Skip to main content

Osteoblast Responses to Steady Shear Stress

  • Chapter
Cell Mechanics and Cellular Engineering
  • 259 Accesses

Abstract

Like many tissues in the human body, bone is constantly undergoing changes in its microstructure. The homeostasis of bone can be described as a dynamic equilibrium existing between resorption and deposition of mineral. Although each bone has a genetically determined minimal mass and structure, the normal state of bone in the physiologic environment is a consequence of adaptations to various chemical and physical stimuli (Lanyon 1984). These adaptations are achieved through an active remodeling of the internal and surface characteristics (e.g., structure and mineral content) of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brighton C. T.; Strafford, B.; Gross, S. B.; Leatherwood, D. F.; Williams, J. L.; Pollack, S. R. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial strain. J. Bone Jt. Surg. 73-A: 320–331; 1991.

    Google Scholar 

  • Brown, T. D.; Pedersen, D. R.; Gray, M. L.; Brand, R. A.; Rubin, C. T. Toward identification of mechanical parameters initiating periosteal remodeling. J. Biomech. 23: 893–905; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, M. J.; Banes, A. L.; Jordan, R. D. The effects of mechanical strain on osteoblasts in vitro. J. Oral Maxillofac. Surg. 48:276–282:1990.

    Article  PubMed  CAS  Google Scholar 

  • Cowin, S. C. Mechanical modeling of the stress adaptation process in bone. Calc. Tiss. Int. 36: S98-S103; 1984.

    Article  Google Scholar 

  • Cowin, S. C; Moss-Salentijn, L.; Moss, M. L. Candidates for the mechanosensory system in bone. 113:191–197; 1991.

    CAS  Google Scholar 

  • Dewey, C. F.; Bussolari, S. R.; Gimbrone, M. A.; Davies, P. F. The dynamic response of endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185; 1981.

    Article  PubMed  Google Scholar 

  • Diamond, S. L.; Eskin, S. G.; Mcintire, L. V. Fluid flow stimulates tissue plasminogen factor secretion by cultured human endothelial cells. Science 243: 1483–1485; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Dillaman, R. M.; Roer, R. D.; Gay, D. M. Fluid movement in bone: theoretical and empirical. J. Biomech. 23: 893–905; 1991.

    Google Scholar 

  • Eskin, S. G.; Ives, C. L., Frangos, J. A.; Mcintire, L. V. Cultured endothelium: the response to flow. ASAIO. 8: 109–112; 1985.

    Google Scholar 

  • Frangos, J. A.; Eskin, S. G.; Mcintire, L. V.; Ives, C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Frangos, J. A.; Mcintire, L. V.; Eskin, S. G. Shear stress induced stimulation of mammalian cell metabolism. Biotech. and Bioeng. 32:1053–1060; 1988.

    Article  CAS  Google Scholar 

  • Hasegawa, S.; Sato, S.; Saito, S.; Suzuki, Y.; Brunette, D. M. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif. Tiss. Int. 37:431–436; 1985.

    Article  CAS  Google Scholar 

  • Kelly, P. J.; Bronk, J. T. Venous pressure and bone formation. Microvas. Res. 39: 364–375; 1990.

    Article  CAS  Google Scholar 

  • Lanyon, L. E. Functional strain as a determinant for bone remodeling. Calc. Tiss. Int. 36: S56-S61; 1984.

    Article  Google Scholar 

  • Levesque, M. J.; Nerem, R. M.; The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107: 341–347; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Puleo, D. A.; Holleran, L. A.; Doremus, R. H.; Bizios, R. Osteoblast response to orthopedic implants. J. Biomed. Mat. Res. 25: 711–723; 1991.

    Article  CAS  Google Scholar 

  • Puleo, D. A.; Preston, K. E.; Shaffer, J. B.; Bizios, R. Examination of osteoblast-orthopedic biomaterial interactions using molecular techniques. 14: 111–114; 1993.

    CAS  Google Scholar 

  • Reich, K. M.; Gay, C. V.; Frangos, J. A. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. 143:100–104; 1990.

    CAS  Google Scholar 

  • Reich, K. M.; Frangos, J. A. Effects of flow on prostaglandin E2 and inositol triphosphate levels in osteoblasts. Am. J. Physiol. 261 (Cell Physiol. 30): C428-C432; 1991.

    PubMed  CAS  Google Scholar 

  • Robey, P. G. The biochemistry of bone. Endocrinol. Metab. Clin. North AM. 18: 859–902; 1989.

    CAS  Google Scholar 

  • Sodek, J.; Zhang, Q.; Goldberg, H. A.; Domenicucci, C; Kasugai, S.; Wrana, J. L.; Shapiro, H.; Chen, J. Non-collagenous bone proteins and their role in substrate-induced bioactivity. In: Davies, J. E., ed. The bone-biomaterial interface. Toronto: University of Toronto Press; 1991: p. 97–110.

    Google Scholar 

  • Weinbaum, S.; Cowin, S. C; Zeng, Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech (in press; 1994).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Shin, H.Y., Iveson, R.D., Blumenstock, F.A., Bizios, R. (1994). Osteoblast Responses to Steady Shear Stress. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics