Skip to main content

Part of the book series: The Plenum Chemical Engineering Series ((PCES))

  • 531 Accesses

Abstract

Epoxy polymers are formed by the reaction of an epoxy group,

with an -OH group. The most important epoxy1 is manufactured by reacting bisphenol A,

with epiehlorohydrin,

Two common industrial processes are used for manufacturing this polymer, the taffy process and the advancement process. In the taffy process,1–3 bisphenol A is reacted at 90–95°C with a controlled excess of epichlorohydrin (to give polymer molecules with glycidyl ether groups,

on both ends) in the presence of NaOH and an inert solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Lee and K. Neville, Handbook of Epoxy Resins ,1st ed., McGraw-Hill, New York (1967).

    Google Scholar 

  2. C. E. Hutz, in Manufacture of Plastics (W. M. Smith, Ed.), 1st ed., pp. 492–511, Reinhold, New York (1964).

    Google Scholar 

  3. H. Batzer and S. A. Zahir, Studies in the molecular weight distribution of epoxide resins.I. Gel permeation ehromatography of epoxide resins, J. Appl. Polym. Sci. 19,585–600 (1975).

    Article  CAS  Google Scholar 

  4. W. Fisch, Über den verlauf der umsetzung von epichlorhydrin mit zweiwertigen phenolen (kinetik der epoxyharzherstellung), Chimia 16, 66–71 (1962).

    CAS  Google Scholar 

  5. H. Batzer and S. A. Zahir, Studies in the molecular weight distribution of epoxide resins. IV. Molecular weight distributions of epoxide resins made from bisphenol A and epi-chlorohydrin, J. Appl. Polym. Sci. 21, 1843–1857 (1977).

    Article  CAS  Google Scholar 

  6. H. Batzer and S. A. Zahir, Studies in the molecular weight distributions of epoxide resins.II. Chain branching in epoxide resins, J. Appl. Polym. Sci. 19, 601–607 (1975).

    Article  CAS  Google Scholar 

  7. H. Wesslau, Strukturabhängige ringschlubreaktionen bei der vernetzenden copolymeriz-ation, Makromol. Chem. 93, 55–68 (1966).

    Article  CAS  Google Scholar 

  8. K. Ravindranath and K. S. Gandhi, Molecular weight distributions in epoxy resins, J. Appl. Polym. Sci. 24, 1115–1123 (1979).

    Article  CAS  Google Scholar 

  9. K. Ravindranath, M.Tech. dissertation, IIT, Kanpur, India (1978).

    Google Scholar 

  10. L. C. Case, Molecular distributions in polycondensations involving unlike reactants. II. Linear distributions, J. Polym. Sci. 29, 455–495 (1958).

    Article  CAS  Google Scholar 

  11. K. S. Gandhi and S. V. Babu, Kinetics of step polymerization with unequal reactivities, AIChE J. 25, 266–272 (1979).

    Article  CAS  Google Scholar 

  12. H. E. Grethlein, Exact weight fraction distribution in linear condensation polymerization, Ind. Eng. Chem., Fundam. 8, 206–210 (1969).

    Article  CAS  Google Scholar 

  13. C. W. Macosko and D. R. Miller, A new derivation of average molecular weights of nonlinear polymers, Macromolecules 9, 199–206 (1976).

    Article  CAS  Google Scholar 

  14. I. Antal, L. Füzes, G. Samay, and L. Csillag, Kinetics of epoxy resin synthesis on the basis of GPC measurements, J. Appl. Polym. Sci. 26, 2783–2786 (1981).

    Article  CAS  Google Scholar 

  15. German Patent No. 2263175 (1972).

    Google Scholar 

  16. M. Lidarik, High molecular epoxy resins by melting low-molecular bisphenol, Kunstst. Rundsch. 1, 6–10 (1959).

    Google Scholar 

  17. L. Shechter and J. Wynstra, Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides, Ind. Eng. Chem. 48, 86–93 (1956).

    Article  CAS  Google Scholar 

  18. K. Dušek, M. Ilavský, and S. Luñák, Curing of epoxy resins. I. Statistics of curing of diepoxides with diamines, J. Polym. Sci. Symp. No. 53 ,29–44 (1975).

    Google Scholar 

  19. S. Luñák and K. Dušek, Curing of epoxy resins. II. Curing of bisphenol A diglycidyl ether with diamines, J. Polym. Sci. Sym. No. 53 ,45–55 (1975).

    Article  Google Scholar 

  20. K. Dušek, M. Bleha and S. Luñák, Curing of epoxide resins: Model reactions of curing with amines, J. Polym. Sci., Polym. Chem. Ed. 15, 2393–2400 (1977).

    Article  Google Scholar 

  21. K. Dušek and W. Prins, Structure and elasticity of non-crystalline polymer networks, Adv. Polym. Sci. 6, 1–102 (1969).

    Article  Google Scholar 

  22. I. J. Good, Cascade theory and the molecular weight averages of the sol fraction, Proc. R. Soc., London. A 272, 54–59 (1962).

    Google Scholar 

  23. D. S. Butler, G. N. Malcolm, and M. Gordon, Configurational statistics of copolymer systems, Proc. R. Soc. London A 295, 29–54 (1966).

    Article  Google Scholar 

  24. M. Gordon and G. R. Scantlebury, Statistical kinetics of polyesterification of adipic acid with pentaerythritol or trimethylol ethane, J. Chem. Soc. London B ,1–13 (1967).

    Google Scholar 

  25. U. M. Bokare and K. S. Gandhi, Effect of simultaneous polyaddition reaction on the curing of epoxides, J. Polym. Sci., Polym. Chem. Ed. 18, 857–870 (1980).

    Article  CAS  Google Scholar 

  26. K. Horie, H. Hiura, M. Sawada, I. Mita, and H. Kambe, Calorimetric investigation of polymerization reactions. III. Curing reaction of epoxides with amines, J. Polym. Sci. A-1 8, 1357–1372 (1970).

    Article  CAS  Google Scholar 

  27. D. Schechter, J. Wynstra, and R. P. Kurkjy, Glycidyl ether reactions with amines, Ind. Eng. Chem. 48, 94–97 (1956).

    Article  Google Scholar 

  28. H. C. Anderson, The effect of an amine cured epoxy resin on the stability of trinitrotoluene, SPE J. 16, 1241–1245 (1960).

    CAS  Google Scholar 

  29. T. K. Kwei, Swelling of highly crosslinked network structure, J. Polym. Sci. A-1 1, 2977–2988 (1963).

    Google Scholar 

  30. C. A. May and Y. Tanaka, Epoxy Resins, Chemistry and Technology ,1st ed., Marcel Dekker, New York (1973).

    Google Scholar 

  31. W. H. Abraham, Path-dependent distribution of molecular weight in linear polymers, Ind. Eng. Chem., Fundam. 2, 221–224 (1963).

    Article  Google Scholar 

  32. H. Kilkson, Effect of reaction path and initial distribution on molecular weight distribution of irreversible condensation polymers, Ind. Eng. Chem. Fundam. 3, 281–293 (1964).

    Article  CAS  Google Scholar 

  33. U. M. Bokare, M.Tech. dissertation, I.I.T. Kanpur, India (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gupta, S.K., Kumar, A. (1987). Epoxy Polymers. In: Reaction Engineering of Step Growth Polymerization. The Plenum Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1801-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1801-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9008-7

  • Online ISBN: 978-1-4613-1801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics