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E1

Chapter 8 was in
Those errors have been corrected as follows: 

8.3.3  Raising and Lowering: How Did Dirac Do It?

The “operator method” of harmonic oscillator analysis is fundamental to all ad-
vanced QM. It foreshadows a very similar method used for angular momentum, and 
is the basis of a major part of QFT (including quantum EM radiation), which starts 
with the fields as an infinite set of quantized harmonic oscillators. The method is 
far from obvious, so the big question on everybody’s mind is “How did Dirac do 
it?” How did he know how to create the creation and annihilation operators? Most 
references give them as “Lo! And behold!” (much like they present the Schrödinger 
equation out of thin air). Here is one way to do it logically, and (who knows?) per-
haps is similar to how Dirac figured it out. Our goal here is not to provide the sim-
plest derivation, but to show how such an idea might come about in the first place. 
In addition, this section further ties together the meaning of operators and Dirac 
 notation, which makes this topic worth understanding. This section assumes you un-
derstand how the operator method works, but not how to motivate its development.
First, recall the stationary states of the 1D harmonic oscillator ([8], 7.18, p. 144):
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Page 324. “8.3.3 Raising and Lowering: How Did Dirac Do It?” should 
read as follows. 
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Now, consider two recursion relations between the Hermite polynomials, (which 
imply relations between the harmonic oscillator stationary states), which were well 
known long before Dirac ([7], 7.19–20, p. 144):
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( )†ˆ ˆ ˆ ,x a a∝ +  because it says [after multiplying through by exp(− X  2/2)]:
In the second equation, we already see the seeds of the well-known relation
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lso, the first recursion relation tells us something about momentum operators, since A
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In the x-representation,  is a function of x, so we use the product rule on the 
RHS: 
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Now Dirac is famous for “Dirac notation,” which is a coordinate-free (i.e., 
representation-indepent) notation for quantum states, and other kets. We seek some 
purely conceptual relations between the state kets, which must be independent of 
representation. Therefore we ask: can we write the Hermite recursion relations in 
ket notation? We start with the first step: can we write a Hermite polynomial in 
ket notation? Sure: 

Since the first recursion relation in (8.7) includes a derivative, what is the 
derivative of a Hermite polynomial in ket notation? We simply differentiate the 
above equation: 
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is dimensionless position, normalization.

( ) Hermite polynomial of degree .
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We now return to the true position variable. Use: 

We eliminate the normalization factors from: 

(8. )9

(8.11)

Algebraic derivation of â†: As noted ealier, we can derive the raising operator 
as the adjoint of the lowering operator more simply by using Dirac algebra. Start 
with Eq. (8.10), and use the definition of adjoint: 

We see explicitly that the raising operator is the adjoint of the lowering operator. 

We already know how to convert this to ket notation. After again canceling all the 
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As shown later, this is sufficient to also define a raising operator, which is the 
adjoint of â. However, to continue with our wave-function derivation, we first 
find the raising operator directly from the recursion relations . (8.7). For a raising 
operator, we write them with  on the left, and only on the right: 1nH + nH
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This gives the lowering operator in final form: 

To be representation-indpendent, we also take ˆx x .  Then Eq. (8.9) becomes: 
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exp(+X  2/2):
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exp(+X  2/2):

These results show that the first recursion relation relates  to ; when 
written in ket notation, this gives us a lowering operator. After canceling the 
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Since n is arbitrary, we can replace n → n  1:

A key property of â  and †â  is that ˆ ˆandx p are not just linear combinations of

and, 0, 1

.
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This greatly simplifies computing inner products of ˆ ˆandx p . Also, note that  â  and   
â† are real; the appearance of i with p̂   in Eqs. (8.10) and (8.11) cancels  the i in 

ˆ ( / )p i≡ ∇� .the definition 

†ˆ ˆ1 1a n n n n a n n     . 

+

Of course now that we know these results, we could rederive all this much 
more quickly. That requires a “lo and behold” approach, where we show that a 
seemingly random definition of the operator â leads to a useful result. Many 
references supply such a derivation. Our goal here, though, was to show how one 
might develop this result from observations about well-known prior results. 

them, but proportional to their sum and difference:
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