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Some Examples of Empirical Fourier
Analysis in Scientific Problems

DAVID R. BRILLINGER University of California, Berkeley, California

“One can FT anything—often meaningfully.”
J. W. Tukey

1. INTRODUCTION

As a concept and as a tool, the Fourier transform is pervasive in applied
mathematics, computing, mathematics, probability and statistics as well as
in substantive sciences such as chemistry, geophysics and physics. This
chapter presents a review of such applications and then four personal ana-
lyses of scientific data based on Fourier transforms. Specific points made
include: Fourier analysis is conceptually simple, its concepts often have
direct physical interpretations, useful statistical properties are available,
and there are various interesting connections between the mathematical
and physical concepts.

By Fourier analysis is meant the study of spaces and functions, making
substantial use of sine and cosine functions. The subject has a long and
glorious history. In particular, fundamental work has been carried out by
both mathematicians and applied scientists. Fourier analysis remains of
interest to mathematicians because generalizations seem inexhaustible and
because there are continual surprises. Classic works by mathematicians
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2 Brillinger

include: Wiener (1933), Bochner (1959, 1960) and Zygmund (1968). These
particular authors are concerned with functions on the line or on a general
Euclidian space. Works on extensions to general groups include: Loomis
(1953), Rudin (1962), Hewitt and Ross (1963), Katznelson (1976). More
recent books are Terras (1988) and Koérner (1989), the former particularly
addressing the nonabelian case, the latter presenting a variety of historical
examples and essays on specific topics.

In contrast, the Fourier transform is of interest to statisticians because it
proves inordinately useful in the analysis of data and eases the development
of various theoretical results. Noteworthy contributions to statistics have
been made by Slutsky (1934), Cramér (1942), Good (1958), Yaglom (1961),
Tukey (1963), Hannan (1965, 1966), Priestley (1965), Bloomfield (1976),
Diaconnis (1988, 1989). Slutsky developed some of the statistical properties
of the Fourier transform of a stretch of time series values. Cramér set down
a Fourier representation (see Sec. 4.1) for stationary processes. The repre-
sentation admitted many extensions and made transparent the effect of a
variety of operations on processes. Good and Tukey indicated how the
transform could be computed recursively and hence quickly in certain cir-
cumstances. Yaglom extended the domain of application to processes
defined on compact and locally compact groups. Hannan considered prob-
lems for other groups than Yaglom and presented material relevant to
practical applications. Priestley provided a frequency domain representation
to describe nonstationary processes. Bloomfield made complicated results
available to a broad audience. Diaconnis considered symmetric and permu-
tation groups and the analysis of ordered data.

Particular uses of the empirical Fourier transform include: the develop-
ment of estimates of finite dimensional parameters appearing in time series
models (Whittle (1952), Dzhaparidze (1986), Feuerverger (1990)), the assess-
ment of goodness of fit of models (Feigin and Heathcote (1976)), and the
deconvolution of random measurements (Fan (1992)). Fourier analysis has
a special place amongst the tools of statistics for the concepts often have
their own physical existence.

There are special computational, mathematical and statistical properties
and surprises associated with the Fourier transform. These include: the
central limit theorems for the stationary case with approximate indepen-
dence at particular frequencies, the existence of fast Fourier transforms,
(Good (1958), Tukey (1963), Cooley and Tukey (1965), Rockmore (1990))
the need for convergence factors, the ideas of aliasing.

Section 2 concerns some particular physical situations. Section 3
contains pertinent background from analysis. Section 4 contains stochastic
background. Section 5 presents analyses of four data sets from the
natural sciences and the author’s experience. The examples highlight
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Examples of Empirical Fourier Analysis 3

approximation, shrinkage estimation, the method of stationary phase, cen-
tral limit theorems and uncertainty estimation. The first example, concern-
ing crystalographic data, involves the empirical representation of a basic
function on the plane by an expansion in sines and cosines. This makes
sense because of periodicities inherent in the crystal structure. The example
also involves shrinkage of the coefficients of the expansion in order to obtain
improved estimates. The second analysis is of a record of an earthquake that
took place in Siberia as recorded at Uppsala, Sweden. The oscillatory char-
acter of the data may be understood heuristically via the method of sta-
tionary phase, to be described below. A model of the transmission medium
is constructed and model assessment carried out by a sliding or dynamic
Fourier analysis. This last may be viewed as a form of wavelet analysis. The
third analysis, concerned with nuclear magnetic resonance (NMR) spectro-
scopy, employs Fourier analysis to obtain physical insight into the behavior
of an input-output system, and then makes use of cross-spectral analysis to
estimate the transfer function of the system. The periodogram of the resi-
duals is employed to assess the fit. The final example involves both wavelet
and Fourier analysis. It is concerned with the question of whether a micro-
tubule moves steadily or via jumps. The Fourier analysis is employed in this
case to obtain uncertainty estimates in the presence of stationary noise.
Section 6 contains conclusions and indicates open problems.

2. SOME PHYSICAL EXAMPLES OF FOURIER ANALYSIS

Cycles, periods, and resonances have long been noted in scientific discussions
of astronomy, vibrations, oceanography, sound, light and crystalography
amongst other fields. In technology oscillations occur often for example in
telephone, radio, TV and laser engineering. Natural operations occur com-
monly that correspond with linear and time invariant systems as defined in
Section 3 below. These are the eigenoperations of Fourier analysis.

Fourier analysis is sometimes tied specifically to the physics of a problem.
For example Bazin et al. (1986) physically demonstrate the operations/
concepts of translation, linearity, similarity, convolution and Parseval’s
theorem for the Fourier transform via diffraction experiments with laser
light. The Fourier transform here is formed via a lens. See Goodman
(1968) Shankar et al. (1982), Glaeser (1985) for a discussion of the optics
involved.

An important example arises in radio astronomy. Suppose there is an
array of receivers. Suppose there is a small incoherent source, at great dis-
tance, producing a plane travelling wave. If Y (x, y, ) denotes the radio field
measurement made at time 7 on a telescope located at position (x, y), then
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E{Y(x+uy+v,0V(xp, 0} = “ f(a, B de dB 2.1)

where (a, 3) are the coordinates of the source of interest in the sky and f(«, 3)
isits brightness distribution as a function of («, 3). In other words, the Fourier
transform is the quantity observed. The result Eq. (2.1) is known as the van
Cittert-Zernike Theorem, see Born and Wolf (1964).

Linear time invariant systems abound in nature. They have the property
of carrying cosinusoids into cosinusoids. Nowadays in science there is much
concern with nonlinear operations and phenomena. Impressively, the classic
trigonometric identity

[cos M]* = Lcos 2As + 4 (2.2)

is “demonstrated” in Yariv (1975) via a color plate showing red laser light
becoming blue on passing through a crystal. The crystal involved squares
the signal as in Eq. (2.2). A wavelength of 6940 A (red) becomes one of
3970 A (blue). Bloembergen (1982), Moloney and Newell (1989) discuss
such nonlinear aspects of light. The appearance of harmonics such as in
Eqg. (2.2) leads to a consideration of higher-order spectra.

The Fourier transform is continually employed in the solution of equations
of motion associated with physical phenomena and mathematicians have
focussed on consequent cycles and harmonics. For example, Hirsch (1984)
has remarked that “Dynamicists have always been fascinated (not to say
obsessed) by periodicity.” In that connection Ruelle (1989) makes effective
use of the Fourier transform in the study of dynamic systems, specifically
addressing aspects of chaos, periods and scaling.

The Fourier transform leads to entities with direct physical interpreta-
tions. One can point to a variety of success stories of the application of
Fourier analysis. Michaelson (1891a,b) measured visibility curves, essen-
tially the modulus of a Fourier transform, and after an inversion thereby
inferred that the red hydrogen line was a doublet. This inference of splitting
ultimately led to important developments in quantum mechanics. Tidal
components caused by the sun, moon and planets have been isolated by
Fourier analysis, see Cartwright (1982), Bath (1974), Bracewell (1989). Katz
and Miledi (1971) inferred the mechanism of acetylcholine release via a
Fourier analysis. Bolt et al. (1982) saw a fault rupturing in an earthquake
by a frequency-wavenumber spectral analysis. Finally it may be noted that
R. R. Ernst received the 1991 Nobel Prize in Chemistry for developing the
technique of Fourier transform spectroscopy, see Amato (1991). A discus-
sion of a variety of other physical examples may be found in Lanczos (1966),
Bath (1974), Bracewell (1989).
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Examples of Empirical Fourier Analysis 5

3. SOME ANALYTIC BACKGROUND
3.1 The Fourier Case

Consider a square integrable function g(x),0 < x < 2. In this simple case
Fourier analysis is built upon the values

1 27 .
= %L e *g(x) dx (3.1)
k=0,%+1,42,..., and Fourier synthesis on expansions
g(x) ~ Z cve™ (3.2)
k=—

The functions exp{ikx}, k =0,%1,+2,... here are orthogonal on [0, 27)
and this connects Eqns. (3.1) and (3.2).

One important use of Fourier methods is the approximation of functions.
If the values ¢,k = 0,£1,... &+ K of Eq. (3.1) are available, a naive approxi-
mation to g(x) is provided by

K

> ™ (3.3)

k=—K
However early researchers found that the approximation of Eq. (3.3) was
often improved by inserting multipliers, wX, such as 1 — |k|/K, into the
expansion and employing

gK(x) = Z whepe™. (3.4)

instead of Eq. (3.3). Defining the kernel
K

wkix) = Z wh ok

k=—K

Eq. (3.4) can be written

2
| w0 = e ax (3.5)
0

and one sees that Eq. (3.4) is a weighted average of the desired g(-). The
effect of the multipliers, in some cases, is to improve the approximation by
damping down the more rapidly oscillating terms in the expansion. This idea
of damping down will recur below in the consideration of shrinking to
improve estimates. The expression of Eq. (3.5) may be used to study directly
the effect of the kernel function on the approximation. Timan (1963), Butzer
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6 Brillinger

and Nessel (1971) are books specifically concerned with approximations
based on Fourier expressions.

In work with data values Y, observed at t+=0,...,7 — 1 one might
replace Eq. (3.1) with

1 = {—izwkt}
- exps —— ¢ Y
T2 Rt

having written g(2nt/T) = Y,. As referred to earlier there are fast algor-
ithms to evaluate this.

A second important use of Fourier analysis is in the study of time invar-
iant systems. A simple linear time invariant system is described by

2C

Y, = Z Y, ¢

f=—oc
i.e., a convolution. The response of this system to the input X, = exp{iAt} is
Y, = C(NX, (3.6)

with C(\) the Fourier transform

oC

C(/\) — Z e—i/\.\‘c.\v

§=—

for 0 < A < 2. This function is referred to as the transfer function of the
system. Cosinusoids, exp{i\z}, are seen to be carried into cosinusoids. A
variety of physical systems have this property to a good approximation.

Nonlinear time invariant systems may sometimes be approximated by
Volterra expansions of the form

2 ¢ X
Y, = Z € X + Z Z di_gig XXy + -
s=—- s=—¢ §'=-00
The input X, = exp{iAt} here leads to the output
CN)e™ + DA, N)eM + ...

where C()\) is given above and
DOV =32 D e dy
s s!

In such a nonlinear system one sees harmonics of the frequencies in the
input appearing in the output. The laser example of Sec. 2 involved a system
that was quadratic.
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Examples of Empirical Fourier Analysis 7

Fourier analysis is useful in work with constant coefficient differential
equations. These show the occurrence of oscillations and are often effective
models of physical systems. Consider for example the linear system

as(y

with S(-) vector-valued and X(-) scalar. Supposing
S(1) = J e"s(\) dA

and
X(t) = [e“’\x(x\)d/\

by Fourier analysis one has the solution directly as

S(\) = (il — A) " 'Bx())

Supposing x(A) constant and the latent values, p,;, of A to be distinct this
may be written

S(1) =" ae
J

for some vectors a;.0ne sees the occurrence of oscillations at frequencies
Re y;. One reference concerning such differential equations is Hochstadt
(1964).

Turning to a further technique of Fourier analysis, that will be basic in
one of the examples below, suppose that one is considering, for large x, an
integral of the form

Jeik(/\).\‘R(/\) d\
The method of stationary phase approximates this by
el k" (Xg)im/4 zw/(.xlk//()\o!)R(/\O)eik(/\o),\-.

where ), satisfies kK'()\y) = 0. References include Barndorff-Nielsen and Cox
(1989) and Aki and Richards (1980). The idea is that unless the k() is near
0 the rapidly oscillating multipliers cos k(A), sin k() will give the integral
value 0.
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3.2 The Wavelet Case

Wavelet analysis is enjoying a surge of contemporary investigation and is a
competitor of Fourier analysis. It may be viewed as Fourier analysis with
the sine and cosine functions replaced by other families of (orthogonal)
functions. There are many similarities between Fourier and wavelet analysis.
Consider the expansion in Eq. (3.2) with the coefficients in Eq. (3.1). The
expansion is based on the fact that the sine and cosine functions provide a
basis for L,[0,2). In wavelet analysis other systems of functions are used,
see e.g., Strichartz (1993), Benedetto and Frazier (1994). Wavelets are of
practical importance because they can sometimes provide more parsi-
monious descriptions than Fourier ones.

Wavelets often focus on local versus global behavior and in particular
can pick up transient behavior. Basic is a (mother) wavelet ¢(-) nonzero
only on say the unit interval [0, 1). Given a square-integrable function g(x),
one considers an expansion

=3 B (3.7)

j=—o¢ k=—oc

with
blx) = 22p(2x — k)
and
i = [ (g dv (3.8)

The family {y;(-)} is taken to be orthonormal and complete, see e.g.,
Daubechies (1992), Walter (1992, 1994), Strichartz (1993), Benedetto and
Frazier (1994).

The expansion in Eq. (3.7) represents g(-) in terms of functions with
support individually on dyadic intervals [k/2, (k + 1)/2/] for j, k integers.
It suggests an approximation

Kx) = Z Z Bixjx(x) 3.9)

visJ k<K

to g(x). This may be written as

¢ = [ WS (e dy (3.10)
the kernel being
WK (x,y) Zw,k XYYy (3.11)
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Examples of Empirical Fourier Analysis 9

This kernel will tend to a delta function in various circumstances, see Walter
(1992). Equation (3.10) can be used to study the degree of approximation
directly as could Eq. (3.5) in the Fourier case. Equations (3.10) and (3.11)
are wavelet analogs of Eqns. (3.4) and (3.5).

In the case of a discontinuous function, as will occur in Example 5.4,
a particular wavelet analysis is especially suitable, namely Haar wavelet
analysis. This analysis is based on the function

P(x)=1 for0<x<i
-1 fori<x<1
0 otherwise

In the Haar case the kernel is
W,(x,y) =2"¢(2"y - [2"x]) (3.12)

with [-] here referring to integral part and g,(x) of Eq. (3.10) a local
mean, g,(x) = |I]"" J, g»)dy, x being in the particular interval
I =[m/2",(m+1)/2"), see Fine (1949), Walter (1992).

There are empirical versions of Eq. (3.8) for use when discrete time data
Y,t=0,...,T — 1 are available. One computes for example

A 1’ T-1
B = _u(t/T)Y, o @a5)
=0 ;

Just as there are fast Fourier transforms, there are fast wavelet transforms,
Strang (1993). Also one can write p2’ for 2/ above, with no real change in
concept, but improved approximations in practice. The dynamic spectrum
analysis of Example 5.2 is one type of wavelet analysis with j = j, and
P(x) = exp{—i27x}.

Insertion of multipliers, as in Eq. (3.4) for Fourier approximation, is
fundamental. This will be discussed later.

4. STOCHASTICS AND STATISTICS

In this section the quantities being transformed will be random.

4.1 Stationary Processes

Fourier analysis is basic to dealing with stationary random processes. A
process, Y,, is said to be second-order stationary if cov{Y,,,, Y,} exists
for t,u=0,+1,£2,... and does not depend on ¢. In practice this
often appears a reasonable working assumption. In the case of
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Y, t=0,%£1,+£2,... a second-order stationary process, following Cra-
meér (1942), one has the Fourier representation
Y, = J e dz(\) (4.1)

with Z(-) a random function such that
cov{dZ(A),dZ(p)} = 6(A — p)f (A) dX du

—m < A\ p <, f(-) being the power spectrum of Y and é(-) the Dirac delta
function. The Cramér representation has the advantage of taking one
directly to the Fourier domain and thereby making some operations on
the process clearer. The series Y, may be vector-valued. Then the cross-
spectral density matrix, f(-), is given by

cov{dZ()\), dZ(p)} = 6(\ — w)f(X) dX du
Cross-spectrum analysis is useful for system analysis, i.e., estimating for
example the transfer function of a linear time invariant system.
Higher-order spectra may be defined directly via Z(.), e.g., the bi-
spectrum f(A, 1) at frequency A, u is given by
cum{dZ(A),dZ(n),dZ(v)} = n(A+ p+v)f(\ pw)dX du dv

where 7(A) is the 27 periodic extension of the Dirac delta function.
Empirical Fourier analysis, e.g., of residuals of a fit, provides a diagnostic
using in particular the result that if the process is white noise, the power
spectrum is constant in frequency, A.
Blackman and Tukey (1959), Bath (1974), Brillinger (1975) and Bloom-
field (1976) are books focussing on the empirical Fourier analysis of time
series

4.2 Central Limit Theorems

In classic forms the central limit theorem is concerned with the distributions
of sums of independent random variables
ST: YQ+ Y|++ YT-]

and their approximate normality with variance To? for large T. It is usual to
assume that the Y’s are identically distributed.

At some point engineers began promulgating a folk theorem to the
effect that narrow-band noise is approximately Gaussian, [see Leonov and
Shiryaev (1960), Picinbono (1960), Rosenblatt (1961)]. One fashion to for-
mulate this remark is as a statement that

ST(/\) = YO + 6’7'./\ Yl + -+ e_i’\(T_l) YT—I (42)
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0 < X < 2m, is approximately (complex) normal for each A. Under station-
arity and mixing assumptions for the series Y,, the variance of Eq. (4.2) is
approximately

20T () (4.3)

with f(\) the power spectrum of Eq. (4.1) at frequency \. Surprisingly, the
values of S7(A) at distinct frequencies of the form A = 27j/T, are approxi-
mately independent. Problems involving stationary mixing processes may
thus be converted into ones involving (approximately) independent normal
random variables. Empirical Fourier transforms such as Eq. (4.2) have
many uses and several are indicated in this paper. A fundamental use is
to estimate a power spectrum by smoothing the squared-modulus.

Early work on the asymptotic properties of finite Fourier transforms
includes that of Slutsky (1934), Leonov and Shiryaev (1960), Rosenblatt
(1961), Good (1963), Hannan (1969), Brillinger (1969), Hannan and Thom-
son (1971), Hannan (1972).

There has been some consideration of the cases of long range dependence
and stable distributions. References include: Rosenblatt (1981), Freedman
and Lane (1981), Fox and Taqqu (1986), Yajima (1989), Shao and Nikias
(1993). The case of random generalized functions, which includes for
example point processes and random measures, is considered in Brillinger
(1982).

In the case of wavelets and a model

Y, =g(t/T) +¢, (4.4)
with ¢, stationary noise having power spectrum f(A), under regularity con-

ditions, the statistic B,-k of Eq. (3.13) may be shown to be asymptotically
normal with mean ;. and variance

2
—ff(o)

see Brillinger (1996). The variance is the same as that of Eq. (4.4). Further
when the functions v () and 9 (-) are orthogonal, the coefficients 3., B
are approximately independent for distinct (j,k) and (j',k’). This last
results suggests that an estimate of f(0) may be obtained by averaging the
values T|ﬁjk[2/T for which 3, = 0.

4.3 Shrinking

Among surprises in working with Fourier transforms is the importance of
convergence factors. These are the w,ﬁ< of Eq. (3.4). In Eq. (3.4) they shrink
the coefficients of the exp{ixk} towards 0 as k increases. Such multipliers are
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also important in the stochastic case, see: Tukey (1959), Brillinger (1975),
Bloomfield (1976), Dahlhaus (1984, 1989).

A related concept is shrinking. In a regression context Tukey (1979)
distinguishes three types of shrinking. Crudely: “first shrinkage” cor-
responds to pretesting and selection of regressor variables, “second shrink-
age” corresponds to a type of Wiener filtering and ‘‘third shrinkage”
corresponds to borrowing strength from other coefficients to improve the
collection of coefficients. In this last case the muiltipliers are not meant for
attenuating high frequencies, rather they are meant for attenuating un-
certain terms. A common characteristic is that the estimates become biased;
however, biased estimates have long been dominant in time series analysis.

Second shrinkage plays an important role in two of the examples that
follow. A particular second shrinkage estimate, introduced in Tukey (1979),
may be motivated as follows. Consider a classic simple regression model

y=p0Bx+c¢

with b an estimate of 8 and s an estimate of its standard error. Seek a
multiplier m such that mbx is an improved estimate of Sx. The mean-
squared error of the new estimate is

X E{(8 ~ mb)’}
which may be estimated by
{1 = m)*[p? = *) + ms?}

This is minimized by the choice m = 1 — 5°/b>. One would prefer to take m
to be the positive part

(1-s*/b%), (4.5)

This multiplier has the reasonable property of being 0 for b less than its
standard error.

In Sec. 3.1 convergence factors, wK were inserted into trigonometric
expressions to obtain improved approximation. In Example 5.1 such multi-
pliers based on the reliability of estimated coefficients ¢, will be inserted to
obtain an improved estimate. To estimate g(x) of Eq. (4.4) one considers,
for example,

g(\) = Z W((A’k/Sk)(A‘keiXk (46)

k

where s7 is an estimate of the variance of ¢ and w(u) is a function that is
near | for large # and near O for small u. Examples of functions w(-) are
given in Fig. 1.
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Shrinkage factor

1.0 A

0.6 -

04 -

0.2 A

0.0 -

0.0 0.5 1.0 1.5 2.0 25 3.0
amplitude / standard error

Figure 1. Graph of the multipliers Eqns (5.7) and Eq. (5.8), as a functions
of the amplitude of the estimate divided by its estimated standard error.

In work to obtain improved wavelet-based estimates, Donoho and John-
stone (1990), Hall and Patil (1995) create shrinkage estimates involving
multipliers, there referred to as “thresholders”. The estimates take the form

> wllBul/si) Bicbi (x) (4.7)
I<s lkl<K

where sj is an estimate of var Bjk and 0 < w(-) < 1.

There are many classical references to selection of variables and pretest-
ing, i.e., first shrinkage. References to second shrinkage include: Whittle
(1962), Thompson (1968), King (1972), Ott and Kronmall (1976), Tukey
(1979), Zidek (1983), Donoho and Johnstone (1990), Stoffer (1991), Hall
and Patil (1993), Donoho et al. (1995). References to third shrinkage
include: Stein (1955), Efron and Morris (1977), Copas (1983), Saleh (1992).

5. EXAMPLES

In this Section four biological and physical examples are presented.

5.1 Electron Microscopy

Electron microscopy is-a tool for studying the placements of atoms within
molecules. It is mainly carried out with crystalline (periodic) material. One
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problem is to obtain improved images and that is the concern of the present
example. Glaeser (1985), Henderson et al. (1986), Hovmdller (1990) are
references describing the basics of electron microscopy.

In the planar case, the principal theoretical concept is the projected
(Coulomb) density distribution

V(x,y) — Z Fh‘keZWi(h,\%ky)/A (5 l)
h.k

hk =0,%1,£2,... with (x,y) planar coordinates and with A the period of
the crystal. The function V(-) is real-valued and has various symmetries.
The h,k in Eq. (5.1) are referred to as the Miller indices, while the F,; are
referred to as structure factors. One wishes to estimate V(x,y) over
0<x,y<A.

The datum is an image, Y(x,y), with 0 < x < X,0 < y < Y. The image
may be written as

Y(x,y) = V(x,y) + noise (5.2)

The empirical Fourier transform is

Y X
Fop= J J Y (x,y)e 2 tknNIB gy gy (5.3)
0 Jo
which may be written
A (A _
J J Z Y (x 4+ mA, y + nlA)e AR gy gy (5.4)
0 Jo n,n
The synthesis corresponding to the analysis Eq. (5.3) is
Z ﬁ/,kEZM(hx+ky)/A (55)
h.k !

0<x<A 0<y<A.

There has been concern to form an improved image. In this connection
Blow and Crick (1959), Hayward and Stroud (1981) introduced ‘‘multi-
pliers”, w(-), into expressions like Eq. (5.5), forming

V(x,y) = Z W(!1:-/,,k|f3h.k)ﬁh,/<<?27r"(/"\‘+k"')/A (5.6)
hk

where the 6, , are estimates of the standard errors of the ﬁ,,,k. This is a
second shrinkage estimate. Consideration of the mean-squared error, as in
Eq. (4.5), leads to the multiplier

22
w(|F|/8) = (1 - l—;?) (5.7)
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Examples of Empirical Fourier Analysis 15

which by analogy with Wiener filtering will be called the Wiener multiplier.
By Bayesian arguments Blow and Crick (1959) and Hayward and Stroud
(1981) were lead to the multiplier

2 2
w(y) = \/TE’Y lfo <12_) +1, (%)}6‘—72/2 (5.8)

with v = [F|/&, and I, I; modified Bessel functions, see Brillinger et al.
(1989, 1990). It and Eq. (5.7) are graphed in Fig. 1. These multipliers
approach 1 as the uncertainty approaches 0.

Estimates employing Eqns (5.7) and (5.8) are illustrated in Fig. 2 for
images of the protein bacteriorhodopsin. This substance occurs naturally

Q'wﬁ _;’ Q o“9
o N 56
h ¥ S&% @ ° 0&0
197 '
as °°" ooy
o » e = .
-‘4 =¥ 4
Naive i |mage Blow-Crick image
. q: © a\ o
& R 3y B
§? o0 > Pg
3 «eﬁ % o
OQQP * e ‘Q )
‘%‘ﬁ@y ©
] ﬂ §
Wiener image Final image, n = 42

Figure 2. Estimates of the basic cell of bacteriorhodopsin. The upper left
panel is the naive estimate as shown in Eq. (5.5). The upper right panel is the
estimate Eq. (5.6) with the multiplier, Eq. (5.8). The bottom left panel is the
estimate Eq. (5.6) with the multiplier, Eq. (5.7). The last panel is Eq. (5.6),
with Eq. (5.8), obtained by combining 42 individual images.
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16 Brillinger

as a two-dimensional crystalline array within the cell membrane of
Halobacterium halobrium. Together with accompanying lipid molecules, it
is known as ‘“‘purple membrane’. This crystal is based on a hexagonal
lattice. In Fig. 2 only the positive contours are shown. (Negative density
features signify the absence of atoms and thus have no direct usefulness
when the density map is interpreted.) The first panel of Fig. 2 shows the
elementary estimate of Eq. (5.5). The top right shows Eq. (5.6) with w(-) of
Eq. (5.7). The third, lower left, shows Eq. (5.6) with w(-) of (5.8). The final
panel provides an estimate based on combining 42 individual images. This
last image may be viewed as what the earlier estimates based on a single
image ascribe to be.

Through the inclusion of the multipliers, the peaks have become
more substantial and better separated. Also, the estimates show better
approximations to a three-fold symmetry. Details of the data collection
and further details of the analysis may be found in Brillinger et al. (1989,
1990).

The Fourier transform is useful in this example firstly because of the
lattice periodicities and secondly for the central limit theorem result suggest-
ing specific estimates of the s, of Eq. (5.6) namely for s,z,k one takes the
average of the squared moduli of Fourier coefficients thought to be signal
free.

There are extensions to the 3D case, see Henderson et al. (1990), Wenk et
al. (1992).

5.2 Seismic Surface Waves

Various sound waves are transmitted through the Earth following a seis-
mic disturbance, in particular surface (or Rayleigh) waves. These are
vibrations whose energy is trapped and propagated just under the sur-
face. The waves have sinusoidal form and are prominent in the later part
of a seismogram. For example see Fig. 3 for an event that was recorded
in Uppsala, Sweden. These waves have the interesting aspect of having
been discovered mathematically. For basic details see Aki and Richards
(1980) and Bullen and Bolt (1985).

Consider modelling that part of a seismogram where the Rayleigh waves
occur. Let Y(x,t) denote the vibrations recorded at distance x from the
earthquake source, as a function of time 7. With a layered crust model the
theoretical seismogram is a solution of a system of differential equations
with associated boundary conditions and may be represented as

J e ARV R(N) dA
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Figure 3. The Siberia-Upsalla dynamic spectrum as a function of fre-

quency and velocity as computed from Eq. (5.11). The vertical trace is the
seismogram as a function of velocity.

Here, when x =0
J " i (b4 1 0,

represents the vibrations at the earthquake source. The solution in Eq. (5.9)
comes from substituting a particular solution exp{—i(A7 — kx)} into the
differential equations and matching boundary conditions, see Aki and
Richards (1980). One writes k(A) = A/e(A) with ¢(\) the (phase) velocity
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with which the wave of frequency A travels. The functions k(-) and ¢(-)
depend on the transmission medium.

In the case that x is large one can use the method-of-stationary phase,
described in Section 3.1, to see the sinusoidal form of the waves. Specifically
for large x, Eq. (5.9) is approximately

RON) exp{—i(At = k(A)x)} (5.10)

with ), the solution of
d
o {M—k(MNx} =0

that is k'(\,) = t/x = 1/U(),). Here U()\) is the group velocity, the velocity
with which the energy travels, at frequency A. The phenomenon of waves
with different frequencies travelling with different velocities, as occurs here,
is called dispersion.

Given an earth model, 6, that is a collection of layer depth, velocity and
density parameters, one can compute the group velocity U(A]#), see Bolt
and Butcher (1960), Aki and Richards (1980). For frequency A and param-
eter 6 there may be several possible dispersion curves U,(A|6),n =0,1,2,...
called modes. Dynamic Fourier analysis provides a way to see these
modes, and is presented in Fig. 3. The concern of the example of this
section is to estimate 6.

The event studied originated in Siberia, 20 April 1989, and the trace was
recorded at Uppsala, Sweden. Figure 3 provides a grey scale display of
energy as a function of velocity and frequency. It is computed as

2

Zhs/S (1 —s)e ™ (5.11)

§s==5

with ¢ = xy/v, v velocity, x; distance to source and A(-) a convergence factor.
One sees waves of about 0.07 cycles/second arriving first. Figure 3 also
shows the dispersion curves U, (A|6) for one fitted earth model. Some further
details are given in Brillinger (1993).

The velocity-frequency curves, U,(A|f), may be inverted to frequency-
time curves A = \,(¢]0). To estimate 6 one can then consider choosing 6, «
to minimize

Z‘ I)— i(A1—k(N6) \‘u (/\ia) d\

where « is some parametrization of the source motion. One approach is to
approximating the integral in Eq. (5.9), is to take R(-) piecewise constant,
linear in . Figure 4 provides the results of such an analysis. Graphed are

2
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Figure 4. The top trace is the seismogram as a function of time. The middle
is the fit based on Eq. (5.9). The bottom is the difference of these two.
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the series, the fit and the residuals. The standard errors might be computed
as in Richards (1961), focussing on the nonlinear parameters 6 and acting as
if the noise series was white. An improved estimation procedure is needed,
for the residual series of Fig. 4 suggests the presence of signal-generated
noise.

Even though this particular situation is clearly nonstationary, Fourier
analysis has been basic to addressing it. This is a consequence of the pres-
ence of dispersion. The example is also of additional interest since one has a
Fourier transform of two variables whose support lies on several curves, see
Fig. 3. This type of plot allows inference of the presence of higher modes
and assessment of the fit as well.

5.3 NMR Spectroscopy

Nuclear magnetic resonance is a quantum mechanical phenomenon
employed to study the structure of various molecules. In an experiment,
one creates a fluctuating magnetic field, X(¢), encompasing a substance
and then observes an induced voltage, Y(¢). Hennel and Klinowski (1993)
is one general reference.

If S(7) is a vector describing the state of the system at time ¢, then the
fluctuations are described by the Bloch equations

d_?[EQZ a+ AS(r) + BS(n)X (1) ' (5.12)
and the measurements by
Y (1) = ¢"S(¢) + noise (5.13)

with ¢ depending on the geometry of the experiment. The principal param-
eters are frequencies of oscillation and decay rates. The parameters of
interest sit in the matrices A and B, see Brillinger and Kaiser (1992). The
entries of A and B have physical interpretations, e.g., the diagonal entries of
A represent occupancy probabilities.

Equations (5.12) is interesting for being bilinear. It can be solved, sym-
bolically, by successive substitutions, obtaining

1 [ S .
S(r) =C+ J eICX (s) ds + J J AUTIBeATICX (1) X (s) drds + - - -

with C = —A~'a. If A is written Ue*U™' with A diagonal, then the pulse
response, S(¢), is seen to be a sum of complex exponentials and various of
their powers and products. The real parts of the entries of A will lead to the
decay of these components while the imaginary parts represent resonance
frequencies.
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The problem is to estimate the parameters of Eq. (5.12) and thereby, to
characterize the substance. Some of the parameters may be estimated by
cross-spectral analysis and others by likelihood analysis.

Brillinger and Kaiser (1992) present results from a study of 2,3-dibro-
mothiophene. The matrices A and B are 4 x 4 with complex-valued entries.
The parameters include a coupling constant, J and frequencies w4 and wp.
In the experiment the input employed was a sequence of pulses

X(1) = Z M;s(1 - jA)

with A =1/150s, ¢ in seconds and M; the m-sequence given by
M;=M;, \M;_4M; gM;_,, starting at M; = —1 forj=1,...,12.

Figure 5 presents corresponding stretches of input and output together
with the results of a cross-spectral analysis. Specifically the first-order trans-

fer function estimate

smooth {22, Y (e ™][32, X ()e™"]}

p _ = —f )
A= smooth {1 3, X (e ™%} I )

=

is given in Fig. 5. Theoretically its peaks are located at the frequencies

(wa+wp) /2% J £ \J T + (g — wp)/2

and the widths of the peaks relate to a damping constant T5.
In a more detailed analysis the parameters of the model, including initial
state values, were estimated by least squares seeking

mﬁinz |Y (1) = ¢"S(1]6))? (5.14)

f referring to the unknown parameters. In the computations the state vector,
S(1|f) was evaluated recursively. Figure 6 shows the amplitude of the
Fourier transform of the data and of the corresponding fit. (It is usual
to graph an unsmoothed estimate in the NMR literature in order to
obtain high resolution of peaks.) There is an intriguing small peak just
above 60 Hz which recurs when the time series is broken down into
contiguous segments. NMR researchers refer to such a phenomenon as
a “birdie”, but had no explanation for its source in the present case.
Further details may be found in Brillinger and Kaiser (1992).

There are extensions of the cross-spectral approach to the 2, 3, 4,... and
higher dimensional cases, see Bliimich (1985).
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Figure 5. Results of a nuclear magnetic resonance study of 2,3-dibro-
mothiophene. The top left is a segment of the input and below is the cor-
responding output. The right column provides the estimated amplitude and
phase of the (linear) transfer function.
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Figure 6. The modulus of the Fourier transform of the output and of the
corresponding fit derived from Eq. (5.14).
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Figure 7. The top trace is the estimated movement of a microtubule as a
function of time. The middle provides the fit with no shrinkage. The bottom
panel provides a shrunken fit. The dashed lines provide approximate +2
standard error limits.
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In this example the Fourier transform is useful for examining resonance, for
assessing goodness of fit and for understanding the nonlinearity involved.

5.4 Microtubule Movement

As an illustration of wavelet analysis, consider the problem of searching for
jumps in records of microtubule movement. Microtubules are linear poly-
mers basic to cell motility. A concern is whether movement is smooth, or
rather via a series of jumps, see Malik et al. (1994).

If Y(¢) denotes the distance a microtubule has travelled at time ¢, the
model considered is

Y(1) = at + g(1/T) + noise (5.15)
t=0,...,T — 1 with o a parameter related to diffusion motion and g(-) a
step function. The model in Eq. (5.15) will be approximated by

Y(1)=at+ Y yubul1/T) + noise (5.16)

3

for some n. Because of the presence of the term at in Eq. (5.16) the analysis
in the present case is not so immediate, but still all that one needs are local
means. The least squares estimates are obtained by regression of Y on the
¢ (1/T) and on ¢ made orthogonal to the ¢,,. Further details on the fitting
are given in the Appendix to this chapter.

In the experiments of concern samples were taken from the bovine brain.
Specifics may be found in Malik et al. (1994). The top panel of Fig. 7
provides a data trace. Next is an estimate g,(z/T) with w(u), of Eq. (4.7),
identically 1. The final panel an improved estimate based on the multiplier
wu) = (1 - 1/u2)+. The value of n = 3 was chosen having in mind a search
for isolated jumps for this particular data set. Also indicated are approx-
imate +2 standard error limits around the fitted straight line. There is little
evidence for the presence of isolated jumps. The construction of the stan-
dard error estimate is described in the Appendix to this chapter.

The Fourier transform was used here to develop uncertainty estimates,
following on an assumption that the noise was stationary.

6. SOME OPEN PROBLEMS

This Section briefly lists a number of topics, motivated by the examples of
the paper, that appear fruitful for more development.

Foremost among the topics calling out for further research is the theor-
etical and practical development of shrinkage estimates. The ideas are basic.
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The effects are substantial, see Fig. 2 for example. One wonders about
“optimal” choice of the multipliers/shrinkage factors. Perhaps optimal
rates of convergence may be determined and then it be checked which multi-
pliers lead to those. This paper has focused on second shrinkage. Berger and.
Wolpert (1983) develop third shrinkage estimates in random function cases.
Lillestol (1977) studies time series in one case.

In both the surface wave and nuclear magnetic resonance examples,
examination of residuals suggests the presence of signal-generated noise.
Better estimates are needed. Either because the ones used are inefficient or
because the signal-generated noise is basic. In the latter case an appropriate
likelihood function needs to be developed. Thaka (1993) does this for one
case in seismology. If the noise is indeed nonstationary and autocorrelated,
then a novel form of uncertainty estimation technique will be needed. In the
case of the “improved” wavelet estimate, the uncertainty was estimated as if
the shrinkage factors were constant, see Appendix to this chapter. Perhaps a
useful bootstrap procedure could be developed, based on an assumption of
stationary innovations being present.

Quite a different type of problem is the following: develop the aliasing
structure for higher-order spectra in the case of a process observed on a
lattice. This will be particularly complicated in the case of lattices in R’ with
p > 1. Another problem in the case of image estimates, is how to visualize
the associated uncertainty.

The Fourier transforms studied have all been scalar-valued. There are
central limit theorems for processes taking on values in a group. It would be
of interest to obtain corresponding resulits for group-valued Fourier trans-
forms, e.g., in the p-adic case.

7. DISCUSSION AND SUMMARY

The principal interest of the examples of the paper has been in problem
formulation and in addressing particular scientific questions. In each of
the examples, an empirical Fourier transform has played a central role.
With its broad collection of understood properties this transform has
assisted the analyses greatly. The usefulness of second shrinkage, analogous
to the use of convergence factors in Fourier approximation, is also note-
worthy.

The particular groups of the examples have been abelian. General group
theoretic ideas and empirical Fourier analysis have been discussed for other
groups. For the case of the symmetric group see Diaconnis (1988, 1989) and
Kim and Chapman (1993). For the locally compact abelian case see Bril-
linger (1982). For p-adics see Brillinger (1992). The use of p-adics in signal
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processing is discussed in Gorgui-Naguib (1990). For other cases see
Hannan (1969). Key distinctions that arise are abelian versus nonabelian
groups, compact versus locally compact groups, and whether 7 is in a group
or Y is in a group.

There are other transforms that are useful in practice. These include: the
Laplace, Hilbert, Stieltjes, Mellin, with some work having been done for
abstract groups, see Loomis (1953).

The case of lacunary trigonometric series is somewhat like the case of
point processes. Here the Fourier transform has a different form, e.g., for
point process data {r; < 1, < --- < 7y} it is given by

N
Z exp{—iA\7;}
J=1

—00 < A < oc. Such a transform is used in Rosenberg et al. (1989) for
example.

Unemphasized, but important, topics include: the Poisson summation
formula useful in understanding aliasing and the sampling theorem
(Hannan (1965)), abstract fast algorithms (Rockmore (1990)), spherical
functions (Terras (1988)), uncertainty principles (Smith (1990)).

In conclusion we quote J. B. Fourier (1822), Théorie Analytique de la
Chaleur: ‘L étude approfondie de la nature est la source la plus féconde
des découvertes mathématiques.” There is so much evidence in favor of this
remark today.
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APPENDIX

The estimate presented in the middle panel of Fig. 7 is ordinary least
squares. (In many time series situations such estimates are asymptotically
efficient.)

The model shown in Eq. (5.16) is linear in « and the v,,. [t may be written

y=Xvy+Za+e¢

taking Z = [t — 7] and X = [X], with X, =1 for k/2" < /T < (k+1)/T
and 0 otherwise. It is seen to have the form of an analysis of covariance
model. The least squares estimates may be written

&= (2'PZ)"'Z'Py (A1)
7= XX)"'X(y - Z&) (A2)
with P =1-X(X'X)"'X".
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