acad. Sci. USA 82, 8606–8610.

    Article  CAS  PubMed  Google Scholar 

  • LeClerc, J. E., and Istock, N. L. (1982). Specificity of UV mutagenesis in the lac promoter of M131ac hybrid phage DNA. Nature 297, 596–598.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, T. (1982). DNA repair enzymes. Ann. Rev. Biochem. 51, 61–87.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, T., Demple, B., and Robins, P. (1982). Suicide inactivation of the E. coli 06methylguanine-DNA methyl transferase. EMBO J. 1, 1359–1363.

    CAS  PubMed  Google Scholar 

  • Loeb, L. A., James, E. A., Waltersdorph, A. M., and Klebanoff, S. J. (1988). Mutagenesis by the autoxidation of iron with isolated DNA. Proc. Natl. Acad. Sci. USA 85, 3918–3922.

    Article  CAS  PubMed  Google Scholar 

  • Loeb, L. A., and Kunkel, T. A. (1982). Fidelity of DNA synthesis. Ann. Rev. Biochem. 52, 429–457.

    Article  Google Scholar 

  • Loeb, L. A., and Reyland, M. E. (1987). Fidelity of DNA synthesis. In Nucleic Acids and Molecular Biology ( F. Eckstein and D. M. J. Lilley, Ed.), pp. 157–173. Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Loechler, E. L., Green, C. L., and Essigmann, J. M. (1984). In vivo mutagenesis by 06 methylguanine built into a unique site in a viral genome. Proc. Nati. Acad. Sci. USA 81, 6271–6275.

    Article  CAS  Google Scholar 

  • Loveless, A. (1969). Possible relevance of 0–6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicitity of nitrosoamines and nitrosamides. Nature 223, 206–207.

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratories, Cold Spring Harbor.

    Google Scholar 

  • Maus, K. L., McIntosh, E. M., and Haynes, R. H. (1984). Defective dCNP deaminase confers a mutator phenotype on Saccharomyces cerevisiae. Environ. Mutag. 6, 415.

    Google Scholar 

  • Mazur, M., and Glickman, B. W. (1988). Sequence specificity of mutations induced by benzo[a]pyrene-7.8-dio1–9,10-epoxide at endogenous aprt gene in CHO cells. Somatic Cell Molec. Gen. 14, 393–400.

    Article  CAS  Google Scholar 

  • McKenna, P. G., and Hickey, I. (1981). UV sensitivity in thymidine kinase deficient mouse erythroleukemia cells. Cell Biol. Int. Rep. 5, 555–561.

    Article  CAS  Google Scholar 

  • McKenna, P. G., and Yasseen, A. A. (1982). Increased sensitivity to cell killing and mutagenesis in thymidine kinase-deficient subclones of a Friend murine leukemia cell line. Genet. Res. 40, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • McKenna, P. G., Yasseen, A. A., and McKelvey, V. J. (1985). Evidence for direct involvement of thymidine kinase in excision repair processes in mouse cell lines. Somat. Cell Mol. Genet. 11, 239–246.

    Article  CAS  Google Scholar 

  • Meuth, M. (1983). Deoxycytidine kinase-deficient mutants of Chinese hamster ovary cells are hypersensitive to DNA alkylating agents. Mutation Res. 110, 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Meuth, M. (1989). The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp. Cell. Res. 181, 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Meuth, M., and Green, H. (1974). Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell 2, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Mhaskar, D. N., and Goodman, M. F. (1984). On the molecular basis of transition mutations. Frequency of forming 2-aminopurine-cytosine base mispairs in the G C → A.T mutational pathway by T4 DNA polymerase in vitro. J. Biol. Chem. 259, 11713–11717.

    CAS  PubMed  Google Scholar 

  • Mildvan, A. S., and Loeb, L. A. (1979). Role of metal ions in the mechanisms of DNA and RNA polymerases. Crit. Rev. Biochem. 6, 219–244.

    Article  CAS  Google Scholar 

  • Miller, E. C. (1951). Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res. 11, 100–108.

    CAS  PubMed  Google Scholar 

  • Miller, E. C., and Miller, J. A. (1974). Biochemical mechanisms of chemical carcinogenesis. In The Molecular Biology of Cancer ( H. Busch, Ed.), pp. 377–402. Academic Press, New York.

    Google Scholar 

  • Miller, E. C., and Miller, J. A. (1981). Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47, 2327–2345.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. H. (1983). Mutational specificity in bacteria. Ann. Rev. Genet. 17, 215–238.

    Article  CAS  PubMed  Google Scholar 

  • Miyaki, M., Suziki, K., Aihara, M., and Ono, T. (1983). Misincorporation in DNA synthesis after modification of template or polymerase by MNNG, MMS and UV radiation. Mutation Res. 107, 203–218.

    Article  CAS  PubMed  Google Scholar 

  • Moore, P. D., Rabkin, S. D., Osborn, A. L., King, C. M., and Strauss, B. S. (1982). Effect of acetylated and deacetylated 2-aminofluorene adducts on in vitro DNA synthesis. Proc. Natl. Acad. Sci. USA 79, 7166–7170.

    Article  CAS  PubMed  Google Scholar 

  • Newman, C. N., and Miller, J. H. (1983a). Kinetics of UV-induced changes in deoxynucleoside triphosphate pools in Chinese hamster ovary cells and their effect on measurements of DNA synthesis. Biochem. Biophys. Res. Commun. 116, 1064–1069.

    Article  CAS  PubMed  Google Scholar 

  • Newman, C. N., and Miller, J. H. (1983b). Mutagen-induced changes in cellular deoxycytidine triphosphate and thymidine triphosphate in Chinese hamster cells. Biochem. Biophys. Res. Commun. 114, 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Newman, C. N., and Miller, J. H. (1985). Mechanism of UV-induced deoxynucleoside triphosphate pool imbalance in CHO-Kl cells. Mutation Res. 145, 95–101.

    CAS  PubMed  Google Scholar 

  • Norman, J. O., Joe, C. O., and Busbee, D. L. (1986). Inhibition of DNA polymerase activity by methyl methanesulfonate. Mutation Res. 165, 71–79.

    CAS  PubMed  Google Scholar 

  • Önfelt, A., and Jenssen, D. (1982). Enhanced mutagenic response of MNU by post-treatment with methylmercury, caffeine or thymidine in V79 Chinese hamster cells. Mutation Res. 106, 297–303.

    Article  PubMed  Google Scholar 

  • Park, S. D., Choi, K. H., Hong, S. W., and Cleaver, J. E. (1981). Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methyl methanesulfonate. Mutation Res. 82, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, A. R., Dananberg, P. V., Ibric, L. L. V., and Peterson, H. (1985). Deoxyribonucleoside-induced selective modulation of cytotoxicity and mutagenesis. In Genetic Consequences of Nucleotide Pool Imbalance ( F. J. de Serres, Ed.), pp. 313–334. Plenum Press, New York.

    Chapter  Google Scholar 

  • Peterson, A. R., Peterson, H., and Danenberg, P. V. (1983). Induction of mutations by 5-fluorodeoxyuridine: a mechanism of self-potentiated drug resistance? Biochem. Biophys. Res. Commun. 110, 573–577.

    Article  CAS  PubMed  Google Scholar 

  • Phear, G., Nalbantoglu, J., and Meuth, M. (1987). Next-nucleotide effects in mutations driven by DNA precursor pool imbalances at the aprt locus of Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 84, 4450–4454.

    Article  CAS  Google Scholar 

  • Prakash, L., Hinkle, D., and Prakash, S. (1978). Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Mol. Gen. Genet. 172, 249–258.

    Article  Google Scholar 

  • Preston, B. D., and Loeb, L. A. (1988). Enzymatic synthesis of site-specifically modified DNA. Mutation Res. 200, 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Preston, B. D., Poiesz, B. J., and Loeb, L. A. (1988a). Fidelity of HIV-1 reverse transcriptase. Science 242, 1168–1171.

    Article  CAS  PubMed  Google Scholar 

  • Preston, B. D., Singer, B., and Loeb, L. A. (1986). Mutagenic potential of 04- methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc. Natl. Acad. Sci. USA 83, 8501–8505.

    Article  CAS  PubMed  Google Scholar 

  • Preston, B. D., Singer, B., and Loeb, L. A. (1987). Comparison of the relative mutagenecities of 0-alkylthymines site-specifically incorporated into 4)X174 DNA. J. Biol. Chem. 262, 13821–13827.

    CAS  PubMed  Google Scholar 

  • Preston, B. D., Wu, D., Reid, T. M., King, C. M., and Loeb, L. A. (1988b). Site-specific incorporation of 2-aminofluorene (AF)- and N-acety1–2-aminofluorene (AAF)- deoxyguanosine triphosphate adducts by DNA polymerases. J. Cell. Biochem. 12A, 348.

    Google Scholar 

  • Preston, B. D., Zakour, R. A., Singer, B., and Loeb, L. A. (1988c). Fidelity of base selection by DNA polymerases: Studies on site-specific incorporation of base analogues. In DNA Replication and Mutagenesis ( R. E. Moses, and W. C. Summers, Eds.), pp. 196–207. American Society of Microbiology, Washington, D.C.

    Google Scholar 

  • Protic-Sabljic, M., Tuteja, N., Munson, P. J., Hauser, J., Kraimer, K. H., and Dixon, K. (1986). UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells. Molec. Cell. Biol. 6, 3349–3356.

    CAS  PubMed  Google Scholar 

  • Radman, M., and Wagner, R. (1986). Mismatch repair in Escherichia coli. Ann. Rev. Genet. 20, 523–538.

    Article  CAS  PubMed  Google Scholar 

  • Randazzo, R., Di Leonardo, A., Bonatti, S., and Abbondandolo, A. (1987). Modulation of induced reversion frequency by nucleotide pool imbalance as a tool for mutant characterization. Environ. Mol. Mutagen. 10, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Ann. Rev. Biochem. 57, 349–374.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, J. D., and Kunkel, T. A. (1986). Mutational specificity of animal cell DNA polymerases. Environ. Mutagen. 8, 769–789.

    Article  CAS  PubMed  Google Scholar 

  • Roguska, M. A., and Gudas, L. J. (1984). Mutator phenotype in a mutant of S49 mouse T-lymphoma cells with abnormal sensitivity to thymidine. J. Biol. Chem. 259, 3782–3790.

    CAS  PubMed  Google Scholar 

  • Saffhill, R. (1974). The effect of ionising radiation and chemical methylation upon the activity and accuracy of E. coli DNA polymerase I. Biochem. Biophys. Res. Commun. 61, 802–808.

    Article  CAS  PubMed  Google Scholar 

  • Salazar, I., Tarrago-Litvak, L., Litvak, S., and Gil, L. (1985). Effect of benzo(a)pyrene on DNA synthesis and DNA polymerase activity of rat liver nuclei. Biochem. Pharmacol. 34, 755–762.

    Article  CAS  PubMed  Google Scholar 

  • Sargent, R. G., and Mathews, C. K. (1987). Imbalanced deoxyribonucleoside triphosphate pools and spontaneous mutation rates determined during dCMP deaminase-defective bacteriophage T4 infections. J. Biol. Chem. 262, 5546–5553.

    CAS  PubMed  Google Scholar 

  • Schaaper, R. M. (1988). Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: Role of DNA mismatch repair. Proc. Nati. Acad. Sci. USA 85, 8126–8130.

    Article  CAS  Google Scholar 

  • Schaaper, R. M., and Dunn, R. L. (1987). Spectra of spontaneous mutations in Escheichia coli strains defective in mismatch correction: The nature of in vivo DNA replication errors. Proc. Natl. Acad. Sci. USA 84, 6220–6224.

    Article  CAS  PubMed  Google Scholar 

  • Sedwick, W. D., Brown, O. E., and Glickman, B. W. (1986). Deoxyuridine misincorporation causes site-specific mutational lesions in the lact gene of Escherichia coli. Mutation Res. 162, 7–20.

    CAS  Google Scholar 

  • Seidman, M. M., Dixon, D., Razzaque, A., Zagursky, R. J., and Berman, M. L. (1985). A shuttle vector plasmid for studying carcinogen-induced point mutations in mammalian cells. Gene 38, 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Shewach, D. S., Chern, J.-W., Pillote, K. E., Townsend, L. B., and Dadonna, P. E. (1986). Potentiation of 2’-deoxyguanosine cytotoxicity by a novel inhibitor of purine nucleoside phosphorylase, 8-amino-9-benzylguanine. Cancer Res. 46, 519–523.

    CAS  PubMed  Google Scholar 

  • Singer, B., and Grunberger, D. (1983). Molecular Biology of Mutagens and Carcinogens. Plenum Press, New York.

    Book  Google Scholar 

  • Singer, B., Spengler, S. J., Chavez, F., Sagi, J., Ku’smierek, J. T., Preston, B. D., and Loeb, L. A. (1987). O-Alkyl deoxythymidines are recognized by DNA polymerase I as deoxythymidine or deoxycytidine. In N-Nltroso Compounds: Occurrence, Biological Effects and Relevance to Human Cancer ( J. K. O’Neill et al., Eds.), pp. 37–41. Oxford University Press, Oxford.

    Google Scholar 

  • Sirover, M. A., Dube, D. K., and Loeb, L. A. (1979). On the fidelity of DNA replication. Metal activation of Escherichia coli DNA polymerase I. J. Biol. Chem. 254, 107–111.

    CAS  PubMed  Google Scholar 

  • Sirover, M. A., and Loeb, L. A. (1976a). Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 194, 1434–1436.

    Article  CAS  PubMed  Google Scholar 

  • Sirover, M. A., and Loeb, L. A. (1976b). Metal activation of DNA synthesis. Biochem. Biophys. Res. Commun. 70, 812–817.

    Article  CAS  Google Scholar 

  • Sirover, M. A., and Loeb, L. A. (1976c). Metal-induced infidelity during DNA synthesis. Proc. Nati. Acad. Sci. USA 73, 2331–2335.

    Article  CAS  Google Scholar 

  • Snow, E. T., and Mitra, S. (1987). Do carcinogen-modified deoxynucleotide precursors contribute to cellular mutagenesis? Cancer Investigation 5, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Snow, E. T., and Mitra, S. (1988). Role of carcinogen-modified deoxynucleotide precursors in mutagenesis. Mutation Res. 200, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K., Miyaki, M., Ono, T., Mori, H., Moriya, H., and Kato, T. (1983). UV-induced imbalance of the deoxynucleoside triphosphate pool in E. coli. Mutation Res. 122, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Tabor, S., and Richardson, C. C. (1987). Selective oxidation of the exonuclease domain of bacteriophage T7 DNA polymerase. J. Biol. Chem. 262, 15330–15333.

    CAS  PubMed  Google Scholar 

  • Tabor, S., and Richardson, C. C. (1989). Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J. Biol. Chem. 264, 6447–6458.

    CAS  PubMed  Google Scholar 

  • Topal, M. D., and Baker, M. S. (1982). DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells. Proc. Natl. Acad. Sci. USA 79, 2211–2215.

    Article  CAS  PubMed  Google Scholar 

  • Trudel, M., Van Genechten, T., and Meuth, M. (1984). Biochemical characterization of the hamster thy mutator gene and its revertants. J. Biol. Chem. 259, 2355–2359.

    CAS  PubMed  Google Scholar 

  • Vrieling, H., Van Rooijen, M. L., Groen, N. A., Zdzienicka, M. Z., Simons, J. W. I. M., Lohman, P. H. M., and van Zeeland, A. A. (1989). DNA strand specificity for UV-induced mutations in mammalian cells. Mot. Cell. Biol. 9, 1277–1283.

    CAS  Google Scholar 

  • Wabl, M., Burrows, P. D., von Gabain, A., and Steinberg, C. (1985). Hypermutation at the immunoglobulin heavy chain locus in a pre-B-cell line. Proc. Natl. Acad. Sci. USA 82, 479–482.

    Article  CAS  PubMed  Google Scholar 

  • Wahl, A. F., Geis, A. M., Spain, B. H., Wong, S. W., Korn, D., and Wang, T. S.-F. (1988). Gene expression of human DNA polymerase a during cell proliferation and the cell cycle. Mol. Cell. Biol. 8, 5016–5025.

    CAS  PubMed  Google Scholar 

  • Walker, G. C. (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60–93.

    CAS  PubMed  Google Scholar 

  • Weinberg, G., Ullman, B., and Martin Jr., D. W. (1981). Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc. Natl. Acad. Sci. USA 78, 2447–2451.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg, G. L., Ullman, B., Wright, C. M., and Martin Jr., D. W. (1985). The effects of exogenous thymidine on endogenous deoxynucleotides and mutagenesis in mammalian cells. Somat. Cell. Mol. Genet. 11, 413–419.

    Article  CAS  PubMed  Google Scholar 

  • Williams, W. E., and Drake, J. W. (1977). Mutator mutations in bacteriophage T4 gene 42 (dHMC hydroxymethylase). Genetics 86, 501–511.

    CAS  PubMed  Google Scholar 

  • Witkin, E. M. (1976). Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40, 869–907.

    CAS  Google Scholar 

  • Wojciechowski, M. F., and Meehan, T. (1984). Inhibition of DNA methyltransferases in vitro by benzo(a)pyrene diol epoxide-modified substrates. J. Biol. Chem. 259, 9711–9716.

    CAS  PubMed  Google Scholar 

  • Wong, S. W., Wahl, A. F., Yuan, P.-M., Arai, N., Pearson, B. E., Arai, K.-I., Korn, D., Hunkapiller, M. W., and Wang, T. S.-F. (1988). Human DNA polymerase a gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 7, 37–47.

    CAS  PubMed  Google Scholar 

  • Wurtz, E. A., Sears, B. B., Rabert, D. K., Shepard, H. S., Gillham, N. W., and Boynton, J. E. (1979). A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-flurodeoxyuridine. Mol. Gen. Genet. 170, 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J.-L., Maher, V. M., and McCormick, J. J. (1987). Kinds of mutations formed when a shuttle vector containing adducts of (±)-70,8a-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenz[alpyrene replicates in human cells. Proc. natl. Acad. Sci. USA 84, 3787–3791.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. L., Maher, V. M., and McClormick, J. J. (1988). Kinds and spectrum of mutations induced by 1-nitrosopyrene adducts during plasmid replication in human cells. Molec. Cell. Biol. 8, 3364–3372.

    CAS  PubMed  Google Scholar 

  • Yarosh, D. B., Hurst-Calderone, S., Babich, M. A., and Day, R. S. I. (1986). Inactivation of 06-methylguanine-DNA methyltransferase and sensitization of human tumor cells to killing by chloroethylnitrosourea by 06-methylguanine as a free base. Cancer Res. 46, 1663–1668.

    CAS  PubMed  Google Scholar 

  • Zakour, R. A., and Loeb, L. A. (1982). Site-specific mutagenesis by error-directed DNA synthesis. Nature 295, 708–710.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Preston, B.D., Doshi, R. (1991). Molecular Targets of Chemical Mutagens. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics