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Asymptotic properties of spectral estimates of second order

By DAVID R. BRILLINGER

London School of Economics and Political Science

SUMMARY

Let X(¢) (t=0, +1,...) be a zero mean, r vector-valued, strictly stationary time series
satisfying a particular assumption about the near-independence of widely separated values.
Given the values X(¢) (t=0, 1, ...,7 — 1), we construct the statistics: I&% (1) (—o0 <A< c0),
the matrix of second-order periodograms, F¥'% (1), the matrix of sample spectral measures,

£¢%(2), the matrix of sample spectral densities and ¢ (u) (u=0, +1,...), the matrix of

sample covariances. In the paper expressions are derived for the first- and second order
moments and the asymptotic distributions of 1Z%(A), F&% (), 7% (1) and cF%(u). Our
purpose is to determine the form of these moments and to mdlcate the appearance of the
Wishart distribution as an exact limiting distribution for £Z%(A). It has previously been
suggested as an approximation.

1. INTRODUCTION

We consider asymptotic properties of second-order statistics based on sample values from
a strictly stationary vector-valued time series. The series is assumed to possess moments
of all orders and to be such that values of the series, well separated in time, are nearly
stochastically independent. This weak span of dependence requirement is formulated as
Assumption I. It is a principal and unifying assumption of the theorems presented.

The statistics considered are based on the matrix of second-order periodograms. Our
method of proceeding is to derive a general theorem on the asymptotic behaviour of the
periodogram, including a necessary uniform error term, and then to deduce the behaviour
of the other statistics from this. In fact, the periodograms are based on the discrete Fourier
transform of the sample. A lemma of Brillinger & Rosenblatt (1967) indicates the elementary
asymptotic sampling properties of this transform. The work of Tukey (1967) indicates the
extreme rapidity with which it may be calculated and the consequent quick calculation of
the statistics of this paper. In addition the pleasant analytic properties of Fourier trans-
forms are well known. We have therefore been led to take the periodogram as the basis of
our work for three distinct and important reasons. Our work differs from much of the
previous work in giving the periodogram such an important position. A further important
distinction from previous work is that no assumption about the linearity of the underlying
process is required for the results presented here.

We prove that distinct values of the periodogram tend to be asymptotically independent
and have Wishart distributions. The sample spectral measure, F#% (1), tends to be Gaussian
with a spectrum of order four, a trispectrum, appearing in its distribution. The sample
autocovariance function, ¢k (u), is also seen to be asymptotically Gaussian, the distribu-
tion again involving a trispectrum. We demonstrate the convergence of these statistics,
considered as random functions of A and u respectively, to limiting Gaussian processes.

Two limiting distributions are seen to appear in the case of the sample spectral density
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376 Davip R. BRILLINGER

matrix. Under one limiting process it tends to be Gaussian and under a second it tends to
have a Wishart distribution.

We commence to set down notation. Let X() (=0, +1,...) be a strictly stationary
r vector-valued time series all of whose moments exist. Set

E{X(t)} = cx, (1-1)
BIX(t+) - cx} {X(0) —ex}] = cxx(@) (u=0, £1,..). (1-2)
Suppose _§] lexx(u)| < co. (1-3)

Here |cx x ()| denotes the matrix of absolute values. We may then define fy y(A), the 7 x r
matrix of second-order spectral densities, by

fxx() = @M 3 cxx(u)exp(—idu) (—oo<A<o0) (1-4)

u=—o

and Fx x(A), the matrix of second-order spectral measures, by
A
Fax() = [ fxx(de (0<a<m), (15)
0

We suppose that X(¢) has a weak span of time dependence as indicated by Assumption I.

We construct estimates ¢F (u), £&% (A1) and FE4(A) of ¢x x(u), fx x(A) and F y «(A). These
estimates are based on If% (1), the matrix of second- order periodograms. Thislast is derived
from the finite Fourier transform of an observed stretch of data, X(¢) (t=0,1,...,7" —1).

We determine asymptotic expressions for the cumulants of ¢k (w), IF%(A), F(T’ (A) and
f7%(A) and from these cumulants are able to identify the limltlng distributions of the
appropriately standardized estimates. We also consider the weak convergence of the
sequences of stochastic processes

{c&h(u) (w=0, +1,...)}, {FEQA)(0<A<7)} and {$F%(A) (—oo<A <o)}
We do not assume that X(¢) is a linear process.

In the paper W,(v, ) will denote an » x * symmetric matrix-valued Wishart variate with
variance-covariance matrix = and v degrees of freedom. Let W¢(v, Z) denote an rxr
Hermitian matrix-valued complex Wishart variate with variance—covariance matrix Z and
v degrees of freedom. This last distribution is discussed by Goodman (1963). For real
matrices A, B and Z = A +¢B, write

R _
=[5 Al

then the two are connected by W (v, )% = W,,(v, ZE). We set

AB]

-1
AD(Y) = 3 exp(—ii), (1-6)
=0
1 (A =0, mod2m),
= 1-7

7A) {O otherwise. } (1-7)

For (¥,,Y,, ..., Y,) a random variable with real or complex components, we denote its joint
cumulant of order k by cum (Y, Yy, ..., 7). (1-8)

This is the coefficient of ¢, £, ... ;, in the expansion of its cumulant generating function. For
X, Y complex-valued, cov (X, Y) = E[{(X - B(X)}{Y - E(Y)}'].
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Asymptotic properties of spectral estimates of second order 3717

2. PARAMETERS AND ESTIMATES

Let the r vector-valued series X(t) have real-valued components X, (¢) (=1, 2, ..., 7). All
moments are assumed to exist and we set

cal, ceey ak(tla ey tk—l) = cum {Xal(tl + T): ey Xak_l(tk—l +T): Xak(T)}
(@ eony = 1,2, 0,15t .., bl ,7=0, £1,..;k=1,2,...) (21)
using the assumed stationarity. We then set down

AssumprioN I. X(t) is a strictly stationary series all of whose moments exist. For each
J=12,...,k—1 and any k-tuple a,, a,, ..., a; we have

t Zt [tiCay oovap (b s tpy)] <00 (E=2,3,...). (2-2)
15 e ll—1

Because cumulants are measures of the joint dependence of random variables, (2-2) is
seen to be a form of mixing or asymptotic independence requirement for values of X(¢) well
separated in time. In the case of a Gaussian series, because cumulants of order greater than
2 vanish, Assumption I is satisfied if one requires only

S Jtowlt)] < oo, (2:3)

t=—

where c,,(¢) is the autocovariance function of X, (¢) (a=1,2,...,7).
If X(#) satisfies Assumption I we may define its cumulant spectral densities by

k-1
5 1)

fal ...,a,]c(/\l’ "':Ak—l) = (Zﬂ)—k+1 Z cal,.‘.,ak(tb --"tk—l) exp (_1’
J

tlauo:fk—l
(—0<A<00; @y, .., =1,2,...,7; k=1,2,...). (2:4)

If & = 2, the cross-spectra f, ,,(A) are collected together in the matrix fx x(A) of (1-4).
Suppose now that a stretch, X(¢) ((=0,1,...,7 —1) of the series X(¢) is available. For

—00 < A < 00, we define 1

dPQ) = ¥ exp(—iA)X(), (2-5)
t=0

the finite Fourier transform of the given stretch of data. Denote the entries of d$¥’(1) by

dP(A) (@=1,2,...,7). Following Brillinger & Rosenblatt (1967) one has

Lemma 2-1. Suppose Assumption I is satisfied, then
k

um D)o DA} = QY e ) AP (£2) £ 0. (2

i=1

The error term O(1) is uniform in Ay, ..., A, as T — oo.
Suppose that E{X(f)} = 0; then this lemma indicates that one might base estimates of

fx x(A) upon IE%(A) = (2aT)-1dD()) a(Tv(,\), (2-7)

the matrix of second-order periodograms; the bar denotes complex conjugate. As an estimate

of F x x(A) we consider N

FEW) = [ 1ekia)da (0<A<m) (2:8)
0

24-2
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378 Davip R. BRILLINGER

As an estimate of Cx x(u), in this case where E{X(¢)} = 0, we consider

mk(u) = X X(E+u)X'()

0<t, tHusT~1
=J‘ 1E% (@) exp (dua) dot. (2-9)

Before constructing an estimate of fy 3 (1), we set down

Assumprion II. Let H(a) (—m <o <) be @ weight function that is bounded, is symmetric
about 0, has a bounded first derivative and is such that

" Hw)do = 1. (2:10)

Given B, > 0, we then set
H")a) = B7*H(Brta). (2:11)

In later sections we will consider the cases: B, = K/T; By — 0, BpT — o0 as T — o0;
B, constant with respect to 7.
As an estimate of fy (), we take

%) = H‘T’ ) I (A~ a)

= (2m)~t Z mh(w )(exp(—-iu)t)f’r HDYa)exp (—iua)de.  (212)
u=—T+1 —7

We have been led to consider a variety of statistics based on I¥4(A), the matrix of second-
order periodograms, and therefore turn to an investigation of its asymptotic properties.

We note that Bartlett (1966, p. 337) has suggested handling the sampling theory of
vector-valued series X(f) by means of arbitrary linear combinations a'X(¢), with o an r
vector.

3. THE PERIODOGRAM

Because all of the moments of X(¢) are finite, all of the moments of I%(A) will be finite.
We turn to a determination of the asymptotic cumulants of I€%(A). We do this by using the
rules developed by Leonov & Shiryaev (1959) for determining the joint cumulants of
polynomial functions of random variables.

Denote the entry in the ath row and bth column of I¢%(A) by I$P(A) (a,b=1,2,...,r).We
then have

TurorEM 3-1. Let X(t) satisfy Assumption I and have mean 0. Then

B (A} = far,(A) + O(T), (3-1)
with O(T 1) uniform in A,

cov {I(aTb)l A ) &fb)z } T 2|A(T) A A |2fa1 az(A fb1 b\ T )
+ T2 |[AD(A; + A,) lzfalbz (A fopa{ — A1)
+ 27rT_lfa1 byag bz(/\b - Al) - /\2) + T—2R(T)(/\1’ /\2), (32)

where there is a finite K such that
|BO(A, Ag)| < KYAD(AL+ Ag)| + [AD(A, = Ag) [} (3:3)
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Asymptotic properties of spectral estimates of second order 379
and cum {I{5)(A), ..., IE) (A}
= T EAD g+ v1) .. AP+ ) foy a, (1) - fop 0 () + O(T). - (3+4)

Here the summation in (3-5) extends over all partitions

{(cl’ /'Ll)a (dla Vl)}’ te {(Clc> /'Llc): (dk’ Vlc)}: (35)

wnto pairs, of the quantities
(“v A1): (bl: - /\1)> A (alc: Ak‘)’ (blc7 - /\Ic) (3°6)
excluding the cases with p; = —v; = A, for some j, m. The error term, O(T 1), in (3-4) is uniform

M A, ..., Ay
The proofs are given in §8.
From (3-4) we can derive the following corollary.

CoroLLARY. Under the conditions of the theorem, if one of A;+A,, = 0 (mod2m) or
A;— A, = 0 (mod 27) is not true for each j, m = 1,...,r, then

cum {IL)(Ay), ..., IEB) (A )}~ 0 as T—oo (k=3,4,...). (3-7)

Let us now determine the limiting distribution of I'f% (1) on the basis of the limiting values
of its cumulants. We have,

THEOREM 3-2. Let X(2) satisfy Assumption I and have mean 0.

If 0 <Ay < Ay < oo < Ay < 71, then TIEL(A), ..., IE%(A,) are asymplotically independent.
If A £ 0 (mod ) then IE%(A) tends, in d@smbutwn to WE{, £ x(A)}. If A = 0 (mod 7), then
it tends in d@stmbutwn to WAL, £ x(A)}.

The different asymptotic distributions in the cases A & 0 (mod ) and A = 0 (mod 77) reflect
the fact that £y (A) and I§%(A) are real-valued in the latter case.

The asymptotic behaviour of the periodogram, I(Z)(A), of X (¢) has been considered by
Bartlett (1966, p. 304), Grenander & Rosenblatt (1957), Hannan (1960, p. 52) and Kawata
(1959). Walker (1965) determines the asymptotic distribution of I(5(A) for X (t) a linear
process. Rao (1967) considers asymptotic properties of the cross-periodogram I3(A), @ == b
of X (f) and X, (t); see also Slutsky (1934) and Olshen (1967).

4. THE SPECTRAL MEASURE

If the series X(¢) (=0, +1,...) has spectral density matrix fy y(A), then Fx(A), the
matrix of spectral measures, is given by

A
Fyx(d) = f frx(@)da (0<A<7). (£1)

Outside this range Fx x(A) is taken to have period 27 and satisfy F ¢ o(—A) = Fxx(A). In
view of (3-1) one can consider estimating F x +(A) by

FEE() = f (@) de (0<A<m). (+2)

Because of its elementary dependence on I¥% (1), we can determine the asymptotic moments
of F¥%(A) directly from Theorem 3-1. We have
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380 Davip R. BRILLINGER

THEOREM 4-1. Let X(¢) satisfy Assumption I and have mean 0. Then
E{F&ﬂ)l()tl)} = F, 5, (A) +O0(TY), (4-3)

min (Ag, Ag)
cov (0, P = 21 [ @)~ )

A A
[ [ fuaane — o —B)dudpl+ 0@ 110g D) (4)

and cum {FE) (A), ..., FEEL (A} = O(T 7+ (k=1,2,...). (4-5)

axbg

We see that F&%()) is an asymptotically unbiased and consistent estimate of Fyy(A).
In fact one has

CorOLLARY. Under the conditions of the theorem
prob{lim F¢,(A) =Fxx(A)} =1 (0<A<m) (4-6)
T—o0
and, in fact, prob{lim sup |F¥%A)—Fx(A)|=0}=1. (47)
T—o 0<AS7

We see that FE%(A) is a strongly consistent estimate of Fx (1) with the convergence
uniform in A.

Let us now turn to the consideration of the asymptotic distribution of F{%(1). We may
use Theorem 4-1 to evaluate the limits of the cumulants of TH{FE%(A) — Fy x(A)}. The limits
of cumulants of order greater than two are seen to vanish and we may conclude

THEOREM 4-2. Let X(t) (=0, +1,...) satisfy Assumption I and have mean 0. Then
THFE%(A) = Fxx (M)} -, THEE R (A) — Fx x(4)}
are asymptotically jointly multivariate normal with covariance structure given by

lim cov [TH{FT) (1) — B, (1)}, THEFL), (1) — F p, (02)}]

T—o

min (g, i) I
— o f Faron@) o ) dec + 2 f f Foutroupe (@ — 0t B) dacdf

0
(Mo oo = Agy oy Ay a5, b; = 1,2, 755 = 1,2,k k=1,2,...). (48)

This theorem indicates the asymptotic normality of finite collections of the FZ%(1). We
turn to stronger results concerning the convergence of the stochastic process

[THFEL(A) —Fxx(A)} (0<A<7)]

to a certain Gaussian process. We first set down some terminology.
For 0 < @ < 1, Lipy*"(0, ) will denote the Banach space of r x » matrix-valued functions
Y(A) (0<A<m), Y(0) = 0, with norm

“Y(A)“=0§I;IinlY(/‘)’+o sup |e[=*|Y(A+e)—Y(Q)|. (4-9)

<A, A+e<n

In the case r = 1, this space is discussed by Lamperti (1962).
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Asymptotic properties of speciral estimates of second order 381

A sequence {YD(A)(0 < A< @)} (T=1,2,...) of stochastic processes, with values in
Lip5*7(0, ), is said to converge wealkly in the topology of Lip,*” to a process Y(A), with values

s en .
in Lipe™(0,m), if lim B[F(YD)] = B{F(Y)} (4-10)
T—o
for any bounded real-valued function (. ), continuous on Lip5*"(0, 7).
We may now state

THEOREM 4-3. Let X(t) (¢=0, + 1, ...) satisfy Assumption I and have mean 0. Then, for any
a with 0 < a < %, the sequence of processes

[THFE% ()~ Fxx(A)} (0<A<)]
converges weakly in the topology of Lip}X" to an r x r matriz-valued Gaussian process

{Y()) (0<A<m)}
with mean 0 and

min (A Ag)
cov (%, 5. (A1), Yo (Aa)} = 2 j Foras@) founs( —t) dot
0
Ay
+2ﬂf falbmzb2 —a, =fydadf (a;,b;=1,2,...,7;j = 1,2). (4-11)

If X(¢) satisfies the condition of the theorem, we are now able to assert the convergence in
distribution of functionals such as

Tfoiggan(T) —Fxx(V), (4-12)
g f f o= Bl 4 [FEk(e) = FEk(B) ~ Foxx(e) + Facx(B)]*dcdp (413)

to corresponding functionals based on the Gaussian process Y(A) of the theorem.
Because

17%(Q) /\{FgfjK )} (0<A<), (4-14)

we may expect I¢%(A) to exhibit some of the properties of the (generalized) derivative of the
process Y(A).

Ifr = 1and X(¢) is a linear process, then Grenander & Rosenblatt (1957) demonstrated
the weak convergence of 73| F(T)(2) — F(A)| to a Gaussian process in the coarser topology of
uniform convergence. Ibragimov (1963) and Malevich (1964, 1965) have considered the
weak convergence of T3 F™(A)—F(A)| in the case that X(t) is Gaussian with square
integrable spectral density.

5. THE AUTOCOVARIANCE FUNCTION
Let X(¢) (¢=0, +1,...) denote an r vector-valued stationary series with autocovariance
f .
UnCton . - (w) = B(X(t+u)— BX(t+u))] [X(O) - BX®O)) (w=0, +1,...). (5-1)

If E{X(t)} = 0, and the values X(¢) ((=0,1,...,7—1) are available, then we can consider
estimating cy x(u) by

mfk(w) =T % X(t+u)X'(t) (u=0, £1,...). (5-2)

0<t, t+u<?7-1
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382 Davip R. BRILLINGER
We have seen that mk () = f ! I X (o) exp (duer) dow (5-3)

and so we may determine the statistical properties of m% («) from those of I (). Theorem
3-1 gives directly

TEEOREM 5-1. Let X(2) (t=0, + 1, ...) satisfy Assumption I and have mean 0. Then
E’{mﬁf}’b)l(ul)} = ma,bl(ul) +0(T1), (5-4)

cov m('” (ul) azbz(u2)}

27
=T [f xP {101ty — Us)} f,00(00) fi, e — ) dex
0
27
+f0 eXP {100(Ug + Up)} fr 104 (0) fiyag( — ) det

27 27w
+ 277f J‘ exp {8(aty Uy + 0o Us)} faypyagey (%1, — %15 o) oty d“z] +0(T2logT) (55)
0 Jo

and cum {m%) (uy), ..., mGE), ()} = O(T*+1) (5-6)
Joru; =0, +1,...; sa,b;=1,2,..,155=1,...,kand k = 1,2, .... The error terms are uniform

in each case.

CoroLLARY. Under the conditions of the theorem
prob{lim mJ%(u) = myx(u)} =1 (u=0, £1,...). (5-7)
T—w
Also prob [ lim sup|u—{m%(u) — myx(u)}| = 0] = L. (58)
T—o0 uk0

Let us now turn to an investigation of the asymptotic distribution of finite collections of
the m% (u)

THEOREM 5-2. Let X(t) (=0, +1,...) satisfy Assumption I and have mean 0. Then

THME Y (uy) — My x ()}, ., THOE & (20) — My ()}

are asymptotically jointly multivariate normal with covariance structure given by

lim cov [THm{), (wy) — My, (wr)}, THMES, () — 1y, (u2)}]

I—w

27
= fo exp {iov(u; — uz)}fa, as fb1 By ) do +f exp {io(u, + u2)}fa1 bz("‘)fb1 ap(— ) de

2n (27
+ 277‘[0 fo exp {1(oty Uy + A Us)} fy, by azbs (01 — Oy, Olo) docy dot,. (59)

Let us turn to the derivation of a theorem concerning the asymptotic behaviour of the
function {mT%(w) (=0, +1,...)}. We first introduce 2/%*". This is the image of Lip}*"(0,7)
by the Fourier-Stieltjes transform, that is the space of 7 xr matrix-valued sequences
{y(u) (u=0, £1,...)} of the form

y(u) = fﬂ exp (tua) dY(a), (5-10)

where Y(a) e Lip}*"(0,) for 0 < o« < 1. As norm of this y(u) we take | Y(2)|.
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Asymplotic properties of spectral estimates of second order 383

Elementary calculations indicate that %" is a subspace of the Banach space of » x r
matrix-valued sequences, y(%) (v = 0, £ 1, ...), with norm

[y(w)]. = sup |y(w)| + sup [u=**y(w)|. (5-11)
u u+0
We have
THEOREM 5-3. Let X(t) satisfy Assumption I and have mean 0. Then, for any o with

0 < a < 3}, the sequence of processes {THmEk (u) — myx(u)} (w=0, + 1, ...)} converges weakly
in the topology of %" to a zero mean Gaussian process {y(u) (u=0, + 1,...)} with

cov {?/a, bl(u1)> Yay bz(uz)}

2
= [ exp fiatuy ~ ) ooy~ @)t [ x (il 0} o O, ~ )

27 (27
+27ffo fo exp {#(ay Uy + Ao Ua)} fu, b, 0y (%1, — 015 o) doty dety. (5-12)

Turning to related work and the case of a real-valued series X ,(¢), we note that Slutsky
(1934) considered asymptotic properties of m{Z) () in the Gaussian case. Parzen (1961) gave
conditions for the convergence of m{%L)(x) with probability 1. Bartlett (1946; 1966, p. 285)
and Parzen (1957b) developed formulae for the asymptotic variance of m%)(u). Walker
(1954), Lomnicki & Zaremba (1957, 1959), Parzen (1957a) and Anderson & Walker (1964)
considered the asymptotic normality of m{%) (%) in the case where X () was a linear process.
Rosenblatt (1962) considered asymptotic normality in the case where X ,(¢) is Gaussian.

Bartlett (1966, p. 286) noted that, if instead of the autocovariance function m{%(u), one
considered the autocorrelation function mg%)(u)/m{%)(0), and X ,(¢) was a linear process, then
only second-order spectra appear in the asymptotic variance formula. Elementary calcula-
tions based on (5-9) indicate that this result does not continue to hold in the case that X ,(t) is
not a linear process.

