Skip to main content

Quantum Black Holes

  • Chapter
Particle Physics

Part of the book series: NATO ASI Series ((ASIB,volume 150))

  • 105 Accesses

Summary

The conventional way to set up a decent looking theory for interacting elementary particles is to take some set of classical fields, satisfying simple, polynomial field equations. These equations should be compatible with an extremum principle: they are taken to be the Euler-Lagrange equations generated by some Lagrange function L of the fields. One then “quantizes” the theory by replacing Poisson brackets by commutators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for instance: S. Chandrasekhar, Am. J. Phys. 37, 577 (1969).

    Article  ADS  Google Scholar 

  2. C.W. Misner, K.S. Thorne and J.A. Wheeler, “Gravitation”, Freeman, San Francisco, 1973.

    Google Scholar 

  3. R.M. Wald, “General Relativity”, Univ. of Chicago Press, 1984.

    MATH  Google Scholar 

  4. S.W. Hawking, Comm. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  5. J.B. Hartle and S.W. Hawking, Phys. Rev. D13, 2188 (1976).

    ADS  Google Scholar 

  6. W.G. Unruh, Phys. Rev. D14, 870 (1976).

    ADS  Google Scholar 

  7. R.M. Wald, Comm. Math. Phys. 45, 9 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  8. R.M. Wald, Phys. Rev. D20, 1271 (1979).

    MathSciNet  ADS  Google Scholar 

  9. G. ’t Hooft, J. Geom. Phys. 1, 45 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  10. G. ’t Hooft, Nucl. Phys. B256, 727 (1985).

    Article  ADS  Google Scholar 

  11. T. Dray and G. ’t Hooft, Nucl. Phys. B253, 173 (1985)

    Article  ADS  Google Scholar 

  12. T. Dray and G. ’t Hooft, Comm. Math. Phys. 99, 613 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  13. G. ’ t Hooft, lectures given at the 5th Adriatic Meeting on Particle Physics, Dubrovnik, June 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

’t Hooft, G. (1987). Quantum Black Holes. In: Lévy, M., Basdevant, JL., Jacob, M., Speiser, D., Weyers, J., Gastmans, R. (eds) Particle Physics. NATO ASI Series, vol 150. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1877-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1877-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9046-9

  • Online ISBN: 978-1-4613-1877-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics