
Chapter 4
Interaction Models

Steffen L. Lauritzen

The articles in this bundle are all associated with the notion of interaction and
represent the genesis of the subject of graphical models in its modern form, the
origins of these being traceable back to Gibbs [11] and Wright [30] and earlier.

Around 1976, Terry was fascinated by the notion of conditional independence,
along the lines later published in Dawid [6, 7]. In 1976, Terry invited me to Perth
and we were running a daily research seminar with the theme of studying similar-
ities and differences between Statistics and Statistical Mechanics. In particular, we
wondered what the relations were between notions of interaction as represented in
linear models, in multi-dimensional contingency tables, and in stochastic models
for particle systems; in addition, the purpose was also to understand what was the
relation between these concepts and conditional independence.

As we discovered that these were all essentially the same concepts, the simi-
larity being obscured by very different traditions of notation, the term graphical
model was coined. Our findings, also obtained in collaboration with John Dar-
roch, were collected in Darroch et al. [4], and later expanded and published in
Speed [24], Darroch et al. [5], and Darroch and Speed [3] as well as Lauritzen et al.
[19] and to some extent Speed [25], the latter giving an overview of a number of dif-
ferent variants and proofs of what has become known as the Hammersley–Clifford
theorem [14, 2].

Of these articles, Darroch et al. [5] rather quickly had a seminal impact and a
small community of researchers in the area of graphical models gradually emerged.
In a certain sense, the article does not contain much formally new material (if any at
all), but for the first time a simple, visual description and interpretation of the class
of log-linear models [12, 13], which otherwise could seem obscure, was available.
The interpretation of a subclass of the models in terms of conditional independence
had an immediate intuitive appeal. In addition, the article identified and emphasized
models represented by chordal or triangulated graphs as those where estimation
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and other issues had a particularly simple solution, the combinatorial theory of these
graphs being further studied in Lauritzen et al. [19].

Darroch and Speed [3] studied the notion of interaction from an algebraic point
of view in terms of fundamental decompositions of the linear space of functions
on a product of finite sets; indeed it essentially but implicitly uses the fundamental
decomposition of this space into irreducible components which are stable under a
product of symmetric groups [9] and thus gives an elegant algebraic perspective on
the Hammersley–Clifford theorem.

Towards the end of 1976, Terry serendipitously came across Wermuth [29],
which identified that a completely analogous theory could be developed for the
Gaussian case, with chordal graphs playing essentially the same role as in the case of
log-linear models; indeed, Dempster [8] had developed the basic computational and
statistical theory for these under the name of models for covariance selection. This
fact and the corresponding interpretation was emphasized and discussed in Darroch
et al. [4] as well as in Speed [24, 25], but received otherwise relatively little attention
at the time. Gaussian graphical models have had a remarkable renaissance in con-
nection with the modern analysis of high-dimensional data, for example concerning
gene expression [10, 23]. Out of this early work with Gaussian graphical models
grew also the article by Speed and Kiiveri [26], which describes and unifies a class
of iterative algorithms for fitting Gaussian graphical models of which special cases
previously had been considered by e.g. Dempster [8]. Essentially, there are two fun-
damental types, of which one initially uses the estimate under no restrictions and
iteratively ensures that restrictions of the model are satisfied; the other type initially
uses a trivial estimator and iteratively ensures that the likelihood equations are sat-
isfied. The article elegantly shows that an abundance of hybrids of these algorithms
can be constructed and gives a unified proof of their convergence.

The last two articles [16, 17], represent the genesis of what today is probably
the most prolific and well-known type of graphical models; these are based on di-
rected acyclic graphs and admitting interpretation in causal terms similar to that of
structural equation models [1]. At the time when these articles appeared they were
(undeservedly) largely ignored both by the statistical and structural equation com-
munities. Graphical models based on directed acyclic graphs—now mostly known
as Bayesian networks [21]—have an unquestionable prominence in current scientific
literature, but the surge of interest in these models was in particular generated by the
prolific research activities in computer science, where work such as, for example,
Lauritzen and Spiegelhalter [18], Pearl [22], Spirtes et al. [27], Heckerman et al.
[15], and Pearl [20] established these models as objects worthy of intense study. In
retrospect, it is clear that the global Markov property defined in Kiiveri et al. [17]
was not the optimal one as there are independence relations true in any Bayesian
network that cannot be derived from it, but fundamentally this article establishes the
correct class of directed Markov models for the first time and thus yields a condi-
tional independence perspective on structural equation models, as later elaborated,
for example by Spirtes et al. [28].
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