6. THE SPECTRAL DENSITY

We turn to the investigation of estimates of fx x(A) the matrix of second-order spectral
densities. Let H(a) (—m <a<7) be a weight function satisfying Assumption II. Let B,
be a scale factor depending on 7'. Suppose X(¢) (¢=0, +1,...) has mean 0. Let

R (w f HD(a) exp (—tuce) det, (6-1)
where H™)(«) is given by (2-11). As an estimate of % (a), we propose

T-1
T4 (A) = (2m)1 ——£:T+1h(1) w) M (w) exp (— iud)

=f HD (o) IEY (A — ) dex, (6-2)

that is a weighted average of the periodogram. We may prove

THEOREM 6-1. Let X(t) (=0, + 1, ...) satisfy Assumption I and have mean 0. Let % (A) be
constructed in the manner of (6-2) where H(a) satisfies Assumption 11. Then

B[ (A} = f | H(@)f (A~ Bra)dac+ O, (6-3)
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384 Davip R. BRILLINGER

cov {fSB) (A, F B A}

azbz

{ f H(@) By — Ay — ) fo, 1A — 0) i (2~ Ay

+ H(a)ﬂ(az+M—a)falbzml—oc)fm%(a—mda}

+ 277T—1j B H (0ty) H(ta) fay byagby( A1 — 01, 0y — Ay, 2ty — Ag) doty dary
+0(T2logT) (Bp=1), (6-4)

cov {f{ (A0, iR (A)} = B?T‘l{ a (a)Zda} [7(A1 = A2) foy 0 (A1) fo (= A1)
+ (A1 + A2) fa,55(A0) [, 0, — A1)
+O0(B7*T-2) (Bp—>0, BpT 00 as T —>0).
O(T—*+) (By =1),
(T)
Abso. eum {fify A, - Jin M)} = {O(B;k+1'_r~k+1) (Bp—>0, ByT 00 as T—>o0).
Turning to the asymptotic distribution of £ (A), we have
THEOREM 6-2. Let X(2) (t=0, +1,...) satisfy Assumption I and have mean 0. Let
£ (A, - £ (Ay)

be constructed in the manner of (6-2), where H () satisfies Assumption I1. If BpT — o0 as
T — 0, then

(Bp TP I () — BEGR (A}, - TR L) — BEL,A)]] (k=1,2,...)

is asymptotically normal with mean 0 and covariance structure indicated by (6-4).

On occasion an alternative form of asymptoticdistribution may proverelevant. Suppose we
estimate f5 (1) by a simple average of periodograms. For example, with s(7'), m integers
and 277s(7T')/T near A, consider

(2m+1)-1 Z IEL2m{s(T) + s}/ T] (A=0, mod) (6-5)
and (2m +2)—1 {I%’}((A) + 7% 14 (A +27s/T); (A=0, modr). (6-6)

Then one has

THEOREM 6-3. Let X(t) (t=0, +1,...) satisfy Assumption I and havemean 0. Let m be fixed
and 2ns(T)|T — A as T — co0. If A = 0 (mod 7r), (6-5) tends in distribution to

2m+ 1)1 WE2m+1,fx ¢ (A)}.

If A = 0 (mod ), (6-6) tends in distribution to (2m+ 1) W{2m+ 1, fx x(A)}.
In the notation of (6-2), the estimates (6-5), (6-6) correspond to a By of order 7.
One may prove a theorem concerning the weak convergence of the process

{fILA) (—co<A<o0)}
in the case By = 1. The theorem follows directly from the weak convergence of
FEN) (0<A<m)
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and the representation

(A f H(o) dFEA - ) + FDA —a)}. (67)

The theorem involves the weak convergence of T3[fF%(A) — B % (A)}] to a zero mean
Gaussian process with covariance structure indicated by (6-4) and is clear in view of our
previous results.

The asymptotic mean and variance of power spectral estimates were investigated by
Grenander & Rosenblatt (1957), Parzen (1957a,b) and Blackman & Tukey (1958, p. 16).
Asymptotic normality has been demonstrated, under various conditions, by Rosenblatt
(1959) and Brillinger (1965, 1968). Bartlett (1950) made use of the y? distribution for
smoothed periodogram estimates. The approximation of the distribution of fif%(A) by a
complex Wishart was suggested by Goodman (1963). Wahba (1968) proves that expression
(6-5) has the form (2m + 1)~ WE{2m + 1, fx x(A)} -+ O, (T~*) + O, (m1). This does not yield our
Theorem 6-3, however.

7. DEPARTURES FROM ASSUMPTIONS

The most common departure from the assumptions of this paper will be for the series to
have non-zero mean.

Let Y(¢) satisfy Assumption I. Let X(¢) = Y(t) — E{Y(#)}, then X(¢) will have zero mean
and the results of the paper will apply to it. Suppose Y(¢) (¢=0,1,...,T — 1) are available.
Set

Yo~ 11'S Y@y (t=0,1,....T—1) (7-1)
=0
and YD) = Y(t) - YD = X(1)+ [B{Y($)} - YD] (¢=0,1,...,T—1). (7-2)

Our procedure will be to replace the statistics, of the paper, based on X(f) (¢!=0,1,...,7—1)
by statistics based on YO () (t=0,1,..., T —1).

In many cases the difference Y™ — E{Y(#)} is asymptotically negligible and the results
of the paper continue to hold. See the discussion of Walker (1965), Parzen (1957a,b),
Hannan (1967), for example.

There are immediate extensions of the theorems of this paper to apply to the case of a
continuous time process X(¢) (— oo < ¢ < o0) satisfying

f f |tiCay ... apbrs ooos b)) | By oy < 0O (@g, s =1,2,...,mk=1,2,...).
15 oo b1
(7-3)
8. Proors
In this section we present proofs of the various theorems of the paper.
Proof of Theorem 3-1. Let us determine
cum {d(T) ) dgf)( - A1): ceey dng)(Ak) dg)q]:)( - Ak)}

as (3-1), (3-2), (3-3) follow directly from it. We use a result of Leonov & Shiryaev (1959) and
argue as did Brillinger (1965), Brillinger & Rosenblatt (1967) and Brillinger (1968). The
cumulant in question is given by

2 cum (C,)...cum (G, ), (81)

v,
v P
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where [, ..., C, ] is an indecomposable partition of the elements of the table
diP(Ay),  diP(—
: : (8-2)
d&-’/’:)(Ak): df}f)( - /Ik)
and the summation in (8-1) extends over all such indecomposable partitions. We may now
use Lemma 21 to evaluate cum (e and obtain (3-1), (3-2), (3-3) by retaining only the
principal terms.
Proof of Corollary. This follows from the fact that 7-! |A@(A)| — O unless A = 0 (mod 2).

Before turning to a proof of Theorem 3-2, we first note that the characteristic function of
a W,(v, Z) variate is given by

det (I— 2:Z0)-¥ (8:3)
(Anderson, 1958), while that of a W (v, Z) variate is given (Goodman, 1963) by
det (I—iZ@). (8-4)

These are both analytic in a neighbourhood of the origin so the variates are determined by
their moments.
We can now turn to

Proof of Theorem 3-2. The stated asymptotic independence follows from the Corollary
of Theorem 3-1.

Suppose A == 0 (mod 7), then from (3-4), it follows that

Thfi cum {I{(A), ..., I A} = Zf, 4/A) - fopa(A), (8-5)

where the summation in (8-5) extends over permutations (cy, ..., ¢;) of (@, ..., @), permuta-
tions (dy, ...,dy) of (by,...,b), no d; = b, if a; = a,,. The rules of Leonov & Shiryaev
indicate that (8-5) is cum( rabes - Wagy,)» Where Wis WE {1, £ ¢(A)}. Because the complex
Wishart is determined by its moments, the proof is completed in the case A & 0 (mod 7).
The case A = 0 (mod 7) follows in a similar manner.

Before proceeding to the proof of Theorem 4-1, we note two properties of the function
AT g).

To begin, we have (Edwards, 1967, p. 80)

f” |AD(oty — aty)| dxy = O (log T). (8-6)
0
Alsofor0 < a;, A, <7
A o) Ap<oy) }
—1| A(D) _ 2 — 2 1 .
fo T AT e = )| dery {27r+0(T—1) (Ag>ay). (&)
This last expression follows from the fact (Edwards, 1967, p. 79) that
2m
f T-1|AD o) 2de = 27, (8-8)
0
Proof of Theorem 4-1. We note that
o) = [ 18 da; (i=1,2.0), (89)

and so results may be made to follow from corresponding results concerning I flg;,}(ocj).
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Relation (4-3) is seen to follow directly from relations (4-2) and (3-1). Turning to (4-4), from
(3-2) one has

cov {FT)(A,), FE,(A.)}
Ay
= fo fa1 @(“1)fb1ba( — o) U‘O T-2 |A(T)(“1 — o) ’ 2 do‘z} day
A Ay
o) o —e) { [ 72 1800 4 ) 20
A [fA,
20 [ [ o~ ) gy + OT21og T, (3:10)

and the indicated result follows from the previous discussion.
Expression (4-5) follows from (3-4) directly.
Proof of Corollary. Equation (4-6) states that F&%(A) tends to Fyx(A) with probability
one. Now (4-3), (4-4) and (4-5) indicate that
E{|F4(1:f 1( ) a1b1 1)|4} O(T 2) (a'l: b1=1,2,...,7’).
Equation (4-6) now follows from the convergent series criterion.
Because Fyx(A) is a continuous bounded monotonic function of A, (4-6) implies (4-7)

following a theorem of Polya.
In the proof of Theorem 4-3 we will make use of the identity

EYY,..Y,)= Zy]cum{l’;- (jen)}...cum{Y; (jev,)}, (8-11)

where the summation is over all partitions (vy,v,,...,v,) (p=1,2,...,k) of the integers
1,2,...,k

Proof of Theorem 4-3. We note that the various cumulant spectra of X(t) are bounded
following Assumption I. If we note this and use (8-11) above with Theorem 4-3, then for
n a positive integer

| T E(LLGE 0tr) — BTG (0)}] - [1G5)(ctan) — BIGE (otan)}1))|
(A e, ta,)|? AP, o,)[° }

Vzn 1=

7 (8:12)

< KZ

for some K > 0, where the summation extends over all permutations (v, Vs, ..., ,,) of
(1,2,...,2n) and all choices of +.

Therefore,
TrE(|[F(A) — BFG A}~ [FE () — B{FG ()31]*")
(T) 2 (D), 2
KZJ‘ J‘ |A ocylioc )| |AMe,,,  +a,,)| da, ... docy,
” T
S L|A—p|r (8-13)

for some L > 0 as we may integrate out » of the a’s to remove the A® functions and then

note that the remaining o’s range from g to A.
It follows from (3-1) that there exists M > 0 such that

[LE{FE A} = FEN)] — [B{F G ()} = FEY)]| < M [A—pe]. (8:14)
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The combination of (8:13) and (8-14) gives
B [{FGN) ~ Ey(\)} = (D) — En 2 < N |2=pf (3:15)
for some N > 0.

The indicated theorem now follows from the multivariate extension of the principal
theorem of Lamperti (1962).

Proof of Theorem 5-1. We note that
iy (u;) = f I (o) exp (Guoy) doy;  (§=1,2,..., k), (8-16)

and so (5-4), (5-5) and (5-6) follow directly by the arguments used in the proof of Theorem 4-1.
Proof of Corollary. We may write

mé(uy) =f exp (uar) HF () + Fi (o)}

= {FR () + F{E ()} — iufo {F () + FiE) (o)} exp (ucr) dox (817)

if one integrates by parts. Equations (5-7) and (5-8) now follow from (4-6) and (4-7).
Proof of Theorem 5-2. This follows directly as did the proof of Theorem 4-2.
Proof of Theorem 5-3. Because the mapping of Lipi*"(0,7) to &5 indicated by (5-10) is
continuous, Theorem 5-3 follows directly from Theorem 5-4 once we note that
T ) = )} = [ exp () AU o) By (o) + P 0) = oy )
(8-18)
Proof of Theorem 6-1. Expression (6-3) follows directly from (6-2), (3-1) and the definition
of HT)(a). Turning to (6-4), from (6-2) we have
cov {f{T(Ay), fEEL(Ay)} = f f H®ot) HD(0p) cov {IE) (A — 0ty), I (Ag — 0t5)} dixy oty
’ (8-19)
We will substitute into this expression from (3-2). Now in the case that BT — co we have

H(T) )T |AD(y —a)|2dee = HD(y)+O(Bp*T-t) (—m<y<m). (8-20)

Also f |HD(a)| |[AD(y — o) |doe = O(Br'log T'). (8-21)
These two indicate that the covariance in question is given by

T—l{ " HO@) HOMy— Ay — @) f, 0y — ) fy 01— Ay)

—a

" B BOQ £, — ) f, (A — ) fy (o /\l)doc}

+ 2"T_1f ’ H®(0ty) HTN0ty) fo, by ay by (A — o1, 0y — Ay, g — Ag) doty dery

+O(Bz*T-2) + O(B:*T-3log T') (8-22)
from which (6-4) follows.
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Asymptotic properties of spectral estimates of second order 389

Expression (6-5) follows by a similar, but cruder, argument using (3-4).

Proof of Theorem 6-2. We note that all cumulants of order greater than two tend to 0 as
T — co. This gives the result.

Proof of Theorem 6-3. This follows directly from Theorem 3-2.

1 would like to thank Professor J. Durbin for a number of helpful comments.
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