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Chapter 10 

Finite samples and asymptotics 

Chris A.J. Klaassen 

Abstract Willem van Zwet is a scientist and a scholar with a broad spectrum of 
research interests. This is reflected by the five papers in this section, which study 
very different fundamental problems and which have four of his PhD students and 
his youngest son as coauthor. 

10.1 Introduction 

Willem van Zwet is a scientist and a scholar with a broad spectrum of research 
interests within statistics and probability theory with the stress on statistics. This is 
clear from his list of publications. This breadth is obvious also from the selection 
of papers we discuss in this section: asymptotic normality of rank test statistics, 
Hellinger distance and contiguity, estimation of parameters and score functions , and 
consistency and asymptotic equivariance. Willem has tried to instill this attitude of 
broad interest towards research also into his PhD students. 

As a thesis advisor Willem van Zwet has been unparalleled. He didn't suggest 
standard problems to his students, but he has boosted their careers by tackling inter­
esting, fundamental, relevant problems. Most of his PhD students have become full 
professor in statistics (12 out of 16, so far) . Actually the five papers in this section 
all have been written with scientific children, i.e. PhD students, as coauthors, except 
for the most recent one, which has been written in collaboration with his youngest 
biological son Erik. 

One of the distinctions between these five papers is that three of them belong 
to the realm of asymptotic statistics, whereas the other two are of the finite sam­
ple type. Research in mathematical statistics is or should be motivated mainly by 
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real life problems where data have to be interpreted. Since data always come in fi­
nite amounts, the core business of mathematical statistics should be finite sample 
statistics. Typically however, finite sample problems are difficult to handle mathe­
matically. That is why one resorts to approximations, which are obtained typically 
by letting the sample size tend to infinity. This results in asymptotic statistics. This 
approach is applied quite often; actually, to such an extent that asymptotic statistics 
has become the norm, or at least the benchmark at which different techniques are 
compared. 

10.2 Asymptotic Normality of Nonparametric Tests for 
Independence 

David van Dantzig (1900-1959) is one of the initiators of the Mathematical Cen­
tre in Amsterdam. It was founded in February 1947 as a non-profit institute aim­
ing at the promotion of pure mathematics and its applications. The topologist Van 
Dantzig intended to contribute to the reconstruction of Dutch society after the sec­
ond world war by stimulating the study and application of mathematical statistics. 
In his philosophy the statistician should choose for his data a statistical model with 
the weakest of possible assumptions. Therefore, a main theme at the Mathematical 
Centre, the cradle of much of Dutch mathematical statistics, has been the study of 
nonparametric and rank procedures during the first decades of its existence. These 
methods had developed strongly, also internationally, with the monograph of Hajek 
and Sidak (1967) as a milestone. The present paper fits perfectly well in this tra­
dition. It presents conditions for asymptotic normality for a class of rank statistics 
used for testing independence, and it seems to be one of the last ones in a series of 
papers that present weaker and weaker conditions for asymptotic normality to hold. 
We mention Wald and Wolfowitz (1944), Noether (1949), Hoeffding (1951), Hajek 
(1961), and Bhuchongkul (1964). 

Let (X1 , Y,) , .. . , (Xn , Yn) be independent and identically distributed random vec­
tors with continuous distribution function H (-, ·) on IR2 and marginal distribution 
functions F ( ·) and G( ·) . Locally most powerful rank tests of the null hypothesis of 
independence H ( ·, ·) = F ( ·) G( ·) are of the type 

1 n ( Ri) ( Qi ) 1 n Tn = ;:; ~In -;; Kn ---;; =;:;~In (Fn(Xi))Kn (Gn(li)) 

= J J In (Fn(x))Kn (Gn(Y))dHn(x,y) , (10.1) 

where Ri is the rank of Xi among X1 , . . . , Xn , where Qi is the rank of Yi among 
Y1 , ... , Yn, and where Fn(·) , Gn(·) , andHn(· , ·)are the empirical versions ofF(·) , G(· ), 
and H ( ·, ·) , respectively. Assuming existence of functions I ( ·) and K ( ·) on the unit 
interval such that 
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J J [In (Fn(x)) Kn ( Gn(Y))- J (Fn(x)) K ( Gn(Y))] dHn(x,y) = op ( ~) (10.2) 

holds and with the notation 

f.l = j j J(F(x))K(G(y))dH(x ,y) 

we note heuristically that 

Tn-f.l= j JJ(Fn(x))K(Gn(Y))dHn(x ,y) 

- j jJ(F(x))K(G(y))dH(x,y)+op(~) 

= j j {J(Fn(x)) -J(F(x))}K(Gn(Y))dHn(x,y) 

(10.3) 

+ j j J(F(x)){K(Gn(Y)) - K(G(y))}dHn(x,y) (10.4) 

+ j j J(F(x))K(G(y))d{Hn(x,y) - H(x,y)} + op ( ~) 

= j j {Fn(x) - F(x)}J' (F(x)) K(G(y))dH(x,y) 

+ j j {Gn(y) - G(y)}J(F(x))K'(G(y))dH(x,y) 

+ j JJ(F(x))K(G(y))d{Hn(x, y) - H(x,y)} + op(~) 

holds. Consequently, it is intuitively clear that asymptotic normality of Vfi(Tn - f.l) 
holds with limit variance as in (3 .10) of the paper, and that this asymptotic nor­
mality will hold uniformly over appropriate classes of distribution functions H(-, ·) . 
However, the technical difficulties are many, especially since the authors have been 
aiming at minimal conditions. Actually they have replaced (10.4) above by an ex­
pression with 13 terms, 10 of which had to be shown to be asymptotically negligible. 

Since H(-, ·) is not necessarily equal to F(-)G(·) , the asymptotic normality is 
shown under so-called fixed alternatives to the hypothesis of independence. A 
well-known example is the Van der Waerden normal scores rank correlation co­
efficient with J(u) = K(u) = cp- l (u) ~ J -2log[u(1- u)] and J'(u) = K'(u) = 

1/ cf>( cp-I (u)) ~ v'2n [u(l- u)t 1, 0 < u < 1. Clearly conditions are needed on the 
behavior of J( u) and K ( u) as u comes close to 0 or 1, in order for ( 10.4) to be valid 
and for the asymptotic normality to hold. Ruymgaart, Shorack, and Van Zwet im­
prove on the conditions of Bhuchongkul (1964), and for the case J(-) = K(-) they 
need that IJ(u) l [u(1 - u)F14- o and IJ'(u) l [u(1 - u)j514- o are bounded for some 
positive 8, thus incorporating the Van der Waerden normal scores rank correlation 
coefficient. 

Frits Ruymgaart, Willem's third PhD student, has generalized these results in 
Ruymgaart (1974) and in his PhD thesis, Ruymgaart (1973), to the case where the 
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score functions J ( ·) and K ( ·) may have discontinuities. It is very likely that this is the 
reason why Ruymgaart (1974) has gotten many more citations in the literature than 
the article under discussion. In any case, these papers are still being cited because 
of their relevance to the study of semiparametric copula models. For example the 
Van der Waerden normal scores rank correlation coefficient is semiparametrically 
efficient in the normal copula model; see Klaassen and Wellner (1997). In the normal 
copula model one assumes that if all components of a random vector are transformed 
into normal random variables, then the resulting random vector has a multivariate 
normal distribution. It was noted by Li (2000) that this normal copula model was 
in use for the pricing of credit default swaps. This practice has been blamed for the 
global financial crisis of 2007-2009. Motivated by risk management problems, the 
study of copula models has led to research on a generalization of Tn from (1 0.1 ), 
namely 

1 n (Ri Qi) 1 n Tn =- 2J - , - =- 2J(Fn(Xi),Gn(li)) ; 
n i= 1 n n n i= l 

(10.5) 

see e.g. Fermanian, Radulovic, and Wegkamp (2004) and Schmidt and Stadtmiiller 
(2006). We may conclude that Ruymgaart, Shorack, and Van Zwet have added a 
technically complicated, but thorough and useful result to the statistical literature, 
which is a milestone in a long development. 

10.3 A Note on Contiguity and Hellinger Distance 

Consider two sequences of probability measures (P11 ) and (Qn) defined on a com­
mon sequence of measurable spaces (Xn,dn). The sequence of probability mea­
sures (Qn) is called contiguous with respect to the sequence ( Pn), if for every se­
quence (An), An E dn, the convergence P11 (A 11 )---+ 0 implies Q11 (An)---+ 0, notation 
(Qn) <J (Pn)· The two-sided version ofthis fundamental concept has been introduced 
by Le Cam (1960), and advertised and applied by Roussas (1972). Jaroslav Hajek 
visited Lucien Le Cam in Berkeley and popularized the concept in Hajek and Sidak 
(1967) calling the most important results Le Cam's first, second, and third lemma. 

Willem van Zwet and his first PhD student, his contemporary Kobus Oosterhoff, 
were the first to geometrize contiguity for product measures, and they chose the 
Hellinger distance as a natural metric for this. Their results have been published as 
Oosterhoff and Van Zwet (1979) in the Hajek Memorial Volume, which is just the 
proper place for this paper, given Hajek's interest in the topic. 

(n) (n) nn (n ) nn Let Pn = Pn be the product measure Pn = i= 1 Pni and Qn = Qn = i= 1 Qni 
with (Xn ,dn) the product space of (X ni,dni), i = 1, ... ,n. Let Jlni be a a-finite 
measure on ( ~i , dni) dominating both Pni and Qni. Denote the densities of Pni and 
Qni by Pni and qni, respectively, and write H(Pni, Qni) for the Hellinger distance of 
Pni and Qni, 
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I ( 1/2 1/2) 2 
H(Pni , Qni) = Pni - qni dJ.lni· 

It is easy to see, as Oosterhoff and Van Zwet (1979) show, that 

n 
· " 2( ) ( (n)) ( (n) ) hm £.... H Pni, Qni = 0 ====? Qn <J Pn 

n --too i= l 

n 

====? limsup LH2 (Pni ,Qni) < oo 

n-+= i= l 

29 

(10.6) 

(10.7) 

holds. As the one-sided contiguity is an 'asymmetric' property and the Hellinger 
distance is symmetric, the gap between the contiguity in the middle term and the left 
hand or the right hand side of (10.7) can be closed only by an asymmetric condition. 
Indeed, with the additional notation 

(10.8) 

the main result of Oosterhoff and Van Zwet (1979) may be formulated as follows, 

(10.9) 

The second result from this paper is related to the First Lemma of Le Cam. Let 
An be the loglikelihood ratio 

n 

An= L log (qni(Xni) / Pni(Xni)) · 
i= l 

The First Lemma of Le Cam implies 

(10.10) 

(10.11) 

Oosterhoff and Van Zwet succeeded in formulating necessary and sufficient con­
ditions for this convergence to normality of the loglikelihood ratio in terms of 
Hellinger distances as follows. For any a 2: 0 we have 

{ 
limn-+= 2.7= 1 H2 ( Pni , Qni) = i a 2 , 

(10.12) 

lime.l-0 lim SUPn--t= 2.7=1 Hi(Pni , Qni) = 0. 
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In order to stress the relation to the Hellinger distance we have chosen to formulate 
(2.3) of Theorem 1 and the uniform asymptotic negligibility condition (3.3) of The­
orem 2 of Oosterhoff and Van Zwet (1979) in terms of Hc(Pni, Qni) from (10.8); cf. 
(3.7) of ibid. To see the equivalence of (2.3) of Theorem 1 with the second condition 
at the right hand side of (10.9), we note that for c > 2 

(1- c- 112) - 2H'j: (Pni , Qni) ::::; Qni (qni(Xni) ~ c Pni(Xni)) 

::::; (1-c- l) - 2H'j:(Pni ,Qni) (10.13) 

holds. To derive the equivalence of the uniform asymptotic negligibility condition 
(3.3) of Theorem 2 with the second condition at the left hand side of (1 0.12) we note 
that for£ > 0 

( v'l+£- 1 )2 Pni (I qni(Xni)- Pni(Xni) I ~ £ Pni(Xni)) 

::::; H'f(Pni, Qni) 

::::; Pni (I qni(Xni)- Pni(Xni) I ~ £ Pni(Xni)) 

+Qni (I qni(Xni)- Pni(Xni) I ~ £ Pni(Xni)) 

(10.14) 

holds, and we use (10.11) to obtain that the uniform asymptotic negligibility condi­
tion 

(10.15) 

implies 

(10.16) 

It is well known that contiguity holds in regular parametric models for i.i .d. ran­
dom variables. Let { P( e) : e E e} , e c JR.k, be a collection of distributions that 
have densities p( e) with respect to some a-finite measure J..L. The most important 
condition for regularity is the existence of a score function £(e) E L~(P(e)) such 
that the map e r---+ p 112 (e) is continuously Frechet differentiable in~ (J.L) as follows, 

with the map e r---+ £(e)p 112(e) from e to L~(P(e)) continuous. In these regular 
models Local Asymptotic Normality holds and via (10.11) this yields the contiguity 

(10.18) 

as n --7 oo, en --7 e' and tn --7 t for fixed e and t' and hence the corresponding mutual 
contiguity; see e.g. Section 2.1 of Bickel et al. (1993). To circumvent the cum­
bersome proof of Local Asymptotic Normality, one might use the characterization 
(10.9) of contiguity in order to prove (10.18) as follows. By (a) from the proof of 
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Lemma A.9 .5 of Bickel et al. (1993) we see that (1 0.17) holds uniformly for f) in 
compacts. Consequently, 

holds as n--+ = , en --+ f), and tn --+ t for fixed f) and t. It follows that the first condi­
tion at the right hand side of (10.9) is satisfied. To prove that the second condition 
at the right hand side of (10.9) is satisfied as well, we first note that for c 2: 1 

r (pl f2(fJ+h)-pl f2(e)) 2 df.l 
}p(fJ+h)?cp(fJ ) 

:::;3 { (pl f2 (fJ+h)-pl f2(fJ)-~hTf(fJ)pl f2(fJ)) 2 dJ1 
}p(fJ + h)?c p(fJ ) 2 

+3 { (p1f2(f)- h)- p1f2(fJ) + ~hT f(fJ)p1f2(fJ)) 2 
dJ.1(10.21) 

}p(fJ+h )?_cp(fJ ) 2 

+3 r p(e)df.l J p( fJ+h)?_c p( fJ ) 

and 

r { (p112( f)+ h)- p112( e)) 2- (c112- 1)2 p( e)} dJ.l 2: 0 (10.21) J p( fJ+h )?_c p( fJ ) 

hold, and hence for sufficiently large values of c 

r (pl f2(fJ + h) - pl f2(e)) 2dJ1 
J p(fJ+h )?_c p(fJ ) 

:::; 3 [1-3(vc-1)- 2r 1 x oo.22) 

{ { (pl /2(fJ +h)_ pl f2(fJ) _ ~hT f(fJ)pl f2(fJ)) 2 
}p(fJ + h)?_c p(fJ ) 2 

+ (r112( e -h) - p112( e)+ ~hT £(e) p112 (e)) 2 } d 11.o o.23l 

To complete the proof of the contiguity in (10.18), we note that the second condition 
at the right hand side of ( 1 0.9) follows from ( 1 0.19) and ( 1 0.22) by the substitutions 
f)= en and h = n- 112tn. 

One of the simplest examples of nonregular parametric models for i.i.d. random 
variables where contiguity may be determined easily via (10.9), is the location fam­
ily for the exponential distribution. With J.lni Lebesgue measure on (JR, Pll) and 

t 
qni(x) = Pni(x-- ) , X E lR, 

n 
(10.24) 



110

32 Chris A.J. Klaassen 

some computation shows 

n 

lim sup LH2(Pni,Qni) =It I (10.25) 
n-+oo i= l 

and 
n 

lim lim sup LH;(Pni , Qni) =It l l[r<O], 
c-+oo n-+oo i= 1 

(10.26) 

which by (10.9), i.e. Theorem 1 of Oosterhoff and Van Zwet (1979), implies the 
one-sided contiguity from the left hand side of (10.9), but only fort positive. 

More tedious computations are necessary in case of triangular densities 

Pni(x) = (1- lx l) VO, 
() 

qni(x)=(1- lx- ynrogn i ) VO, 
nlogn 

xE R (10.27) 

In my master thesis, Klaassen (1974), written under supervision of Kobus Ooster­
hoff, the conditions at the right hand side of (l 0.12) have been checked, and hence 
Theorem 2 of Oosterhoff and Van Zwet (1979) is applicable here. 

The main result, Theorem 1 of ibid., is called by Jacod and Shiryaev (1987, p. 
576) 'the first general contiguity result'. It has been generalized to nonindependent 
and continuous time cases, and it has been one of the roots of Jacod and Shiryaev 
(1987). 

Furthermore, the paper is cited in several publications as a reference for con­
tiguity. We mention Strasser (1985), Bickel, Klaassen, Ritov, and Wellner (1993), 
Cabana and Cabana ( 1997) and Bose, Gangopadhyay, and Goswami (2007). The re­
sults are explicitly used in e.g. Khmaladze (1988), Eubank (2000), Pfanzagl (2000), 
Putter and Young (2001), and Ferger (2001). 

We conclude that Oosterhoff and Van Zwet (1979) is a fundamental paper, which 
presents useful tools for verifying contiguity. 

10.4 On Estimating a Parameter and its Score Function 
On Estimating a Parameter and its Score Function, II 

In the early seventies several semiparametrically efficient estimators for the sym­
metric location model have been constructed. These estimators were called adaptive 
because they adapt to the unknown underlying symmetric density f( ·) of the errors 
in the observations in such a way that they attain the asymptotic variance bound of 
1/ I (f) with I (f) the Fisher information for location. After a chat with Peter Huber 
about these estimators, Willem van Zwet suggested me, his PhD student, to study 
these estimators and to show that there is some loss somewhere. This has been a 
very stimulating research program and it resulted in my thesis Klaassen (1981). The 
articles under discussion are generalizations to much more general models of the 
inequality in Theorem 3.2.1 of ibid. for the symmetric location case. These inequal-
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ities improve the Cramer-Rao lower bound for unbiased estimators of the parameter 
of interest by adding a multiple of the integrated mean squared error of an estimator, 
given the parameter of interest, of the efficient influence function. In this way they 
state that the parameter of interest can be estimated accurately only if, given the 
parameter of interest, the efficient influence function can be estimated accurately as 
well . So, if the parameter of interest is the only unknown parameter, this additional 
term vanishes and the inequality reduces to the ordinary Cramer-Rao inequality. 

The charm of these inequalities is that they are finite sample results. They have 
been proved for i.i.d. situations where, given the parameter of interest, there exists 
a sufficient statistic with respect to the nuisance parameter. All these inequalities 
are based on a conditional version of Projection Lemma 4.1 of Hajek (1968). An 
asymptotic version of these results does not need these sufficient statistics and it 
states that asymptotically efficient estimation of the parameter of interest is possible 
if and only if the efficient influence function can be estimated consistently; for a 
generalization of this, see Klaassen (1987). 

The first paper is applicable in situations where adaptive estimation should be 
possible, i.e. where the semiparametrically efficient influence function is the same 
as the efficient influence function for the case that the nuisance parameter is known. 
The second paper studies the general semiparametric situation. Still another PhD 
student of Willem is a coauthor here, namely Aad van der Vaart. In chapter 5 of his 
PhD thesis Vander Vaart (1988), he continues research on models of the above type. 
There he constructs asymptotically efficient estimators for semiparametric models 
with a sufficient statistic with respect to the nuisance parameter. 

10.5 A Remark on Consistent Estimation 

A fundamental rule of thumb in statistics states that 'substituting unknown parame­
ters in statistical procedures by estimators of them, yields appropriate procedures.' 
Consequently, if one is simulating the distribution of a statistic and the distribution 
of the underlying random variables is unknown, one may replace the latter distribu­
tion by an estimator of it, like the empirical. The resulting bootstrap was introduced 
by Efron (1979). Clearly, an important question is :'When does the bootstrap work 
and when it doesn't?' For some important classes of situations the validity of the 
bootstrap was proved by Bickel and Freedman (1981 ), who also presented some 
counter-examples. 

He in Putter, writing his doctoral thesis Putter (1994) under supervision of Will em 
van Zwet, has studied the question in the setting of a general substitution estimator. 
In Putter and Van Zwet (1996) they write 'This is commonly called a "plug-in esti­
mator," but this expression is of the same sad grammatical level as "see-through 
clothes.'" However, more importantly in the context of the paper under discus­
sion they prove that substitution estimators work under all underlying distributions, 
except for a 'small' subset within the set of underlying distributions metrized by 
Hellinger distance, namely for a subset of the first category. 
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Under local asymptotic normality Beran (1997) has proved that the bootstrap 
fails in estimating the distribution of an estimator consistently, precisely at those 
parameter values at which the bootstrapped estimator is not locally asymptotically 
equivariant. He also has shown that the set of these parameter values has Lebesgue 
measure 0. At the points where an estimator is locally asymptotically equivariant or 
regular, the Hajek-LeCam convolution theorem holds; Hajek (1970). 

Willem van Zwet and his second son Erik have used results from Putter and 
Van Zwet (1996) in order to prove within a very general framework that, if the 
distribution of an estimator can be estimated consistently in the Prohorov metric, 
then there exists a subset of the first category within the set of underlying distribu­
tions metrized by Hellinger distance, such that the estimator is locally asymptoti­
cally equivariant outside this subset of the first category. In Van Zwet and Van Zwet 
( 1999) they prove under somewhat stricter conditions, but still within the same very 
general framework, that for the same subset of the first category as above the distri­
bution of the estimator has a locally asymptotically uniform convolution structure. 
We conclude that Willem and Erik van Zwet have generalized the connection be­
tween validness of the bootstrap and local asymptotic equivariance and convolution 
structure as noted by Beran (1997), to the general i.i.d. case in an elegant way. 
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