Skip to main content

Abstract

It can be argued that the calcium ion is the oldest recognized signal transduction molecule, whether one dates the birth of this recognition with Ringer’s 1883 studies1 on the requirement for extracellular Ca2+ in myocardial contraction, or with Heilbrunn’s much later proposal2 that Ca2+ is the physiological inducer of muscle contraction. Perhaps because of this early focus on calcium’s role in contractility in particular, and in the function of classically “excitable” cells generally (such as Katz and Miledi’s seminal studies on the role of Ca2+ in neurotransmitter release3), the first 100 years of cell calcium research was dominated by efforts to understand how transient changes in intracellular free Ca2+ activity ([Ca2+]i) are achieved and transduced in but two very specialized cell types—muscle and neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ringer, S. (1883). J. Physiol. (London) 4:29–42.

    PubMed  CAS  Google Scholar 

  2. Heilbrunn, L. V. (1940). The action of calcium on muscle protoplasm. Physiol. Zool. 13:88–94.

    CAS  Google Scholar 

  3. Katz, B., and Miledi, R. (1965). The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. London Ser. B 161:496–503.

    CAS  Google Scholar 

  4. Kumagi, H., Ebashi, S., and Takeda, F. (1955). Essential relaxing factor in muscle other than myokinase and creatine Phosphokinase. Nature 176:166.

    Google Scholar 

  5. Constantin, L. L., Franzini-Armstrong, C, and Podolsky, R. J. (1965). Localisation of calcium-accumulating structures in striated muscle fibres. Science 147:158–159.

    Google Scholar 

  6. MacLennan, D. H., and Campbell, K. P. (1979). Structure, function and biosynthesis of sarcoplasmic reticulum proteins. Trends Biochem. Sci. 4:148–151.

    CAS  Google Scholar 

  7. Hagiwara, S., and Byerly, L. (1981). Calcium channel. Annu. Rev. Neurosci. 4:69–125.

    PubMed  CAS  Google Scholar 

  8. Means, A. R., Tash, J. S., and Chafouleas, J. G. (1982). Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol. Rev. 62:1–39.

    PubMed  CAS  Google Scholar 

  9. Rasmussen, H. (1970). Cell communication, calcium ion, and cyclic nucleotide monophosphate. Science 170:404–412.

    PubMed  CAS  Google Scholar 

  10. Tsien, R. Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404.

    PubMed  CAS  Google Scholar 

  11. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new genenration of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    PubMed  CAS  Google Scholar 

  12. Hokin, L. E. (1985). Receptors and phosphoinositide-generated second messengers. Annu. Rev. Biochem. 54:205–235.

    PubMed  CAS  Google Scholar 

  13. Kretsinger, R. H. (1990). Why cells must export calcium. In Intracellular Calcium Regulation (F. Bronner, ed.), Wiley-Liss, New York, pp. 439–457.

    Google Scholar 

  14. McNamara, M. K., and Wiley, J. S. (1986). Passive permeability of human red blood cells to calcium. Am. J. Physiol. 250:C26-C31.

    PubMed  CAS  Google Scholar 

  15. Simon, S. M., and Llinás, R. R. (1985). Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48:485–498.

    PubMed  CAS  Google Scholar 

  16. Fogelson, A. L., and Zucker, R. S. (1985). Presynaptic calcium diffusion from various arrays of single channels: Implications for transmitter release and synaptic facilitation. Biophys. J. 48:1003–1017.

    PubMed  CAS  Google Scholar 

  17. Speksnijder, J. E., Miller, A. L., Weisenseel, M. H., Chen, T.-H., and Jaffe, L. F. (1989). Calcium buffer injections block fucoid egg development by facilitating calcium diffusion. Proc. Natl. Acad. Sci. USA 86:6607–6611.

    PubMed  CAS  Google Scholar 

  18. Campbell, A. K. (1983). Intracellular Calcium: Its Universal Role as Regulator, Wiley, New York.

    Google Scholar 

  19. Kretsinger, R. H. (1987). Calcium coordination and the calmodulin fold: Divergent versus convergent evolution. Cold Spring Harbor Symp. Quant. Biol. 52:499–510.

    PubMed  CAS  Google Scholar 

  20. Wnuk, W. (1988). Calcium binding to troponin C and the regulation of muscle contraction: A comparative approach. In Calcium and Calcium Binding Proteins, Molecular and Functional Aspects (C. Gerday, L. Bolis, and R. Gilles, eds.), Springer-Verlag, Berlin, pp. 44–68.

    Google Scholar 

  21. Persechini, A., Moncrief, N. D., and Kretsinger, R. H. (1989). The EF-hand family of calcium-modulated proteins. Trends Neurosci. 12:462–467.

    PubMed  CAS  Google Scholar 

  22. Carafoli, E. (1987). Intracellular calcium homeostasis. Annu. Rev. Biochem. 56:395–433.

    PubMed  CAS  Google Scholar 

  23. Heizmann, C. W., and Hunziker, W. (1990). Intracellular calcium-binding molecules. In Intracellular Calcium Regulation (F. Bronner, ed.), Liss, New York, pp. 211–248.

    Google Scholar 

  24. Blaustein, M. P. (1988). Calcium transport and buffering in neurons. Trends Neurosci. 11:438–443.

    PubMed  CAS  Google Scholar 

  25. Krinks, M. H., Klee, C. B., Pant, H. C, and Gainer, H. (1988). Identification and quantification of calcium-binding proteins in squid axoplasm. J. Neurosci. 8:2172–2182.

    PubMed  CAS  Google Scholar 

  26. Maruyama, K., Mikawa, T., and Ebashi, S. (1984). Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J.Biochem. 95:511–519.

    PubMed  CAS  Google Scholar 

  27. Ferreira, H. G., and Lew, V. L. (1975). Ca transport and Ca pump reversal in human red blood cells. J. Physiol. (London) 252:86P–87P

    PubMed  CAS  Google Scholar 

  28. Hurwitz, L., Partridge, L. D., and Leach, J. K. (eds.) (1991). Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance, CRC Press, Boca Raton.

    Google Scholar 

  29. Nuccitelli, R. (1988). Ionic currents in morphogenesis. Experientia 44:657–666.

    PubMed  CAS  Google Scholar 

  30. Rasmussen, H., and Rasmussen, J. E. (1990). Calcium as intracellular messenger: From simplicity to complexity. Curr. Top. Cell. Regul. 31:1–109.

    PubMed  CAS  Google Scholar 

  31. Tsien, R. W. (1983). Calcium channels in excitable cell membranes. Annu. Rev. Physiol. 45:341–358.

    PubMed  CAS  Google Scholar 

  32. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R., and Fox, A. P. (1988). Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11:431–438.

    PubMed  CAS  Google Scholar 

  33. Bean, B. P. (1989). Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51:367–384.

    PubMed  CAS  Google Scholar 

  34. Hess, P. (1990). Calcium channels in vertebrate cells. Annu. Rev. Neurosci. 13:337–356.

    PubMed  CAS  Google Scholar 

  35. Miller, R. J., and Fox, A. P. (1990). Voltage-sensitive calcium channels. In Intracellular Calcium Regulation (F. Bronner, ed.), Liss, New York, pp. 97–138.

    Google Scholar 

  36. Perez-Reyes, E., Kim, H. S., Lacerda, A. E., et al. (1989). Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340: 233–236.

    PubMed  CAS  Google Scholar 

  37. Yang, J., Ellinor, P. T., Sather, W. A., et al. (1993). Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161.

    PubMed  CAS  Google Scholar 

  38. Catterall, W. A. (1991). Excitation-contraction coupling in vertebrate skeletal muscle: A tale of two calcium channels. Cell 64: 871–874.

    PubMed  CAS  Google Scholar 

  39. Armstrong, C. M., Bezanilla, F M., and Horowicz, P. (1972). Twitches in the presence of ethylene glycol bis (β-aminoethyl ether)-N-N’-tetraacetic acid. Biochim. Biophys. Acta 267:605–608.

    PubMed  CAS  Google Scholar 

  40. Gonzales-Serratos, H., Valle-Aguilera, R., Lathrop, D. A., et al. (1982). Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature 298:292–294.

    Google Scholar 

  41. Brum, G., Rios, E., and Stefani E. (1988). Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres. J. Physiol. (London) 398:441–473.

    PubMed  CAS  Google Scholar 

  42. Knudson, C. M., Chaudhauri, N., Sharp, A. H., et al. (1989). Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J. Biol Chem. 264:1345–1348.

    PubMed  CAS  Google Scholar 

  43. Tanabe, T., Beam, K. G., Powell, J. A., et al. (1988). Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139.

    PubMed  CAS  Google Scholar 

  44. Chandler, W. K., Rakowski, R. F, and Schneider, M. F. (1976). A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. (London) 254:245–283.

    PubMed  CAS  Google Scholar 

  45. Tanabe, T., Beam, K. G., Adams, B. A., et al. (1990). Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569.

    PubMed  CAS  Google Scholar 

  46. Rich, T. L., Langer, G. A., and Klassen, M. G. (1988). Two components of coupling calcium in single ventricular cells of rabbits and rats. Am. J. Physiol. 254:H937-H946.

    PubMed  CAS  Google Scholar 

  47. Fabiato, A., and Fabiato, F (1975). Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. (London) 249:469–495.

    PubMed  CAS  Google Scholar 

  48. Fabiato, A., and Fabiato, F (1979). Calcium and cardiac excitation-contraction coupling. Annu. Rev. Physiol. 41:473–484.

    PubMed  CAS  Google Scholar 

  49. Chen, C, Corbley, M. J., Roberts, T. M., et al. (1988). Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science 239:1024–1026.

    PubMed  CAS  Google Scholar 

  50. Kawa, K. (1990). Voltage-gated calcium and potassium currents in megakaryocytes dissociated from guinea-pig bone-marrow. J. Physiol. (London) 431:187–206.

    PubMed  CAS  Google Scholar 

  51. Chesnoy-Marchais, D., and Fritsch, J. (1988). Voltage-gated sodium and calcium currents in rat osteoblasts. J. Physiol. (London) 398:291–311.

    PubMed  CAS  Google Scholar 

  52. Barres, B. A., Chun, L. L. Y, and Corey, D. P. (1988). Ion channel expression by white matter glia. I. Type 2 astrocytes and oligodendrocytes. Glia 1:10–30.

    PubMed  CAS  Google Scholar 

  53. Junti-Berggren, L., Larsson, O., Rorsman, P., et al. (1993). Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science 261:86–90.

    Google Scholar 

  54. Edwards, C. (1982). The selectivity of ion channels in nerve and muscle. Neuroscience 7:1335–1366.

    PubMed  CAS  Google Scholar 

  55. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., et al. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522.

    PubMed  CAS  Google Scholar 

  56. Moriyoshi, K., Masu, M., Ishii, T., et al. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37.

    PubMed  CAS  Google Scholar 

  57. Kutsuwada, T., Kashiwabuchi, N., Mori, H., et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358:36–41.

    PubMed  CAS  Google Scholar 

  58. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989). The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29:365–402.

    PubMed  CAS  Google Scholar 

  59. Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263.

    PubMed  CAS  Google Scholar 

  60. Bliss, T. V. P., and Lynch, M. A. (1988). Long-term potentiation of synaptic transmission in the hippocampus—Properties and mechanisms. Neurol. Neurobiol. 34:3–72.

    Google Scholar 

  61. Muller, D., Buchs, P. A., Stoppini, L., et al. (1991). Long-term potentiation, protein kinase C, and glutamate receptors. Mol. Neurobiol. 5:277–288.

    PubMed  CAS  Google Scholar 

  62. Massicotte, G., and Baudry, M. (1991). Triggers and substrates of hippocampal synaptic plasticity. Neurosci. Biobehav. Rev. 15: 415–423.

    PubMed  CAS  Google Scholar 

  63. Zhuo, M., Small, S. A., Kandel, E. R., et al. (1993). Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260:1946–1950.

    PubMed  CAS  Google Scholar 

  64. Colbran, R. J. (1992). Regulation and role of brain calcium/calmodulin-dependent protein kinase II. Neurochem. Int. 21:469–497.

    PubMed  CAS  Google Scholar 

  65. Regehr, W. G., and Tank, D. W. (1992). Calcium concentration dynamics produced by synaptic activation of CA 1 hippocampal pyramidal cells. J. Neurosci. 12:4202–4223.

    PubMed  CAS  Google Scholar 

  66. Benham, CD., and Tsien, R. W. (1987). A novel receptor-operated Ca2+-permeable chanel activated by ATP in smooth muscle. Nature 328:275–278.

    PubMed  CAS  Google Scholar 

  67. Soltoff, S. P., McMillian, M. K., and Talamo, B. R. (1992). ATP activates a cation-permeable pathway in rat parotid acinar cells. Am. J. Physiol. 262:C934-C940.

    PubMed  CAS  Google Scholar 

  68. Buisman, H. P., Steinberg, T. H., Fischbarg, J., et al. (1988). Extracellular ATP induces a large nonselective conductance in macrophage plasma membranes. Proc. Natl Acad. Sci. USA 85:7988–7992.

    PubMed  CAS  Google Scholar 

  69. Lustig, K. D., Shiau, A. K., Brake, A. J., et al. (1993). Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 90:5113–5117.

    PubMed  CAS  Google Scholar 

  70. Flockerzi, V, Oeken, H.-J., Hofmann, F, et al. (1986). Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323:66–68.

    PubMed  CAS  Google Scholar 

  71. Yatani, A., Imoto, Y., Codina, J., et al. (1988). The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. J. Biol Chem. 263:9887–9895.

    PubMed  CAS  Google Scholar 

  72. Kameyama, M., Hescheler, J., Hofmann, F., et al. (1986). Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pfluegers Arch. 407:123–128.

    CAS  Google Scholar 

  73. Schultz, G., Rosenthal, W., Hescheler, J., and Trautwein, W. (1990). Role of G proteins in calcium channel modulation. Annu. Rev. Physiol. 52:275–292.

    PubMed  CAS  Google Scholar 

  74. Mozhayeva, G. N., Naumov, A. P., and Kuryshev, Y. A. (1991). Variety of Ca2+-permeable channels in human carcinoma A431 cells. J. Membr. Biol. 124:113–126.

    PubMed  CAS  Google Scholar 

  75. Berridge, M. J., and Irvine, R. F. (1989). Inositol phosphates and cell signalling. Nature 341:197–205.

    PubMed  CAS  Google Scholar 

  76. Hoth, M., and Penner, R. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356.

    PubMed  CAS  Google Scholar 

  77. Parekh, A. B., Terlau, H., and Stuhmer, W. (1993). Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible second messenger. Nature 364:814–818.

    PubMed  CAS  Google Scholar 

  78. Rink, T. J. (1990). Receptor-mediated calcium entry. FEBS Lett. 268:381–385.

    PubMed  CAS  Google Scholar 

  79. Menniti, F. S., Bird, G. S. J., Glennon, M. C, et al. (1992). Inositol polyphosphates and calcium signaling. Mol. Cell. Neurosci. 3: 1–10.

    PubMed  CAS  Google Scholar 

  80. Randriamampita, C, and Tsien, R. Y. (1993). Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814.

    PubMed  CAS  Google Scholar 

  81. Benham, C. D., and Tsien, R. W. (1987). Calcium-permeable channels in vascular smooth muscle: Voltage-gated, ligand-gated and receptor-operated channels. Symp. Soc. Gen. Physiol. 42:45–64.

    CAS  Google Scholar 

  82. Rosenberg, R. L., Hess, P., and Tsien, R. W. (1988). Cardiac calcium channels in planar lipid bilayers. J. Gen. Physiol. 92:27–54.

    PubMed  CAS  Google Scholar 

  83. Coulombe, A., Lefevre, A., Baro, I., et al. (1989). Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J. Membr. Biol. 111:57–67.

    PubMed  CAS  Google Scholar 

  84. Fong, P., Turner, P. R., Denetclaw, W. F, et al. (1990). Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250:673–676.

    PubMed  CAS  Google Scholar 

  85. Turner, P. R., Westwood, T., Regen, C. M., et al. (1988). Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335:735–738.

    PubMed  CAS  Google Scholar 

  86. Johnson, P. L., and Bhattacharya, S. K. (1993). Regulation of membrane-mediated chronic muscle degeneration in dystrophic hamsters by calcium-channel blockers: Diltiazem, nifedipine and verapamil. J. Neurol. Sci. 115:76–90.

    PubMed  CAS  Google Scholar 

  87. Reeves, J. P. (1990). Sodium-calcium exchange. In Intracellular Calcium Regulation (F. Bronner, ed.), Liss, New York, pp. 305–347.

    Google Scholar 

  88. Nicoll, D. A., Longoni, S., and Philipson, K. D. (1990). Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250:562–565.

    PubMed  CAS  Google Scholar 

  89. Reilander, H., Achilles, A., Friedel, U., et al. (1992). Primary structure and functional expression of the Na/Ca,K-exchanger from bovine rod photoreceptors. EMBO J. 11:1689–1695.

    PubMed  CAS  Google Scholar 

  90. Reeves, J. P. (1992). Molecular aspects of sodium-calcium exchange. Arch. Biochem. Biophys. 292:329–334.

    PubMed  CAS  Google Scholar 

  91. Dipolo, R., and Beauge, L. (1991). Regulation of Na-Ca exchange. An overview. Ann. N. Y. Acad. Sci. 639:100–111.

    PubMed  CAS  Google Scholar 

  92. Carafoli, E. (1991). Calcium pump of the plasma membrane. Physiol. Rev. 71:129–153.

    PubMed  CAS  Google Scholar 

  93. Grover, A. K., and Khan, I. (1992). Calcium pump isoforms: Diversity, selectivity and plasticity. Cell Calcium 13:9–17.

    PubMed  CAS  Google Scholar 

  94. Verma, A. K., Filoteo, A. G., Stanford, D. R., et al. (1988). Complete primary structure of a human plasma membrane Ca2+ pump. J. Biol. Chem. 263:14152–14159.

    PubMed  CAS  Google Scholar 

  95. Strehler, E., Strehler-Page, M., Vogel, G., et al. (1989). mRNAs for PM calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon. Proc. Natl. Acad. Sci. USA 86: 6908–6912.

    PubMed  CAS  Google Scholar 

  96. Khan, I., and Gover, A. (1991). Expression of cyclic-nucleotide-sensitive and -insensitive isoforms of the plasma membrane Ca2+ pump in smooth muscle and other tissues. Biochem. J. 277: 345–349.

    PubMed  CAS  Google Scholar 

  97. James, P. H., Pruschy, M., Vorherr, T. E., et al. (1989). Primary structure of the cAMP-dependent phosphorylation site of the plasma membrane calcium pump. Biochemistry 28:4253–4258.

    PubMed  CAS  Google Scholar 

  98. Niggli, V, Adunyah, E. S., Penniston, J. T., et al. (1981). Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J. Biol Chem. 256: 395–401.

    PubMed  CAS  Google Scholar 

  99. Kessler, F., Bennardini, F., Bachs, O., et al. (1990). Partial purification and characterization of the Ca2+-pumping ATPase of the liver plasma membrane. J. Biol. Chem. 265:16012–16019.

    PubMed  CAS  Google Scholar 

  100. Choquette, D., Hakim, G., Filoteo, A. G., et al. (1984). Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidyl-inositol cycle. Biochem. Biophys. Res. Commun. 125:908–915.

    PubMed  CAS  Google Scholar 

  101. Fraser, C. L., and Sarnacki, P. (1992). Regulation of plasma membrane-bound Ca2+-ATPase pump by inositol phosphates in rat brain. Am. J. Physiol. 262:F411-F416.

    PubMed  CAS  Google Scholar 

  102. Davis, F. B., Davis, P. J., Lawrence, W. D., et al. (1991). Specific inositol phosphates inhibit basal and calmodulin-stimulated Ca2+ ATPase activity in human erythrocyte membranes in vitro and inhibit binding of calmodulin to membranes. FASEB J. 5:2992–2995.

    PubMed  CAS  Google Scholar 

  103. Tepikin, A. V, Voronina, S. G., Gallacher, D. V, et al. (1992). Pulsadle Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J. Biol. Chem. 267: 14073–14076.

    PubMed  CAS  Google Scholar 

  104. MacLennan, D. H., Brandi, C. J., Korczak, B., et al. (1985). Amino-acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700.

    PubMed  CAS  Google Scholar 

  105. Maruyama, K., and MacLennan, D. H. (1988). Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc. Natl. Acad. Sci. USA 85:3314–3318.

    PubMed  CAS  Google Scholar 

  106. Lytton, J., Westlin, M., Burk, S. E., et al. (1992). Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J. Biol. Chem. 267:14483–14489.

    PubMed  CAS  Google Scholar 

  107. Burk, S., Lytton, J., MacLennan, D. H., et al. (1989). cDNA cloning, functional expression, and mRNA distribution of a third organellar Ca-pump. J. Biol. Chem. 264:18561–18568.

    PubMed  CAS  Google Scholar 

  108. Wegener, A. D., Simmerman, K. B., Liepnieks, J., et al. (1986). Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 261:5154–5159.

    PubMed  CAS  Google Scholar 

  109. James, P., Inui, M., Tada, M., et al. (1989). Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342:90–92.

    PubMed  CAS  Google Scholar 

  110. Eggermont, J. A., Wuytack, F., Verbist, J., et al. (1990). Expression of endoplasmic-reticulum Ca2+ pump isoforms and of phospholamban in pig smooth-muscle tissues. Biochem. J. 271:649–653.

    PubMed  CAS  Google Scholar 

  111. Inesi, G., and Sagara, Y (1992). Thapsigargin, a high affinity and global inhibitor of intracellular Ca2+ transport ATPases. Arch. Biochem. Biophys. 298:313–317.

    PubMed  CAS  Google Scholar 

  112. Michell, R. H. (1975). Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  113. Hokin, M. R., and Hokin, L. E. (1954). Effects of acetylcholine on phospholipides in the pancreas. J. Biol. Chem. 209:549–558.

    PubMed  CAS  Google Scholar 

  114. Adbel-Latif, A. A., Akhatar, R., and Hawthorne, J. N. (1977). Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]phosphate. Biochem. J. 162:61–73.

    Google Scholar 

  115. Berridge, M. J. (1983). Rapid accumulation of inositol trisphos-phate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212:849–858.

    PubMed  CAS  Google Scholar 

  116. Streb, H., Irvine, R. F., Berridge, M. J., et al. (1983). Release of Ca2+ from nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69.

    PubMed  CAS  Google Scholar 

  117. Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature 361:315–325.

    PubMed  CAS  Google Scholar 

  118. Attree, O., Olivos, I. M., Okabe, I., et al. (1992). The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242.

    PubMed  CAS  Google Scholar 

  119. Worley, P. F., Baraban, J. M., Colvin, J. S., et al. (1987). Inositol trisphosphate receptor localization in brain: Variable stoichiometry with protein kinase C. Nature 325:159–161.

    PubMed  CAS  Google Scholar 

  120. Worley, P. F., Baraban, J. M., Supattapone, S., et al. (1987). Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J. Biol. Chem. 262:12132–12136.

    PubMed  CAS  Google Scholar 

  121. Supattapone, S., Worley, P.F., Baraban, J. M., et al. (1988). Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263:1530–1534.

    PubMed  CAS  Google Scholar 

  122. Ferris, C. D., Huganir, R. L., Supattapone, S., et al. (1989). Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342:87–89.

    PubMed  CAS  Google Scholar 

  123. Furuichi, T., Yoshikawa, S., Miyawaki, A., et al. (1989). Primary structure and functional expression of the inositol 1,4,5-trisphos-phate-binding protein P400. Nature 342:32–38.

    PubMed  CAS  Google Scholar 

  124. Mignery, G. A., Sudhof, T. C, Takei, K., et al. (1989). Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195.

    PubMed  CAS  Google Scholar 

  125. Sudhof, T. C, Newton, C. L., Archer, B. T., et al. (1991). Structure of a novel InsP3 receptor. EMBO J. 10:3199–3206.

    PubMed  CAS  Google Scholar 

  126. Ross, C. A., Danoff, S. K., Schell, M. J., et al. (1992). Three additional inositol 1,4,5-trisphosphate receptors: Molecular cloning and differential localization in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 89:4265–4269.

    PubMed  CAS  Google Scholar 

  127. Nakagawa, T., Okano, H., Furuichi, T., et al. (1991). The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc. Natl. Acad. Sci. USA 88:6244–6248.

    PubMed  CAS  Google Scholar 

  128. Ferris, C. D., and Snyder, S. H. (1992). Inositol 1,4,5-trisphos-phate-activated calcium channels. Annu. Rev. Physiol. 54:469–488.

    PubMed  CAS  Google Scholar 

  129. Michikawa, T., Hamanaka, H., Otsu, H., et al. (1994). Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J. Biol Chem. 269:9184–9189.

    PubMed  CAS  Google Scholar 

  130. Ferris, C. D., Huganir, R. L., Bredt, D. S., et al. (1991). Inositol trisphosphate receptor: Phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl Acad. Sci. USA 88:2232–2235.

    PubMed  CAS  Google Scholar 

  131. Supattapone, S., Danoff, S. K., Theibert, A., et al. (1988). Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl. Acad. Sci. USA 85:8747–8750.

    PubMed  CAS  Google Scholar 

  132. Danoff, S. K., Ferris, C. D., Donath, C, et al. (1991). Inositol 1,4,5-trisphosphate receptors: Distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc. Natl. Acad. Sci. USA 88:2951–2955.

    PubMed  CAS  Google Scholar 

  133. Nakade, S., Rhee, S. K., Hamanaka, H., et al. (1994). Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homo-tetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. J. Biol Chem. 269:6735–6742.

    PubMed  CAS  Google Scholar 

  134. Matter, N., Ritz, M.-F., Freyermuth, S., et al. (1993). Stimulation of nuclear protein kinase C leads to phosphorylation of nuclear inositol 1,4,5-trisphosphate receptor and accelerated calcium release by inositol 1,4,5-trisphosphate from isolated rat liver nuclei. J. Biol. Chem. 268:732–736.

    PubMed  CAS  Google Scholar 

  135. Burgess, G. M., Bird, G. St. J., Obie, J. F., et al. (1991). The mechanism for synergism between phospholipase C- and adenylylcy-clase-linked hormones in liver. J. Biol. Chem. 266:4772–4781.

    PubMed  CAS  Google Scholar 

  136. Volpe, P., and Anderson-Lang, B. H. (1990). Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release. II. Effect of cAMP-dependent protein kinase. Am. J. Physiol 258:C1086-C1091.

    PubMed  CAS  Google Scholar 

  137. Ferris, C. D., Cameron, A. M., Bredt, D. S., et al. (1992). Autophosphorylation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 267:7036–7041.

    PubMed  CAS  Google Scholar 

  138. Ferris, C. D., Huganir, R. L., and Snyder, S. H. (1990). Calcium flux, mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc. Natl. Acad. Sci. USA 87:2147–2151.

    PubMed  CAS  Google Scholar 

  139. Maeda, N., Kawasaki, T., Nakade, S., et al. (1991). Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J. Biol. Chem. 266:1109–1116.

    PubMed  CAS  Google Scholar 

  140. Worley, P. F., Baraban, J. M., Supattapone, S., et al. (1987). Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J. Biol. Chem. 262:12132.

    PubMed  CAS  Google Scholar 

  141. Danoff, S. K., Supattapone, S., and Snyder, S. H. (1988). Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 254:701–705.

    PubMed  CAS  Google Scholar 

  142. Mignery, G. A., Johnston, P. A., and Südhof, T. C. (1992). Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. J. Biol. Chem. 267:7450–7455.

    PubMed  CAS  Google Scholar 

  143. Joseph, S. K., Rice, H. L., and Williamson, J. R. (1989). The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J. 258:261–265.

    PubMed  CAS  Google Scholar 

  144. Busa, W. B., and Nuccitelli, R. (1984). Metabolic regulation via intracellular pH. Am. J. Physiol. 246:R409-R438.

    PubMed  CAS  Google Scholar 

  145. Bourguignon, L. Y. W, Jin, H., Iida, N., et al. (1993). The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J. Biol. Chem. 268:7290–7297.

    PubMed  CAS  Google Scholar 

  146. Muallem, S., Pandol, S. J., and Beeker, T. G. (1989). Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 264:205–212.

    PubMed  CAS  Google Scholar 

  147. Ferris, C. D., Cameron, A. M., Huganir, R. L., et al. (1992). Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature 356:350–352.

    PubMed  CAS  Google Scholar 

  148. Irvine, R. F. (1990). ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates—A possible mechanism. FEBS Lett. 263:5–9.

    PubMed  CAS  Google Scholar 

  149. Missiaen, L., De Smedt, H., Droogmans, G., et al. (1992). Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature 357:599–602.

    PubMed  CAS  Google Scholar 

  150. Missiaen, L., Taylor, C. W., Berridge, M. J. (1992). Luminal Ca2+ promoting spontaneous Ca2+ release from inositol trisphosphate-sensitive stores in rat hepatocytes. J. Physiol. (London) 455:623–640.

    PubMed  CAS  Google Scholar 

  151. Sayers, L. G., Brown, G. R., Michell, R. H., et al. (1993). The effects of thimerosal on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem. J. 289:883–887.

    PubMed  CAS  Google Scholar 

  152. Shuttleworth, T. H. (1992). Ca2+ release from inositol trisphos-phate-sensitive stores is not modulated by intraluminal [Ca2+]. J. Biol Chem. 267:3573–3576.

    PubMed  CAS  Google Scholar 

  153. Satoh, T., Ross, C. A., Villa, A., et al. (1990). The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111:615–624.

    PubMed  CAS  Google Scholar 

  154. Ross, C. A., Meldolesi, J., Milner, T. A., et al. (1989). Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470.

    PubMed  CAS  Google Scholar 

  155. Kume, S., Muto, A., Aruga, J., et al. (1993). The Xenopus IP3 receptor: Structure, function, and localization in oocytes and eggs. Cell 73:555–570.

    PubMed  CAS  Google Scholar 

  156. Divecha, N., Banfic, H., and Irvine, R. F. (1991). The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 10:3207–3214.

    PubMed  CAS  Google Scholar 

  157. Sullivan, K. M. C, Busa, W. B., and Wilson, K. L. (1993). Calcium mobilization is required for nuclear vesicle fusion in vitro: Implications for membrane traffic and IP3 receptor function. Cell 73: 1411–1422.

    PubMed  CAS  Google Scholar 

  158. Kuno, M., and Gardener, P. (1987). Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304.

    PubMed  CAS  Google Scholar 

  159. Khan, A. A., Steiner, J. P., Klein, M. G., et al. (1992). IP3 receptor: Localization to plasma membrane of T cells and cocapping with the T cell receptor. Science 257:815–818.

    PubMed  CAS  Google Scholar 

  160. Fadool, D. A., and Ache, B. W. (1992). Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9:907–918.

    PubMed  CAS  Google Scholar 

  161. Penner, R., Matthews, G., and Neher, E. (1988). Regulation of calcium influx by second messengers in rat mast cells. Nature 334:499–504.

    PubMed  CAS  Google Scholar 

  162. Volpe, P., Krause, K. H., Hashimoto, S., et al. (1988). “Calcio-some,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells?. Proc. Natl Acad. Sci. USA 85:1091–1095.

    PubMed  CAS  Google Scholar 

  163. Lew, D. P. (1989). Receptor signalling and intracellular calcium in neutrophil activation. Eur. J. Clin. Invest. 19:338–346.

    PubMed  CAS  Google Scholar 

  164. Volpe, P., Pozzan, T., and Meldolisi, J. (1990). Rapidly exchanging Ca2+ stores of non-muscle cells. Semin. Cell Biol. 1:297–304.

    PubMed  CAS  Google Scholar 

  165. Villa, A., Podini, P., Clegg, D. O., et al. (1991). Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J. Cell Biol. 113:779–791.

    PubMed  CAS  Google Scholar 

  166. Sitia, R., and Meldolesi, J. (1992). Endoplasmic reticulum: A dynamic patchwork of specialized subregions. Mol Biol. Cell 3: 1067–1072.

    PubMed  CAS  Google Scholar 

  167. Walton, P. D., Airey, J. A., Sutko, J. L., et al. (1991). Ryanodine and inositol triphosphate receptors coexist in avian cerebellar Purkinje neurons. J. Cell Biol. 113:1145–1157.

    PubMed  CAS  Google Scholar 

  168. Volpe, P., Villa, A., Damiani, E., et al. (1991). Heterogeneity of microsomal Ca2+ stores in chicken Purkinje neurons. EMBO J. 10: 3183–3189.

    PubMed  CAS  Google Scholar 

  169. Fill, M., and Coronado, R. (1988). Ryanodine receptor channel of sarcoplasmic reticulum. Trends Neurosci. 11:453–457.

    PubMed  CAS  Google Scholar 

  170. MacLennan, D. H., and Phillips, M. S. (1992). Malignant hyperthermia. Science 256:789–794.

    PubMed  CAS  Google Scholar 

  171. Takeshima, H., Nishimura, S., Matsumoto, T., et al. (1989). Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445.

    PubMed  CAS  Google Scholar 

  172. Otsu, K., Willard, H. F., Khanna, V K., et al. (1990). Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265:13472–13483.

    PubMed  CAS  Google Scholar 

  173. Giannini, G., Clementi, E., Ceci, R., et al. (1992). Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-β. Science 257:91–94.

    PubMed  CAS  Google Scholar 

  174. Sorrentino, V, and Volpe, P. (1993). Ryanodine receptors: How many, where and why? Trends Pharmacol Sci. 14:98–103.

    PubMed  CAS  Google Scholar 

  175. Hakamata, Y., Nakai, J., Takeshima, H., et al. (1992). Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 312:229–235.

    PubMed  CAS  Google Scholar 

  176. Fabiato, A. (1989). Appraisal of the physiological relevance of two hypotheses for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: Calcium-induced release versus charge-coupled release. Mol. Cell. Biochem. 89:135–140.

    PubMed  CAS  Google Scholar 

  177. Hymel, L., Schindler, H., Inui, M., et al. (1988). Reconstitution of purified cardiac muscle calcium release channel (ryanodine receptor) in planar bilayers. Biochem. Biophys. Res. Commun. 152:308–314.

    PubMed  CAS  Google Scholar 

  178. Gyorke, S., and Fill, M. (1993). Ryanodine receptor adaptation: Control mechanism of Ca2+-induced Ca2+ release in heart. Science 260:807–809.

    PubMed  CAS  Google Scholar 

  179. Jayaraman, T., Brillantest, A.-M., Timerman, A. P., et al. (1992). FK506 binding protein associated with the calcium release channel (ryanodine receptor). J. Biol Chem. 267:9474–9477.

    PubMed  CAS  Google Scholar 

  180. Takasago, T., Imagawa, T., Furukawa, K., et al. (1991). Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J. Biochem. 109:163–170.

    PubMed  CAS  Google Scholar 

  181. Wang, J., and Best, P. M. (1992). Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase. Nature 359:739–741.

    PubMed  CAS  Google Scholar 

  182. Sabbadini, R. A., Betto, R., Teresi, A., et al. (1992). The effects of sphingosine on sarcoplasmic reticulum membrane calcium release. J. Biol. Chem. 267:15475–15484.

    PubMed  CAS  Google Scholar 

  183. Clapper, D. L., Walseth, T. F., Dargie, P. J., et al. (1987). Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262:9561–9568.

    PubMed  CAS  Google Scholar 

  184. Koshiyama, H., Lee, H. C, and Tashjian, A. H., Jr. (1991). Novel mechanism of intracellular calcium release in pituitary cells. J. Biol. Chem. 266:16985–16988.

    PubMed  CAS  Google Scholar 

  185. Takasawa, S., Nata, K., Yonekura, H., et al. (1993). Cyclic ADP-ribose in insulin secretion from pancreatic β cells. Science 259:370–373.

    PubMed  CAS  Google Scholar 

  186. Galione, A., Lee, H. C, and Busa, W. B. (1991). Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-ribose. Science 253:1143–1146.

    PubMed  CAS  Google Scholar 

  187. Lee, H. C. (1993). Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol Chem. 268:293–299.

    PubMed  CAS  Google Scholar 

  188. Meszaros, L. G., Bak, J., and Chu, A. (1993). Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364:76–79.

    PubMed  CAS  Google Scholar 

  189. Galione, A., White, A., Willmott, N., et al. (1993). cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365:456–459.

    PubMed  CAS  Google Scholar 

  190. Campbell, K. P. (1986). Protein components and their roles in sarcoplasmic reticulum function. In Sarcoplasmic Reticulum in Muscle Physiology (M. L. Entman and W. B. Van Winkle, eds.), CRC Press, Boca Raton, Volume 1, pp. 65–99.

    Google Scholar 

  191. Ikemoto, N., Ronjat, M., Mészáros, L., et al. (1989). Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28:6764–6771.

    PubMed  CAS  Google Scholar 

  192. Gilchrist, J. S. C, Beicastro, A. N., and Katz, S. (1992). Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J. Biol. Chem. 267:20850–20856.

    PubMed  CAS  Google Scholar 

  193. Ikemoto, N., Antoniu, B., Kang, J.-J., et al. (1991). Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30:5230–5237.

    PubMed  CAS  Google Scholar 

  194. Biral, D., Volpe, P., Damiani, E., et al. (1992). Coexistence of two calsequestrin isoforms in rabbit slow-twitch skeletal muscle fibers. FEBS Lett. 299:175–178.

    PubMed  CAS  Google Scholar 

  195. Lebeche, D., and Kaminer, B. (1992). Characterization of a calse-questrin-like protein from seaurchin eggs. Biochem. J. 287:741–747.

    PubMed  CAS  Google Scholar 

  196. Missiaen, L., Taylor, C. W., and Berridge, M. J. (1991). Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature 352:241–244.

    PubMed  CAS  Google Scholar 

  197. Irvine, R. (1990). ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 263:5–9.

    PubMed  CAS  Google Scholar 

  198. Benzotte, R. B., Pereira, B., and Higham, S. (1991). Effects of ryanodine on calcium sequestration in the rat liver. Biochem. Pharmacol. 42:1799–1803.

    Google Scholar 

  199. Parys, J. B., Sernett, S. W., Delisle, S., et al. (1992). Isolation, characterization, and localization of the inositol 1,4,5-trisphos-phate receptor protein in Xenopus laevis oocytes. J. Biol. Chem. 267:18776–18782.

    PubMed  CAS  Google Scholar 

  200. Busa, W. B., Ferguson, J. E., Joseph, S. K., et al. (1985). Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. J. Cell Biol. 101:677–682.

    PubMed  CAS  Google Scholar 

  201. Lechleiter, J. D., and Clapham, D. E. (1992). Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69:283–294.

    PubMed  CAS  Google Scholar 

  202. Galione, A., McDougall, A., Busa, W. B., et al. (1993). Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 261:348–352.

    PubMed  CAS  Google Scholar 

  203. Gilkey, J. C, Jaffe, L. E, Ridgway, E. B., et al. (1978). A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J. Cell Biol. 76:448–466.

    CAS  Google Scholar 

  204. Busa, W. B., and Nuccitelli, R. (1985). An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J. Cell Biol. 100:1325–1329.

    CAS  Google Scholar 

  205. Wier, W. G., Cannell, M. B., Berlin, J. R., et al. (1987). Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. Science 235:325–328.

    PubMed  CAS  Google Scholar 

  206. O’Sullivan, A. J., Cheek, T. R., Moreton, R. B., et al. (1989). Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 8:401–411.

    PubMed  Google Scholar 

  207. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., et al. (1990). Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 247:470–473.

    PubMed  CAS  Google Scholar 

  208. Nathanson, M. H., Padfield, P. J., O’Sullivan, A. J., et al. (1992). Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J. Biol. Chem. 267:18118–18121.

    PubMed  CAS  Google Scholar 

  209. Rawlings, S. R., Berry, D. J., and Leong, D. A. (1991). Evidence for localized calcium mobilization and influx in single rat gonadotropes. J. Biol. Chem. 266:22755–22760.

    PubMed  CAS  Google Scholar 

  210. Rooney, T. A., Sass, E. J., and Thomas, A. P. (1990). Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J. Biol. Chem. 265:10792–10796.

    PubMed  CAS  Google Scholar 

  211. Whitaker, M. J., and Irvine, R. F. (1984). Inositol 1,4,5-trisphos-phate microinjection activates sea urchin eggs. Nature 312:636–639.

    CAS  Google Scholar 

  212. Berridge, M. J. (1990). Calcium oscillations. J. Biol. Chem. 265: 9583–9586.

    PubMed  CAS  Google Scholar 

  213. Meyer, T., and Stryer, L. (1991). Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 20:153–174.

    PubMed  CAS  Google Scholar 

  214. Lee, H. C, Aarhus, R., and Walseth, T. F. (1993). Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261:352–355.

    PubMed  CAS  Google Scholar 

  215. Han, J. K., Fukami, K., and Nuccitelli, R. (1992). Reducing inositol lipid hydrolysis, Ins(1,4,5)P3 receptor availability, or Ca2+ gradients lengthens the duration of the cell cycle in Xenopus laevis blastomeres. J. Cell Biol. 116:147–156.

    PubMed  CAS  Google Scholar 

  216. Larabell, C, and Nuccitelli, R. (1992). Inositol lipid hydrolysis contributes to the Ca2+ wave in the activating egg of Xenopus laevis. Dev. Biol. 153:347–355.

    PubMed  CAS  Google Scholar 

  217. Jaffe, L. F. (1991). The path of calcium in cytosolic calcium oscillations: A unifying hypothesis. Proc. Natl Acad. Sci. USA 88: 9883–9887.

    PubMed  CAS  Google Scholar 

  218. Berridge, M. J., and Galione, A. (1988). Cytosolic calcium oscillators. FASEB J. 2:3074–3082.

    PubMed  CAS  Google Scholar 

  219. Lechleiter, J., Girard, S., Peralta, E., et al. (1991). Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126.

    PubMed  CAS  Google Scholar 

  220. Tsien, R. W., and Tsien, R. Y. (1990). Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6:715–760.

    PubMed  CAS  Google Scholar 

  221. Kline, D., and Kline, J. T. (1992). Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149:80–89.

    PubMed  CAS  Google Scholar 

  222. Miyazaki, S., Hashimoto, N., Yoshimoto, Y, et al. (1986). Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev. Biol. 118:259–267.

    PubMed  CAS  Google Scholar 

  223. Sun, F. Z., Hoyland, J., Haung, X., et al. (1992). A comparison of intracellular changes in porcine eggs after fertilization and elec-troactivation. Development 115:947–956.

    PubMed  CAS  Google Scholar 

  224. Fissore, R. A., Dobrinksy, J. R., Balise, J. J., et al. (1992). Patterns of intracellular Ca2+ concentrations in fertilized bovine eggs. Biol. Reprod. 47:960–969.

    PubMed  CAS  Google Scholar 

  225. Miyazaki, S., Shirakawa, H., Nakada, K., et al. (1993). Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol. 158:62–78.

    PubMed  CAS  Google Scholar 

  226. Swann, K., Igusa, Y., and Miyazaki, S. (1989). Evidence for an inhibitory effect of protein kinase C on G-protein-mediated repetitive calcium transients in hamster eggs. EMBO J. 8:3711–3718.

    PubMed  CAS  Google Scholar 

  227. Berridge, M. J., Downes, C. P., and Hanley, M. R. (1989). Neural and developmental actions of lithium: A unifying hypothesis. Cell 59:411–419.

    PubMed  CAS  Google Scholar 

  228. Mattson, M. P., Rydel, R. E., Lieberburg, L, et al. (1993). Altered calcium signaling and neuronal injury: Stroke and Alzheimer’s disease as examples. Ann. N. Y. Acad. Sci. 679:1–21.

    PubMed  CAS  Google Scholar 

  229. Howard, M., Grimaldi, J. C, Bazan, J. F., et al. (1993). Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Busa, W.B. (1996). Regulation of Intracellular Free Calcium. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics