Skip to main content

The Role of Hydrogen Peroxide as a Signaling Molecule

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

Summary

Hydrogen peroxide is conventionally regarded as a molecule that is generated in disease conditions and is responsible for inducing significant functional and structural derangement. However, it is becoming increasingly evident that H202 is also expressed in normal healthy tissue and functions as an important signaling molecule. It is involved in complex transcriptional processes that ultimately play a role in inducing cell proliferation or apoptosis. Indeed, it is this unusual dual capacity to serve as a signaling molecule in both promoting and inhibiting cell growth that makes it a particularly interesting focal point for regulatory processes. Ultimately, this results in hydrogen peroxide having an important clinical significance to affect the direction of signaling pathways that will be beneficial or deleterious to the tissue. This paper reviews the present state of our knowledge regarding hydrogen peroxide as a signaling molecule in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. 2000. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vase Biol 20:2175–2183.

    Article  CAS  Google Scholar 

  2. Cheeseman KH, Slater TF. 1993. An introduction to free radical biochemistry. Br Med Bull 49:481–493.

    PubMed  CAS  Google Scholar 

  3. Rubanyi GM. 1988. Vascular effects of oxygen-derived free radicals. Free Radic Biol Med 4:107–120.

    Article  PubMed  CAS  Google Scholar 

  4. Barnard ML, Matalon S. 1992. Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature. J Appl Physiol 72:1724–1729.

    PubMed  CAS  Google Scholar 

  5. Sies H. 1991. Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S.

    Article  PubMed  CAS  Google Scholar 

  6. Halliwell B, Gutteridge JMC. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85.

    Article  PubMed  CAS  Google Scholar 

  7. Boveris A 1977. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78:67–82.

    Article  PubMed  CAS  Google Scholar 

  8. Kehrer JP. 1993. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48.

    Article  PubMed  CAS  Google Scholar 

  9. Griendling KK, Harrison DG. 1999. Dual role of reactive oxygen species in vascular growth. Circ Res 85:562–563.

    Article  PubMed  CAS  Google Scholar 

  10. McCord JM, Fridovich I. 1968. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760.

    PubMed  CAS  Google Scholar 

  11. Zafari AM, Ushio-Fukai M, Akers M,Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK. 1998. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32:488–495.

    Article  PubMed  CAS  Google Scholar 

  12. Babior BM. 1978. Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298:659–668.

    Article  PubMed  CAS  Google Scholar 

  13. Bast A., Haenen GRMM, Doelman CJA. 1991. Oxidants and antioxidants: State of the art. Am J Med 91:2S–13S.

    Article  PubMed  CAS  Google Scholar 

  14. Burton KP, McCord JM, Ghai G. 1984. Myocardial alterations due to free-radical generation. Am J Physiol 246:H776-H783.

    PubMed  CAS  Google Scholar 

  15. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. 1993. Free radicals and the heart. J Pharmacol Toxicol Meth 30:55–67.

    Article  CAS  Google Scholar 

  16. Kloner RA, Przyklenk K, Whittaker P. 1989. Deleterious effects of oxygen radicals in ischemia/reperfusion: Resolved and unresolved issues. Circulation 80:1115–1127.

    Article  PubMed  CAS  Google Scholar 

  17. Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB. 1997. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583.

    Article  Google Scholar 

  18. Fullerton HJ, Ditelberg JS, Chen SF, Sarco DP, Chan PH, Epstein CJ, Ferriero DM. 1998. Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 44:357–364.

    Article  PubMed  CAS  Google Scholar 

  19. Hyslop PA, Zhang Z, Pearson DV, Phebus LA. 1995. Measurement of striatal H2O2 by microdialysis following forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res 671:181–186.

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe S 1998. In vivo fluorometric measurement of cerebral oxidative stress using 2′-7′-dichlorofluorescein (DCF). Keio J Med 47:92–98.

    Article  PubMed  CAS  Google Scholar 

  21. Baker K, Marcus CB, Huffinan K, Kruk H, Malfroy B, Doctrow SR. 1998. Synthetic combined Superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol ExpTher 284:215–221.

    CAS  Google Scholar 

  22. Woo YJ, Zhang JC, Vijayasarathy C, Zwacka RM, Englehardt JF, Gardner TJ, Sweeney HL. 1998. Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation 98:II255-II260.

    PubMed  CAS  Google Scholar 

  23. Yabe Y, Koyama Y, Nishikawa M, Takakura Y, Hashida M. 1999. Hepatocyte-specific distribution of catalase and its inhibitory effect on hepatic ischemia/reperfusion injury in mice. Free Radic Res 30:265–274.

    Article  PubMed  CAS  Google Scholar 

  24. Yabe Y, Nishikawa M, Tamada A, Takakura Y, Hashida M. 1999. Targeted delivery and improved therapeutic potential of catalase by chemical modification: combination with superoxide dismutase derivatives. J Pharmacol Exp Ther 289:1176–1184.

    PubMed  CAS  Google Scholar 

  25. Morel DW, DiCorleto PE, Chisolm GM. 1984. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 4:357–364.

    Article  PubMed  CAS  Google Scholar 

  26. Parthasarathy S, Printz DJ, Boyd D,Joy L, Steinberg D. 1986. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis 6:505–510.

    Article  PubMed  CAS  Google Scholar 

  27. Sanderson J, McLauchlan WR, Williamson G. 1999. Quercetin inhibits hydrogen peroxide-induced oxidation of the rat lens. Free Radic Biol Med 26:639–645.

    Article  PubMed  CAS  Google Scholar 

  28. Bragt PC, Bonta I.L. 1980. Oxidant stress during inflammation: anti-inflammatory effects of antioxidants. Agents Actions 10:536–539.

    Article  PubMed  CAS  Google Scholar 

  29. Shimada T, Watanabe N, Hirashi H,Terano A. 1999. Redox regulation of interleukin-8 expression in MKN28 cells. Dig Dis Sci 44:266–273.

    Article  PubMed  CAS  Google Scholar 

  30. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA,Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI. 1999. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116.

    Article  PubMed  CAS  Google Scholar 

  31. Brown MR, Miller FJJ, Li W-G, Ellingson AN, Mozena JD, Chatterjee P, Engelhardt JF, Zwacka RM, Oberley LW, Fang X, Spector AA, Weintraub NL. 1999. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 85:524–533.

    Article  PubMed  CAS  Google Scholar 

  32. Herbert JM, Bono F, Savi P. 1996. The mitogenic effect of H2O2 for vascular smooth muscle cells is mediated by an increase of the affinity of basic fibroblast growth factor for its receptor. FEBS Lett 395:43-47.

    Article  PubMed  CAS  Google Scholar 

  33. Rao GN, Berk BC. 1992. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70:593–599.

    Article  PubMed  CAS  Google Scholar 

  34. Cantoni O, Boscoboinik D, Fiorani M, Staüble B, Azzi A. 1996. The phosphorylation state of MAP-kinases modulates the cytotoxic response of smooth muscle cells to hydrogen peroxide. FEBS Lett 389:285–288.

    Article  PubMed  CAS  Google Scholar 

  35. Fiorani M, Cantoni O, Tasinato A, Boscoboinik D, Azzi A. 1995. Hydrogen peroxide- and fetal bovine serum-induced DNA synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms. Biochim Biophys Acta 1269:98–104.

    Article  PubMed  Google Scholar 

  36. Li P-F, Dietz R, von Harsdorf R. 1997. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation 96:3602–3609.

    Article  PubMed  CAS  Google Scholar 

  37. Finkel T. 1998. Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253.

    Article  PubMed  CAS  Google Scholar 

  38. Mohazzab HK-M, Agarwal R, Wohn MS. 1999. Influence of glutathione peroxidase on coronary artery responses to alterations in PO2 and H2O2. Am J Physiol 276:H235-H241.

    Google Scholar 

  39. Wblin MS, Davidson CA, Kaminski PM, Fayngersh RP, Mohazzab HK-M. 1998. Oxidant-nitric oxide signaling mechanisms in vascular tissue. Biochemistry-Mosc 63:810–816.

    Google Scholar 

  40. Ushio-Fukai M, Alexander RW, Akers M,Yin Q, FujioY, Walsh K, Griendling KK. 1999. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704.

    Article  PubMed  CAS  Google Scholar 

  41. Du J, Peng T, Scheidegger KJ, Delafontaine P. 1999. Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism. Arterioscler Thromb Vase Biol 19:2119–2126.

    Article  CAS  Google Scholar 

  42. Nickenig G, Strehlow K, Baumer AT, Baudler S, Wabetamann S, Sauer H, Bohm M. 2000. Negative feedback regulation of reactive oxygen species on ATI receptor gene expression. Br J Pharmacol 131:795–803.

    Article  PubMed  CAS  Google Scholar 

  43. Sundaresan M,Yu Z-X, FerransVJ, Irani K, Finkel T. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299.

    Article  PubMed  CAS  Google Scholar 

  44. Junn E, Lee KN, Ju HR, Han SH, Im JY, Kang HS, Lee TH, Bae YS, Ha KS, Lee ZW, Rhee SG, Choi I. 2000. Requirement of hydrogen peroxide generation in TGF-beta 1 signal transduction in human lung fibroblast cells: involvement of hydrogen peroxide and Ca2+ in TGF-beta 1-induced IL-6 expression. J Immunol 165:2190–2197.

    PubMed  CAS  Google Scholar 

  45. Kamata H, Shibukawa Y, Oka SI, Hirata H. 2000. Epidermal growth factor receptor is modulated by redox through multiple mechanisms. Effects of reductants and H2O2. Eur J Biochem 267:1933–1944.

    Article  PubMed  CAS  Google Scholar 

  46. Frank GD, Eguchi S,Yamakawa T,Tanaka S, Inagami T, Motley ED. 2000. Involvement of reactive oxygen species in the activation of tyrosine kinase and extracellular signal-regulated kinase by angiotensin II. Endocrinology 141:3120–3126.

    Article  PubMed  CAS  Google Scholar 

  47. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. 1996. Activation of mitogen-activated protein kinase by H2O2. J Biol Chem 271:4138–4142.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang J, Jin N, Liu Y, Rhoades RA. 1998. Hydrogen peroxide stimulates extracellular signal-regulated protein kinases in pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol 19:324–332.

    PubMed  CAS  Google Scholar 

  49. Bogoyevitch MA, Ng DC, Court NW, Draper KA, Dhillon A, Abas L. 2000. Intact mitochondrial electron transport function is essential for signaling by hydrogen peroxide in cardiac myocytes. J Mol Cell Cardiol 32:1469–1480.

    Article  PubMed  CAS  Google Scholar 

  50. Clerk A, Michael A, Sugden PH. 1998. Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J 333:581–589.

    PubMed  CAS  Google Scholar 

  51. Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA. 1998. Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res 82:1053–1062.

    Article  PubMed  CAS  Google Scholar 

  52. Abe MK, Chao T-SO, Solway J, Rosner MR, Hershenson MB. 1994. Hydrogen peroxide stimulates mitogen-activated protein kinase in bovine tracheal myocytes: implications for human airway disease. Am J Respir Cell Mol Biol 11:577–585.

    PubMed  CAS  Google Scholar 

  53. Abe J, Okuda M, Huang Q, Yoshizumi M, Berk BC. 2000. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 275:1739–1748.

    Article  PubMed  CAS  Google Scholar 

  54. Lo YYC, Wong JMS, Cruz TF. 1996. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 271:15703–15707.

    Article  PubMed  CAS  Google Scholar 

  55. Ogura M, Kitamura M. 1998. Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. J Immunol 161:3569–3574.

    PubMed  CAS  Google Scholar 

  56. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. 1998. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029.

    Article  PubMed  CAS  Google Scholar 

  57. Barlow RS, El-Mowafy AM, White RE. 2000. H2O2 opens BKCa channels via the PLA2-arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol 279:H475-H483.

    CAS  Google Scholar 

  58. Hecht D, Zick Y. 1992. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun 188:773–779.

    Article  PubMed  CAS  Google Scholar 

  59. Denu JM, Tanner KG. 1998. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642.

    Article  PubMed  CAS  Google Scholar 

  60. Schreck R, Rieber P, Baeuerle PA. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258.

    PubMed  CAS  Google Scholar 

  61. Foo SY, Nolan GP. 1999. NF- κB to the rescue: RELs, apoptosis and cellular transformation. Trends Genet 15:229–235.

    Article  PubMed  CAS  Google Scholar 

  62. Schmidt KN, Amstad P, Cerutti P, Baeuerle PA. 1996. Identification of hydrogen peroxide as the relevant messenger in the activation pathway of transcription factor NF-kappaB. Adv Exp Med Biol 387:63–68.

    PubMed  CAS  Google Scholar 

  63. Perona R, Montaner S, Saniger L, Sanchez PI, Bravo R, Lacal JC. 1997. Activation of the nuclear factor- κB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11:463–475.

    Article  PubMed  CAS  Google Scholar 

  64. Sulciner DJ, Irani K,Yu ZX, Ferrans VJ, Goldschmidt-Clermont PJ, Finkel T. 1996. racl regulates a cytokine-stimulated, redox-dependent pathway necessary for NF- κB activation. Mol Cell Biol 16:7115–7121.

    PubMed  CAS  Google Scholar 

  65. Carballo M, Marquez G, Conde M, Martin-Nieto J, Monteseirin J, Conde J, Pintado E, Sobrino F. 1999. Characterization of calcineurin in human neutrophils. Inhibitory effect of hydrogen peroxide on its enzymatic activity and on NF-kappaB DNA binding. J Biol Chem 274:93–100.

    Article  PubMed  CAS  Google Scholar 

  66. Lakshminarayanan V, Drab-Weiss EA, Roebuck KA. 1998. H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J Biol Chem 273:32670–32678.

    Article  PubMed  CAS  Google Scholar 

  67. Salminen A, Liu PK, Hsu CY. 1995. Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 212:939–944.

    Article  PubMed  CAS  Google Scholar 

  68. Jin N, Hatton ND, Harrington MA, Xia X, Larsen SH, Rhoades RA. 2000. H2O2-induced egr-1, fra-1, and c-jun gene expression is mediated by tyrosine kinase in aortic smooth muscle cells. Free Radic Biol Med 29:736–746.

    Article  PubMed  CAS  Google Scholar 

  69. Sun Y, Oberley LW. 1996. Redox regulation of transcriptional activators. Free Radic Biol Med 21:335–348.

    Article  PubMed  CAS  Google Scholar 

  70. Shimizu N, Yoshiyama M, Omura T, Hanatani A, Kim S, Takeuchi K, Iwao H, Yoshikawa J. 1998. Activation of mitogen-activated protein kinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res 38:116–124.

    Article  PubMed  CAS  Google Scholar 

  71. Staüble B, Boscoboinik D,Tasinato A, Azzi A. 1994. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-a-tocopherol in vascular smooth muscle cells. Eur J Biochem 226:393–402.

    Article  PubMed  Google Scholar 

  72. Cimino F, Esposito F, Ammendola R, Russo T. 1997. Gene regulation by reactive oxygen species. Curr Top Cell Regul 35:123–148.

    Article  PubMed  CAS  Google Scholar 

  73. Czubryt MP, Austria JA, Pierce GN. 2000. Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2. J Cell Biol 148:7–15.

    Article  PubMed  CAS  Google Scholar 

  74. Rao GN. 1996. Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene 13:713–719.

    PubMed  CAS  Google Scholar 

  75. Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, Ballinger CA, Brasier AR, Bode C, Runge MS. 1999. Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 274:19814–19822.

    Article  PubMed  CAS  Google Scholar 

  76. Lu G, Greene EL, Nagai T, Egan BM. 1998. Reactive oxygen species are critical in the oleic acidmediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension 32:1003–1010.

    Article  PubMed  CAS  Google Scholar 

  77. Nishio E, Watanabe Y 1997. The involvement of reactive oxygen species and arachidonic acid in alpha 1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br J Pharmacol 121:665–670.

    Article  PubMed  CAS  Google Scholar 

  78. Li PF, Maasch C, Haller H, Dietz R, von Harsdorf R. 1999. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation 100:967–973.

    Article  PubMed  CAS  Google Scholar 

  79. Taher MM, Mahgoub MA, Abd-Elfattah AS. 1998. Redox regulation of signal transduction in smooth muscle cells: distinct effects of PKC down regulation and PKC inhibitors on oxidant induced MAP kinase. J Recept Signal Transduct Res 18:167–185.

    Article  PubMed  CAS  Google Scholar 

  80. Abe MK, Kartha S, Karpova AY, Li J, Liu PT, Kuo WL, Hershenson MB. 1998. Hydrogen peroxide activates extracellular signal-regulated kinase via protein kinase C, Raf-1, and MEK1. Am J Respir Cell Mol Biol 18:562–569.

    PubMed  CAS  Google Scholar 

  81. Vogt M, Bauer MK, Ferrari D, Schulze-Osthoff K. 1998. Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett 429:67–72.

    Article  PubMed  CAS  Google Scholar 

  82. Furuke K, Shiraishi M, Mostowski HS, Bloom ET. 1999. Fas ligand induction in human NK cells is regulated by redox through a calcineurin-nuclear factors of activated T cell-dependent pathway. J Immunol 162:1988–1993.

    PubMed  CAS  Google Scholar 

  83. Rimpler MM, Rauen U, Schmidt T, Moroy T, de Groot H. 1999. Protection against hydrogen peroxide cytotoxicity in rat-1 fibroblasts provided by the oncoprotein Bcl-2: maintenance of calcium homeostasis is secondary to the effect of Bcl-2 on cellular glutathione. Biochem J 340:291–297.

    Article  PubMed  CAS  Google Scholar 

  84. Ellerby LM, Ellerby HM, Park SM, Holleran AL, Murphy AN, Fiskum G, Kane DJ, Testa MP, Kayalar C, Bredesen DE. 1996. Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2. J Neurochem 67:1259–1267.

    Article  PubMed  CAS  Google Scholar 

  85. Chau Y-P, Shiah S-G, Don M-J, Kuo M-L. 1998. Involvement of hydrogen peroxide in topoisomerase inhibitor B-lapachone-induced apoptosis and differentiation in human leukemia cells. Free Radic Biol Med 24:660–670.

    Article  PubMed  CAS  Google Scholar 

  86. Chen Y-C, Lin-Shiau S-Y, Lin J-K. 1998. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177:324–333.

    Article  PubMed  CAS  Google Scholar 

  87. Cai J, Jones DP. 1998. Superoxide in apoptosis. J Biol Chem 273:11401–11404.

    Article  PubMed  CAS  Google Scholar 

  88. DiPietrantonio AM, Hsieh TC, Wu JM. 2000. Specific processing of poly(ADP-ribose) polymerase, accompanied by activation of caspase-3 and elevation/reduction of ceramide/hydrogen peroxide levels, during induction of apoptosis in host HL-60 cells infected by the human granulocytic ehrlichiosis (HGE) agent. IUBMB Life 49:49–55.

    PubMed  CAS  Google Scholar 

  89. Hampton MB, Fadeel B, Orrenius S. 1998. Redox regulation of the caspases during apoptosis. Ann NY Acad Sei 854:328–335.

    Article  CAS  Google Scholar 

  90. Palomba L, Sestili P, Cantoni O. 1999. The antioxidant butylated hydroxytoluene induces apoptosis in human U937 cells: the role of hydrogen peroxide and altered redox state. Free Radic Res 31:93–101.

    Article  PubMed  CAS  Google Scholar 

  91. Tada-Oikawa S, Oikawa S, Kawanishi M,Yamada M, Kawanishi S. 1999. Generation of hydrogen peroxide precedes loss of mitochondrial membrane potential during DNA alkylation-induced apoptosis. FEBS Lett 442:65–69.

    Article  PubMed  CAS  Google Scholar 

  92. Moses MA, Klagsbrun M, Shing Y. 1995. The role of growth factors in vascular cell development and differentiation. Int Rev Cytol 161:1–48.

    Article  PubMed  CAS  Google Scholar 

  93. Kurbaan AS, Bowker TJ, Rickards AF. 1998. Differential restenosis rate of individual coronary artery sites after multivessel angioplasty: implications for revascularization strategy. CABRI Investigators. Coronary Angioplasty versus Bypass Revascularisation Investigation. Am Heart J 135:703–708.

    Article  PubMed  CAS  Google Scholar 

  94. Laitinen M,Yla-Herttuala S. 1998. Vascular gene transfer for the treatment of restenosis and atherosclerosis. Curr Opin Lipidol 9:465–469.

    Article  PubMed  CAS  Google Scholar 

  95. Losordo DW, Vale PR, Isner JM. 1999. Gene therapy for myocardial angiogenesis. Am Heart J 138:S132–S141.

    Article  PubMed  CAS  Google Scholar 

  96. Li W, Liu G, Chou IN, Kagan HM. 2000. Hydrogen peroxide-mediated, lysyl oxidase-dependent Chemotaxis of vascular smooth muscle cells. J Cell Biochem 78:550–557.

    Article  PubMed  CAS  Google Scholar 

  97. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. 2000. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530.

    Article  PubMed  CAS  Google Scholar 

  98. Penn MS, Patel CV, Cui MZ, DiCorleto PE, Chisolm GM. 1999. LDL increases inactive tissue factor on vascular smooth muscle cell surfaces: hydrogen peroxide activates latent cell surface tissue factor. Circulation 99:1753–1759.

    Article  PubMed  CAS  Google Scholar 

  99. Mietus-Snyder M, Glass CK, Pitas RE. 1998. Transcriptional activation of scavenger receptor expression in human smooth muscle cells requires AP-1/c-jun and C/EBPbeta: both AP-1 binding and JNK activation are induced by phorbol esters and oxidative stress. Arterioscler Thromb Vase Biol 18:1440–1449.

    Article  CAS  Google Scholar 

  100. Drummond GR, Cai H, Davis ME, Ramasamy S, Harrison DG. 2000. Transcriptional and post-transcriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86:347–354.

    Article  PubMed  CAS  Google Scholar 

  101. Hamby JM, Showalter HD. 1999. Small molecule inhibitors of tumor-promoted angiogenesis, including protein tyrosine kinase inhibitors. Pharmacol Ther 82:169–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant N. Pierce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Czubryt, M.P., Pierce, G.N. (2003). The Role of Hydrogen Peroxide as a Signaling Molecule. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics