Skip to main content

Low Energy Physics from Superstrings

  • Chapter
Particle Physics

Part of the book series: NATO ASI Series ((ASIB,volume 150))

  • 107 Accesses

Abstract

When I originally agreed to accept the kind invitation to lecture at the NATO Summer School in Cargese, my topic was to be the theory of CP violation. The developments of the past year have resulted in growing interest in the theory of superstrings, a subject which is on the one hand extraordinarily exciting in the promise it holds for solutions of many of the outstanding problems of particle physics and on the other hand rather forbidding in the amount of new knowledge which needs to be acquired by the average theorist to understand the papers that are now being published on the recent developments. These considerations have persuaded me “in extremis”, to change the subject of my lectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

Chapter 2

  1. Some recent reviews on string theory are listed below : J.H. Schwarz, Phys. Rep. 89 (1982) 223

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M.B. Green, Surveys in High Energy Physics 3 (1982) 127

    Article  ADS  Google Scholar 

  3. L. Brink “Superstrings”, CERN TH 4006/84.

    Google Scholar 

  4. The World Scientific Press (Singapore) has announced publication in December of three books which should be helpful in bringing the reader up to date. They are :

    Google Scholar 

  5. J.H. Schwarz, Superstrings;

    Google Scholar 

  6. Unified String Theories, Proceedings of the Santa Barbara Workshop, Aug. 1985, eds. M.B. Green and D.J. Gross;

    Google Scholar 

  7. Yale Summer School on High Energy Physics, June 1985, eds.F. Gursey and M. Bowick. This is not the place to try to give references to the new literature on string theories.

    Google Scholar 

  8. P. Ramond, Phys. Rev. D3 (1971) 2415

    MathSciNet  ADS  Google Scholar 

  9. A. Neveu and J.H. Schwarz, Nucl. Phys. B31 (1971) 86

    Article  ADS  Google Scholar 

  10. A. Neveu and J.H. Schwarz, Phys. Rev. D4 (1971) 1109.

    ADS  Google Scholar 

  11. D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. Lett. 54 (1985) 46

    Article  MathSciNet  Google Scholar 

  12. D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. B256 (1985) 253 and Princeton preprint

    MathSciNet  Google Scholar 

  13. See also P.G.O. Freund, Phys. Lett. 151B (1985) 387

    Article  ADS  Google Scholar 

  14. P. Goddard and D. Olive, “Conference on Vertex Operators...”, J. Lepowsky ed. (Springer-Verlag, 1984).

    Google Scholar 

  15. see e.g. E. Witten, Phys. Lett. 149B (1984) 351.

    Article  MathSciNet  ADS  Google Scholar 

Chapter 3

  1. H. Flanders, “Differential Forms” New York, Academic Press (publ.) 1963.

    MATH  Google Scholar 

  2. T. Eguchi, P. Gilkey and A.J. Hanson, Phys. Rep. 66 (1980) 213.

    Article  MathSciNet  ADS  Google Scholar 

  3. See also references in ch. 4 to gravitational anomalies for general introduction to Riemannian geometry as well as ref. [2] cited above.

    Google Scholar 

  4. For an old, but good introduction to curvature and general relativity, cf. L. Landau and E. Lifshitz, “The Classical Theory of Fields”, Addison-Wesley, publ., see also S. Weinberg, “Gravitation and Cosmo-logy” J. Wiley, publ.

    Google Scholar 

Chapter 4

  1. Three recent references on gauge field anomalies are : B. Zumino “Chiral Anomalies and Differential Geometry” in Relativity Groups and Topology (B.S. De Witt and R. Stora, eds.) North Holland, 1983

    Google Scholar 

  2. B. Zumino, T.S. Wu and A. Zee, Nucl. Phys. B239 (1984) 477

    Article  MathSciNet  ADS  Google Scholar 

  3. P.H. Frampton and T.W. Kephart, Phys. Rev. Lett. 50B (1983) 1343, 1437.

    Article  ADS  Google Scholar 

  4. L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234 (1984) 269.

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Alvarez-Gaume and P. Ginsparg, Nucl. Phys. B243 (1984) 439

    MathSciNet  ADS  Google Scholar 

  6. L. Alvarez-Gaume and P. Ginsparg, ibid Annals of Physics 161 (1985) 423.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. See also ref. [2] of ch. 3.

    Google Scholar 

  8. M.B. Green and J.H. Schwarz, Phys. Lett. 149B (1984) 117.

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Witten, Phys. Lett. 149B (1984) 351.

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Witten, “Global Gravitational Anomalies”, “Global Anomalies in String Theory”, Princeton University Preprints (1985).

    Google Scholar 

Chapter 5

  1. A good general reference is J. Wess and J. Bagger, “Supersymmetry and Supergravity”, Princeton University Press (1983).

    MATH  Google Scholar 

  2. E. Cremmer, J. Scherk and S. Ferrara, Phys. Lett. 74B (1978) 61.

    Article  ADS  Google Scholar 

  3. J. Scherk in Recent Developments in Gravitation, Cargese, Plenum Press (1978) eds. M. Levy and S. Deser.

    Google Scholar 

  4. E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141.

    Article  MathSciNet  ADS  Google Scholar 

  5. A.H. Chamseddine, Nucl. Phys. B185 (1981) 403.

    Article  ADS  Google Scholar 

  6. E. Bergshoff, M. De Roo, B. De Wit, and P. Van Nieuwenhuizen, Nucl. Phys. B195 (1982) 97.

    Article  ADS  Google Scholar 

  7. G.F. Chapline and N.S. Manton, Phys. Lett. B120 (1983) 105.

    Article  MathSciNet  ADS  Google Scholar 

  8. See Chapter 4, reference [5].

    Google Scholar 

Chaper 6

  1. We are following here R.N. Mohapatra and B. Sakita, Phys. Rev. D21 (1980) 1062.

    MathSciNet  ADS  Google Scholar 

  2. Clearly it is awkward to define Γ 1,2=t2,1 rather than Γ1,2 = 2 but we wish to display an explicit’form For the Γ matrices’keeping the notation of ref. [1]. It would have been preferable to exchange Γ2i_1 and Γ2i-in (6.7).

    Google Scholar 

  3. A quick summary of E6, branching rules, etc. is contained in R. Slansky, Phys. Rep. 79 (1981) 1.

    Article  MathSciNet  ADS  Google Scholar 

  4. See e.g., Y. Achiman, S. Aoyama and J.W. Van Holten, “Gauged Supersymmetric σ-Models and E6 / S0(10) x U(l)”, Wuppertal preprint, Jan. 1985.

    Google Scholar 

  5. For an interesting discussion of exceptional groups, cf. F. Gursey in “To Fulfill a Vision” Jerusalem Einstein Centennial Celebr., Y. Neeman, ed. Addison-Wesley (publ. 1981).

    Google Scholar 

Chapter 7

  1. Z. Horvath and L. Palla, Nucl. Phys. B142 (1978) 327

    Article  MathSciNet  ADS  Google Scholar 

  2. L. Palla, Proceedings of 1978 Tokyo Conf. on High Energy Physics, p. 629.

    Google Scholar 

  3. E. Witten, Nucl. Phys. B186 (1981) 412.

    Article  MathSciNet  ADS  Google Scholar 

  4. N.S. Manton, Nucl. Phys. B193 (1981), 331

    Google Scholar 

  5. G. Chapline and N. Manton, Nucl. Phys. B184 (1981) 391

    Article  ADS  Google Scholar 

  6. G. Chapline and R. Slansky, Nucl. Phys. B209 (1982) 461.

    Article  ADS  Google Scholar 

  7. C. Wetterich, Nucl. Phys. B211 (1983) 177.

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Randjbar-Daemi, A. Salam and A. Strathdee, Nucl. Phys. B214 (1983) 491.

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Randjbar-Daemi, A. Salam and A. Strathdee, Phys. Lett. B124 (1983) 345.

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Witten, Proceedings of Shelter Island II, p. 227 (published by M.I.T. Press, 1985).

    Google Scholar 

  11. Some representative references are :

    Google Scholar 

  12. M. Gell-Mann, P. Ramond and R. Slansky in “Supergravity” ed. P. Van Nieuwenhuizen and D.Z. Freedman (North Holland, 1979);

    Google Scholar 

  13. F. Wilczek and A. Zee, Phys. Rev. D25 (1982) 553;

    ADS  Google Scholar 

  14. H. Georgi, Nucl. Phys. B156 (1979) 126;

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Kim, Phys. Rev. Lett. 45 (1980) 1916;

    Article  ADS  Google Scholar 

  16. H. Sato, Phys. Rev. Lett. 45 (1980) 1997;

    Article  ADS  Google Scholar 

  17. A. Davidson et al., Phys. Rev. Lett. 45 (1980) 1335;

    Article  Google Scholar 

  18. J. Malampi and K. Engvist, Phys. Lett. 97B (1980) 217.

    Article  ADS  Google Scholar 

  19. M. Atiyah and F. Hirzebruch, “Essays on Topology and Related Topics” A. Haefliger and R. Narasimahan eds. (Springer-Verlag, New York 1970).

    Google Scholar 

  20. E. Witten, J. Diff. Geom. 17 (1982) 661.

    MathSciNet  MATH  Google Scholar 

  21. See for a review S. Coleman, “The Uses of Instantons” in “Lectures on Field Theory”, Oxford University press (1985).

    Google Scholar 

  22. See ref. [2], ch. 3 for a detailed discussion of index theorem. Other good references are Luis Alvarez-Gaume, “Supersymmetry and Index Theory”, Lectures at Bonn Summer School 1984, to be published; J. Manes and B. Zumino, LBL-20234 preprint 1985

    Google Scholar 

  23. L. Alvarez-Gaume, Math. Phys. 90 (1983) 161

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. D. Friedan and P. Windey, Nucl. Phys. B235 (1984) 295.

    MathSciNet  Google Scholar 

  25. B. Zumino, Proceedings of Shelter Island II, p. 79 (published by M.I.T. Press, 1985).

    Google Scholar 

Chapter 8

  1. Ch. 5, reference [7].

    Google Scholar 

  2. CHSW stands for P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46.

    Article  MathSciNet  ADS  Google Scholar 

  3. Alternative schemes have been considered, following CHSW. For ins-tance, manifolds with non-vanishing H have been considered by I. Bars, Phys. Rev. D33 (1986) 383; mnpI. Bars, D. Nemeschansky and S. Yankielowicz, “Torsion in Super-strings” SLAC-Pub 3758 (1985).

    MathSciNet  ADS  Google Scholar 

  4. E. Calabi in Algebraic Geometry and Topology : A Symposium in Honor of S. Lefshetz (Princeton University Press) 1957

    Google Scholar 

  5. S.T. Yau, Proc. Nat. Acad. Sci. 74 (1978) 177.

    Google Scholar 

  6. K. Uhlenbeck and S.T. Yau, to be published, presents an analysis of this equation.

    Google Scholar 

  7. For a detailed discussion which does not assume identification of the spin connection and SU(3) gauge fields, see I. Bars and M. Visser, “Number of Massless Fermion Fields in Superstring Theory”, Univ. of So. Calif, preprint 85/016 (1985). See also R. Nepomechie, Y.S. Wu and A. Zee, Phys. Lett. 158B (1975) 311.

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Nucl. Phys. B258 (1985) 75.

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Witten, “New Issues in Manifolds of SU(3) Holonomy”, Princeton preprint 1985.

    Google Scholar 

  10. A. Strominger and E. Witten, “New Manifolds for Superstring Compactification”, Princeton preprint.

    Google Scholar 

Chapter 9

  1. We are following here again P. Candelas et al., ref. [2] of chapter 8.

    Google Scholar 

  2. E. Witten, Nucl. Phys. B258 (1985) 75.

    Article  MathSciNet  ADS  Google Scholar 

  3. J.D. Breit, B.A. Ovrut and G. Segrè, Phys. Lett. 158B (1985) 33

    Article  ADS  Google Scholar 

  4. A. Sen, Phys. Rev. Lett. 55 (1985) 33.

    Article  ADS  Google Scholar 

  5. Y. Hosotani, Phys. Lett. 126B (1983) 303.

    ADS  Google Scholar 

  6. For a detailed discussion of the group theoretic techniques involved see e.g., R. Slansky, Phys. Rep. 79 (1981) 1.

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Pati and A. Salam, Phys. Rev. D10 (1974) 275.

    ADS  Google Scholar 

  8. See e.g., F. Gursey and M. Serdaroglu, Nuovo Cimento 65A (1981) 337

    Article  ADS  Google Scholar 

  9. F. Gursey, P. Ramond and P. Sikivie, Phys. Lett. 60B (1976) 77.

    Google Scholar 

  10. M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi and N. Seiberg, “Superstring Model Building”, Nucl. Phys. B259 (1985) 543.

    MathSciNet  ADS  Google Scholar 

  11. See also : S. Ceccotti, J.P. Derendinger, S. Ferrara, L. Girardello and M. Roncadelli, Phys. Lett. 156B (1985) 318.

    Article  ADS  Google Scholar 

  12. See for example, A. Strominger and E. Witten, “New Manifolds for Superstring Compactification”, Princeton (1985) to be published in Nucl. Phys. A. Strominger “Yukawa Couplings in Superstring Compactification” ITP (Santa Barbara) preprint (1985).

    Google Scholar 

  13. For a good recent discussion of the overall picture see : J.P. Derendinger, L.E. Ibanez and H.P. Nilles, “On the Low Energy Limit of Superstring Theories”, CERN Th 4228 preprint (1985).

    Google Scholar 

Chapter 10

  1. E. Witten, “Dimensional Reduction of Superstring models”, Princeton preprint. Phys. Lett. 155B (1985) 151.

    Article  MathSciNet  Google Scholar 

  2. E. Witten, Ref. [5], section 2.

    Google Scholar 

  3. E. Cremmer, S. Ferrara, L. Girardello and A. Von Proeyen, Phys. Lett. 116B (1982) 231

    Article  ADS  Google Scholar 

  4. E. Cremmer, S. Ferrara, L. Girardello and A. Von Proeyen, Nucl. Phys. B212 (1983) 412

    ADS  Google Scholar 

  5. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. Van Nieuwenhuizen, Nucl. Phys. B147 (1979) 105.

    Article  ADS  Google Scholar 

  6. The formulation in terms of Kähler geometry is given in : J. Bagger and E. Witten, Phys. Lett. 115B (1982) 202

    MathSciNet  ADS  Google Scholar 

  7. J. Bagger and E. Witten, Phys. Lett. 118B (1982) 303

    MathSciNet  Google Scholar 

  8. J. Bagger and E. Witten, J. Bagger, Nucl. Phys. B211 (1983) 302.

    Article  MathSciNet  ADS  Google Scholar 

  9. We have followed reference [1] so far. This form of Kähler potential was independently shown to arise in the analysis of so-called 16/16 supergravity models, cf. W. Lang, J. Louis and B. Ovrut, Univ. of Penn., preprint UPR-0280T (1985) and Karlsruhe preprint KA-THE P 85-2 (1985). See also earlier references to G. Girardi, R. Grimm, M. Muller and J. Wess, Z. Phys. C26 (1986) 123; C26 (1984) 427; Phys. Lett. 147B (1984) 81. It is interesting to speculate on which of these two paths is a more realistic approximation to superstring phenomena.

    Google Scholar 

  10. J.P. Derendinger, L.I. Ibanez and H.P. Nilles, ref. [10], section 9.

    Google Scholar 

Chapter 11

  1. J.P. Derendinger, L.E. Ibanez and H.P. Nilles, Phys. Lett. 155B (1985) 65.

    Article  ADS  Google Scholar 

  2. M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. 156B (1985) 55.

    Article  MathSciNet  ADS  Google Scholar 

  3. J.P. Derendinger, L.I. Ibanez and H.P. Nilles, “On the Low Energy Limit of Superstring Theories”, CERN -TH. 4228/85 preprint.

    Google Scholar 

  4. For a recent discussion see R. Rohm and E. Witten, “The Antisymmetric Tensor Field in Superstring Theory” Princeton University preprint (Nov. 1985). See also R. Nepomechie, Y.S. Wu and A. Zee, Phys. Lett. 158B (1985) 311.

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Witten, ref. [1], ch. 10.

    Google Scholar 

  6. J. Ellis, C. Kounnas and D.V. Nanopoulos, Nucl. Phys. B247 (1984) 373

    Article  ADS  Google Scholar 

  7. N.P. Chang, S. Ouvry and X. Wu, Phys. Rev. Lett. 51 (1983) 327

    Article  ADS  Google Scholar 

  8. E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Phys. Lett. 133B (1983) 61.

    Article  MathSciNet  ADS  Google Scholar 

  9. See also ref. [5], ch. 10; R. Barbieri, S. Ferrara, D.V. Nanopoulos and K. Stelle, Phys. Lett. 113B (1982) 219.

    Article  ADS  Google Scholar 

  10. See also M. Mangano, Z. Phys. C28 (1985) 613.

    ADS  Google Scholar 

  11. This section is a condensed version of J.D. Breit, B.A. Ovrut and G. Segrè, Phys. Lett. 162B (1985) 303.

    Article  ADS  Google Scholar 

  12. S. Coleman and E. Weinberg, Phys. Rev. D7 (1983) 2369.

    Google Scholar 

  13. For complete references, see e.g. H.P. Nilles, Phys. Rep. 110 (1984) 1. Some papers are : J. Polonyi, Budapest preprint K-FK1–38 (1977)

    Article  ADS  Google Scholar 

  14. A.H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49 (1982) 970

    Article  ADS  Google Scholar 

  15. L. Alvarez-Gaume, J. Polchinski and M. Wise, Nucl. Phys. B221 (1983) 435

    Google Scholar 

  16. B. Ovrut and J. Wess, Phys. Lett. 112B (1982) 347

    Article  ADS  Google Scholar 

  17. L.I. Ibanez, Nucl. Phys. B218 (1983) 514

    Article  ADS  Google Scholar 

  18. L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D27 (1983) 2369

    ADS  Google Scholar 

  19. H.P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 120B (1983) 346

    Article  ADS  Google Scholar 

  20. J. Ellis, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. 121B (1983) 1293

    Google Scholar 

  21. For recent examples, see e.g. M. Cvetic and C. Preitschopf, SLAC-PUB-3685 (1985)

    Google Scholar 

  22. R. Barbieri and E. Cremmer, CERN TH 4177 (1985).

    Google Scholar 

  23. R. Barbieri and S. Ceccotti, Z. Phys. C17 (1983) 183

    ADS  Google Scholar 

  24. M. Srednicki and S. Theisen, UCSB preprint.

    Google Scholar 

  25. P. Binetruy and M.K. Gaillard, “Radiative Corrections in Compactified Superstring Models” LBL-19972 preprint (1985).

    Google Scholar 

  26. J. Ahn and J. Breit, “On One Loop Effective Lagrangians and Compactified Superstrings”, Univ. of Pennsylvania preprint (1985).

    Google Scholar 

  27. M. Dine and N. Seiberg, Phys. Rev. Lett. 55 (1985) 366.

    Article  MathSciNet  ADS  Google Scholar 

  28. V.S. Kaplunovsky, Phys. Rev. Lett. 55 (1985) 1036.

    Article  ADS  Google Scholar 

Chapter 12

  1. For early references, see ch. 9, refs. [8–10]. Among more recent works, a sample is given by V. Kaplunosky and C. Nappi, “Phenomenological Implications of Superstring Theory”, Princeton preprint 1985; P. Binetruy, S. Dawson, I. Hinchcliffe and M. Sher, “Phenomenologically Viable Models from Superstrings”. E. Cohen, J. Ellis; K. Enqvist and D.V. Nanopoulos, CERN TH preprints 4222/85, 4195/85; R. Holman and D.B. Reiss, “Fermion Masses in E8 x E8 Superstring Theories”, Fermilab. preprint 1985; T. Hubsch, H. Nishino and J.G. Pati, “Do Superstrings Lead to Preons”, to appear in Phys. Lett. B.; C.P. Burgess, A. Foni and F. Quevedo, “Low Energy Effective Action for the Superstring”, Univ° of Texas Preprint; R.N. Mohapatra, “A mechanism for Understanding Small Neutrino Masses in SUSY Theories”, Univ. of Maryland preprint (1985); S. Nandi and U. Sarkar, Univ. of Texas Preprint (1985).

    Google Scholar 

  2. K. Choi and J.E. Kim, Phys. Lett. 154B (1985) 393; S.M. Barr, Phys. Lett. 154B (1985) 397; K. Yamamoto, Univ. of No. Carolina preprint (1985); K. Choi and J.E. Kim, Seoul preprint SNUHE 85/10; M. Dine and N. Seiberg, “String Theory and the Strong CP Problem”, CUNY preprint 1985; X.G. Wen and E. Witten, “World Sheet Instantons and the Peccei-Quinn Symmetry”, Princeton preprint. [3] M.J. Bowick, L. Smolin and L.C.R. Widjewardhana, Phys. Rev. Lett. 56 (1986) 424; J. Lazarides, G. Panagiotakopoulos and Q. Shafi, Phys. Rev. Lett. 56 (1986) 432 and Bartol preprint BA-85 “Baryogenesis and the Gravitino Problem in Superstring Theories”; J.A. Stein-Schabes and M. Gleiser, “Low Energy Superstring Cosmology”, Fermilab preprint 1985; R. Holman and T. Kephart, “Axion Cosmology in Automatic E6 x U(l) Models”, Fermilab pub, 85/117; E.W. Kolb, D. Seckel and M.S. Turner, “The Shadow World”, Fermilab preprint.

    Google Scholar 

  3. See e.g., M. Evans and B.A. Ovrut, “Splitting the Superstring Vacuum Degeneracy”, Rockefeller preprint 1985.

    Google Scholar 

  4. L. Dixon, J.A. Harvey, C. Vafa and E. Witten, “Strings on Orbifolds”, Princeton preprint; E. Witten, “Twistor-Like Transform in Ten Dimensions”, Princeton preprint.

    Google Scholar 

  5. X.G. Wen and E. Witten, “Electric and Magnetic Charges in Superstring Models”, to appear in Nucl. Phys. B.

    Google Scholar 

  6. For a general discussion see E. Witten, “Topological Tools in Ten Dimensional Physics”, and also E. Witten, ref.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Segre, G.C. (1987). Low Energy Physics from Superstrings. In: Lévy, M., Basdevant, JL., Jacob, M., Speiser, D., Weyers, J., Gastmans, R. (eds) Particle Physics. NATO ASI Series, vol 150. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1877-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1877-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9046-9

  • Online ISBN: 978-1-4613-1877-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics