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MUltiple sclerosis (MS) has been recognized as a distinct clinical 
entity for over 100 years, but its etiology remains elusive. In all 
likelihood, a viral infection during childhood or adolescence triggers an 
autoimmune response to oligodendrocytes and/or myelin in susceptible 
individuals (1). Patients with MS are now being treated with 
cyclophosphamide (2,3), cyclosporine (4), azathioprine (5), whole body 
radiation (6,7), or plasmapheresis (8), on the assumption that MS is an 
autoimmune disease. These therapies have potentially serious 
hematologic, gastrointestinal, infectious, or neoplastic side effects 
(9). Immunosuppressive therapy, even if effective in stabilizing 
multiple sclerosis, is less than ideal because of the above mentioned 
side effects. Establishment of the etiology of MS may allow for more 
earlier, more specific, and less toxic treatment. In this paper we will 
review the epidemiologic evidence for a viral etiology of MS, the current 
state of candidate viruses, viral associated human demyelinating diseases 
other than MS, and the animal models of viral-induced demyelination. 

EPIDEMIOLOGY OF MULTIPLE SCLEROSIS 

The epidemiology of MS has been extensively studied in the hope of 
establishing its etiology. MS begins primarily, although not 
exclusively, in young adulthood. Risk rises steeply from early 
adolescence, reaches a peak about age 30, and declines to near zero by 
age 60 (10). This same unimodal age-specific onset curve is present in 
various ethnic groups (11) and in areas of high and low prevalence (12). 
Women are 1.4 times more likely to develop MS than men (13). Ethnic 
groups demonstrate a range of susceptibilities from the Anglo-Saxons, who 
are susceptible, to the Japanese, who are resistant. Multiple sclerosis 
is more common in temperate rather than tropical regions (30 to 80 per 
100,000 versus 4 to 6 per 100,000) (12). This observation holds for both 
the Old and New Worlds as well as the northern and southern hemispheres 
(14). The risk of developing MS within one ethnic group varies by a 
factor of 10 to 20 based on latitude (12). There is an age-specific 
component to the effect of factors encountered at various latitudes. 
Migration from a high to low incidence region prior to age 15 reduces an 
individual's risk of contracting MS (15,16). Migration from a low to 
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high incidence region prior to age 15 increases an individual's risk of 
contracting MS (12). 

The risk of developing MS is in part due to the inheritance of 
specific histocompatibility (HLA) antigens. In Caucasians, the presence 
of the HLA A3 or B7 antigens increases an individual's risk of developing 
MS by two to three fold (17,18), while the presence of DR2 increases risk 
by four to five fold (19,20). An examination of the HLA of family 
members of patients with MS did not detect a single HLA haplotype which 
differed among affected and non-affected individuals (21). HLA provides 
a marker of susceptibility in Caucasians. There is, however, no 
consistent relationship between MS and HLA in other races (12). 

A current hypothesis is that MS arises as a consequence of an 
abnormal immune response to a virus which occurs at a critical age in a 
susceptible individual. Rubella, measles and typhoid vaccinations 
occurred at a later age in MS patients compared to controls (21). 
Individuals who are at higher risk to develop MS because of their MHC 
haplotype were more likely to have measles or mumps at a later age than 
controls (24). MS may arise as a result of a susceptible individual 
contracting a common childhood infection at a point when there is a 
regulatory abnormality of immune system, which permits the development of 
autoimmunity against myelin and/or oligodendrocytes. 

The increased incidence of MS in family members compared to the 
general population provides further evidence for the etiologic role of an 
environmental factor. MS is 6 to 8 times more frequent in siblings and 2 
to 4 times more common in parents than unrelated controls (12). 
Monozygotic twins demonstrate a 50 percent concordance. The clinical 
signs of MS frequently develop in the same year, rather than at the same 
age, in siblings (23). This suggests MS may develop following a common 
triggering agent in susceptible individuals. Siblings discordant for MS 
have been shown to have fewer and less severe viral illnesses as children 
(24). Taken together, the increased rate of MS in family members suggest 
a common exposure to an environmental pathogen (25). 

Further evidence for an environmental factor in the etiology of MS is 
provided by Kurtzke's studies of the epidemiology of Ms in the Faroe 
Islands. Prior to World War II, Faroe Islanders were not afflicted with 
MS. In contrast, MS is common in the British, who are of the same 
genetic stock and live at the same latitude (26). During World War II, 
the Faroe Islands were occupied by British soldiers. Subsequently, MS 
was diagnosed in native Faroe Islanders. A detailed examination of 
individuals who contracted MS revealed they had closer contact to the 
British forces than those who did not. Since World War II, MS has become 
endemic in native Faroe Islanders. MS appears to occur in a small 
percentage of individuals six to twelve years after the exposure to a 
presumably infectious agent (27). 

VIRAL-INDUCED HUMAN DEMYELINATING DISEASES 

A. Multiple Sclerosis 

Intensive efforts have been made to isolate a virus from the brains 
of patients with MS. While a variety of viruses. have been isolated, 
including rabies, herpes simplex, scrapie, parainfluenza I, measles, 
chimpanzee cytomegalovirus, simian viruses I and V, coronaviruses, MS­
associated (Carp) agent, and the bone marrow (Mitchell) agent, all 
probably represent contaminants or adventitious, rather than causal 
agents (28). A variety of viruses have been identified in the brain of 
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MS patients by other techniques. Both measles (29) and herpes simplex 
type 1 (30) were found to in situ hybridization. Coronavirus-like 
particles were detected by electron microscopy (31). It remains unclear 
if the presence of these viruses is causal or coincidental in the 
etiology of MS. Attempts to produce MS in primates by intracerebral 
injection of brain tissue from patients with MS have proven unsuccessful 
(32). 

Antibodies to a variety of viruses have been found in the serum and 
cerebrospinal fluid (CSF) of patients with MS. Adams and Imagawa (32) 
found elevated levels of measles antibodies in the serum of MS patients 
compared to controls. Most subsequent studies have confirmed this 
observation (33). Increased levels of measles antibodies, however, are 
not found in every patient, and th absolute titer of measles antibodies 
is low (12). Antibodies against a variety of other viruses have been 
found in the cerebrospinal fluid (CSF) of patients with MS, but no virus 
has been detected universally (34,35). There is no consistent 
relationship between viral antibodies and the presence of oligoclonal 
bands in the CSF (36). The significance of viral antibodies in the serum 
or CSF of MS patients has recently bee reinterpreted. Elevated antibody 
titers to measles virus envelope, hemolysin, and hemagglutinin, antigens, 
Epstein-Barr virus capsid and nuclear antigen, and rubella hemagglutinin 
antigen were found in serum samples of patients with MS and rheumatoid 
arthritis compared to age and sex matched controls (37). The presence of 
elevated viral antibody titers may be a marker of abnormal immune 
regulation rather than being indicative of a specific etiologic agent. 

The human lymphotropic virus type I (HTLV-I) was recently implicated 
as the etiologic agent of MS after antibodies to HTLV-I were identified 
in the CSF of MS patients from Sweden, and Key West, Florida (38). 
HTLV-I nucleotide sequences were also found in cells from the CSF by in 
situ hybridization under low stringency conditions from these patients 
(38). A second group reported detecting antibodies to HTLV-I proteins in 
one quarter of Japanese patients with MS (39). In spite of these 
promising early reports, HTLV-I does not appear to play an etiologic role 
in MS. In subsequent studies, HTLV-I was not detected by enzyme-linked 
immunosorbent assay (ELISA) or in situ hybridization techniques nor 
directly isolated from cultured lymphocytes, peripheral blood monocytes 
or brain tissues of patients with MS (40-43). Antibodies to HTLV-I, II, 
or III (human immuno-deficiency virus or HIV) do not occur more commonly 
in patients with MS compared to those with optic neuritis or other 
neurologic diseases (45). Finally, while HTLV-I is found in Japanese 
patients with MS, it was not statistically more common among patients 
with MS compared to those with other neurologic diseases and normal 
controls (44). At present, the weight of evidence is against HTLV-I 
being the "MS agent". . 

B. Tropical Spastic Paraparesis 

HTLV-I was recently identified as the etiologic agent of tropical 
spastic paraparesis (TSP). HTLV-I associated TSP produces a slowly 
progressive, symmetrical, predominantly upper motor neuron disorder, 
characterized clinically by spastic paraparesis. It is associated with 
minimal sensory or autonomic dysfunction (49). Japanese (46) and 
Caribbean (50) patients with TSP have elevated serum antibodies to HTLV-I 
compared to controls. High levels of antibodies to HTLV-I are present in 
the CSF of patients with TSP (47) and these antibodies are synthesized 
intrathecally (48). Pathologic examination of the spinal cord reveals 
intense chronic meningomyelitis with demyelination; patchy collections of 
lymphocytes, plasma cells and macrophages are distributed in both grey 
and white matter. Demyelination is present predominantly in the 
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pyramidal and dorsal medial columns. In chronic cases, spongiform 
changes develop in the white matter (51,52). TSP is diagnosed in the 
appropriate clinical setting by presence of antibodies against HTLV-I. 
Computerized tomography, magnetic resonance imaging, and/or myelogram, 
are normal. It has not been determined if demyelination is due to the 
direct effect of HTLV-I on oligodendrocytes and/or myelin, or if it is 
immune-mediated. Tentative evidence for the later mechanism is provided 
by the observation that some patients with TSP improved during 
immunosuppressive treatment with prednisone and subsequently deteriorated 
when prednisone was withdrawn (46). The identification of HTLV-I as the 
agent of TSP represents a major breakthrough and significantly enlarges 
the domain of human viral-induced demyelinating diseases. 

c. Acquired Immunodeficiency Syndrome (AIDS) 

While HIV (HTLV-III) has not been shown to be MS agent, it has been 
found to produce a variety of neurologic conditions, including vacuolar 
myelopathy, subacute encephalopathy, aseptic meningitis, sensory 
polyneuropathy and dysimmune motor polyneuropathy. CNS demyelination is 
a major feature of the first two syndromes. Vacuolar myelopathy is 
characterized clinically by paraparesis, ataxia and incontinence (53,54). 
Pathologic examination reveals demyelination, predominantly in the 
lateral and posterior columns of the thoracic spinal cord. Vacuolar 
myelopathy is found in up to 20 percent of patients with the acquired 
immunodeficiency syndrome (AIDS). Demyelination appears to result from 
interfering with the normal metabolism of oligodendrocytes (55). The 
subacute encephalopathy of AIDS is characterized clinically by impaired 
memory and concentration with psychomotor slowing (55a). The course is 
progressive and may be accompanied by motor or behavioral changes. On 
pathologic examination abnormalities are present in the white matter and 
in subcortical structures. They consist of white matter pallor, 
microglial nodules, and infiltrations of lymphocytes, macrophages and 
multinucleated giant cells (56,56a). The earliest pathologic feature of 
the subacute encephalopathy of AIDS is the white matter pallor and 
vacuolation (56). HIV has demonstrated in monocytes and multinucleated 
cells in the regions of demyelination, but not, so far, in 
oligodendrocytes (56). The mechanism of demyelination in subacute 
encephalopathy is, as yet, unknown. Subacute encephalopathy is a 
significant source of morbidity and mortality in AIDS. Establishment of 
the mechanism of demyelination is an important goal in the effort to 
design more effective therapies of AIDS. 

D. Progressive Multifocal Leukoencephalopathy 

Progressive multifocal leukoencephalopathy (PML) is a demyelinating 
disease due to human papovaviruses, the JC virus (JCV) (56,57) and the 
SV-40-like agent (58). PML occurs primarily in individuals with diseases 
which impair the immune system, such as leukemia, lymphoma, or AIDS 
(54,59-61). PML is seen in approximately 2% of patients with AIDS (62). 
If the present exponential increase in AIDS cases continues, PML will 
become as prevalent as Huntington's disease or myasthenia gravis by 1991 
(62). 

The clinical sign and symptoms of PML relate to the multifocal nature 
of the disease. PML is usually progressive and unrelenting, leading to 
death within six months of onset in immuno-incompetent individuals. PML 
may run a more protracted course in immuno-competent patients and, on 
rare occasion, may spontaneously resolve (63). Infection precedes 
without producing a fever or a pleocytosis in the CSF. PML can be 
diagnosed in the proper clinical setting with a characteristic appearance 
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on CT scan: Multiple hypodense, nonenhancing lesions present in the 
white matter. These lesions do not respect vascular borders nor been 
demonstrated to be effective in the treatment of PML. 

Pathologic examination of the brain of patients with PML reveals 
multifocal regions of demyelination, which become confluent as the 
disease progresses. Basophilic, enlarged oligodendrocytes, and bizarre, 
enlarged astrocytes with irregularly lobulated, hyperchromatic nuclei, 
are seen by light microscopy in conjunction with the demyelination (65). 
Large numbers of papovavirus particles, single or in crystalline arrays, 
can be visualized in the nuclei of oligodendrocytes by electron 
microscopy (66). Virus particles are not present in astrocytes or 
neurons. JCV nucleotide sequences are found in oligodendrocytes, 
occasionally in astrocytes, but not in vascular endothelial cells as 
detected by in situ hybridization techniques (67). PML probably arises 
as the result of reactivation of JCV in immunologically compromised 
patients (68). JCV virus is acquired subclinically during childhood 
(65). JCV virus can be recovered from spleen and bone marrow cells as 
well as mononuclear cells in the CSF. PML may occur as a result of JCV 
entering the perivascular space of the brain from tissues in which it has 
been dormant. Clinical signs develop when oligodendrocytes are infected 
(69) . 

The molecular basis of JCV-induced demyelination has recently been 
elucidated through application of the powerful techniques of modern 
molecular biology. Early attempts at identifying thee mechanism of 
demyelination were hampered by the restricted host range of JCV infection 
of oligodendrocytes (70). This barrier was overcome by creating 
transgenic mice containing the JCV early region (71). Transgenic mice 
which inherit the JCV early region develop "shaking", one phenotype seen 
in mice with defects in myelin synthesis. The JCV early region codes for 
the T-antigen. Expression of the T-antigen correlates with the severity 
of "shaking". The presence of the T-antigen in oligodendrocytes results 
in a decrease in the transcription, compared to the translation, of the 
major structural proteins of CNS myelin (72). The T-antigen shares a 
C-terminal subsequence with myelin basic protein (MBP). This sequence 
functions as a phosphate acceptor site in the latter. The T-antigen 
sequence appears to competitively inhibit the protein kinase 
phosphorylation of the Pro-Arg-Thr-Pro-Pro sequence of MBP (74). This 
blocks the production of myelin and arrests the maturation of 
oligodendrocytes. The T-antigen has been detected in the nuclei of 
oligodendrocytes of patients with PML by use of the immunoperoxidase 
staining technique (73). The T-antigen has not been demonstrated in 
oligodendrocytes of patients with MS (75). In conjunction with the rise 
in the number of cases of AIDS, PML promises to become an increasingly 
important clinical disease. 

ANIMAL MODELS OF VIRAL-INDUCED DEMYELINATION 

A variety of viruses which cause demyelination in animals have been 
studied as models of MS. These models have provided many insights into 
mechanisms of viral-induced demyelination. Martin and Nathanson (76) 
observed that these systems share the following characteristics: One, 
the diseases are biphasic with a stage of acute encephalitis followed by 
a stage of chronic demyelination. Two, virus persists in the white 
matter. Three, the lesions are multifocal, and are located primarily in 
the spinal cord. Recently, some of the models have been modified so that 
they more closely resemble MS. 
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A. JHM Strain of Mouse Hepatitis Virus 

JHM virus (JHMV), the neurotropic strain of mouse hepatitis virus 
(MHV), is a coronavirus which produces an acute, diffuse 
encephalomyelitis with patchy demyelination in mice and rats (77,78,88). 
Lesions develop in the white matter five to seven days after 
intracerebral inoculation. Inflammation and necrotic lesions are present 
in gray and white matter. The degree of demyelination is dependent on 
the age and strain of the animal dose of virus and route of infection 
(79-82). Demyelination is due to the lytic effect of JHMV on 
oligodendrocytes (79). Demyelination occurs in conjunction with the 
presence of JHMV as demonstrated by fluorescent microscopy or 
immunoperoxidase techniques. JHMV can be visualized in oligodendrocytes 
by electron microscopy. There is no temporal or anatomic association 
with the occurrence of demyelination and thee presence of inflammatory 
cells; demyelination occurs even in the absence of perivascular 
inflammation aft treatment with cyclophosphamide (79). Animals which 
survive the acute encephalitis remain persistently infected and develop 
subclinical chronic recurrent demyelination (83,84). The study of viral­
induced demyelination has been facilitated by the identification of 
temperature sensitive and antibody selected mutants of JHMV which cause 
chronic demyelination with minimal encephalitis (85-87) and a clinically 
relapsing disease in association with the recurrence of demyelination 
(89). 

The immune system may play a role in the development of demyelination 
following JHMV infection of rats. Demyelination can be transferred from 
infected to naive rats by adoptive transfer of the lymphocytes, following 
in vitro stimulation with myelin basic protein (90). JHMV may cause 
demyelination by altering the regulation of cell mediated immunity in the 
brain. JHMV induces class II proteins on astrocytes (91), cells which do 
not ordinarily express class II (92). This may result in 
oligodendrocytes and/or myelin proteins becoming targets of the immune 
system, resulting in demyelination. JHMV remains a useful model for 
studying mechanisms of virus-induced demyelination. 

B. Canine Distemper Virus 

Canine distemper virus (CDV) is a paamyxovirus related to measles 
which produces either acute or chronic demyelinating disease in dogs, 
based on the strain of the virus (93-95). Demyelination is a result of a 
lytic infection of oligodendrocytes; myelin breakdown occurs in the 
absence of inflammatory cells. Demyelination occurs anatomically and 
temporally separate from inflammatory infiltrates. Mononuclear cells are 
present in the brain but occur around blood vessels, and represent a 
secondary response to demyelination. CDV is a useful model of PML 
because in both diseases demyelination is due to the oligodendrocidal 
effects of the virus. 

C. Semliki Forest Virus 

Semliki Forest Virus (SFC) is a non-human pathogenic alphavirus which 
was discovered in mosquitoes of the Semliki Forest of Uganda. SFV 
produces multifocal demyelination in the CNS when inoculated 
intracerebrally in mice (96). SFV-infected mice provide a very useful 
model to study the physiology of demyelination (97,98). SFV-induced 
demyelination is immune-mediated (99). Demyelination occurs in 
conjunction with inflammatory infiltrates. It does not occur in immuno­
incompetent (100) or immunosuppressed mice, in spite of higher titer of 
virus in the brain tissue compared to control mice (101). Reconstitution 
of SFV-infected immuno-incompetent mice with normal spleen cells leads to 
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demyelination (101). SFV is an excellent model of immune-mediated 
demyelination. 

D. Herpes Simplex Virus 

Herpes simplex virus type 1 (HSV-l) is a DNA virus which produces, on 
occasion, meningitis and encephalitis in man. HSV-l has recently been 
found to produce demyelination in mice. Following oral-facial 
inoculation, HSV-l induces lesions characterized by demyelination in 
association with an inflammatory mononuclear cell infiltrate in the 
brainstem adjacent to the trigeminal nerve root entry zone (102,103). 
Demyelination is immune-mediated; demyelination is prevented by 
immunosuppression with cyclophosphamide prior to infection (104). The 
extent of demyelination following infection with HSV-l is under genetic 
control (105); certain strains of mice develop multifocal demyelination 
throughout the brain independent of the presence of virus. Demyelination 
in these latter strains is probably on an autoimmune basis. HSV-l 
induced demyelination in mice is an important new model of MS. 

E. Visna 

Visna is a retrovirus which produces pneumonia and/or a chronic 
progressive, although occasionally relapsing-remitting, myelopathy in 
sheep (106). Visna persists at low levels for years, in part by evolving 
into antigenically distinct forms over time (107). Pathologically, 
demyelination occurs in two phases (108). During the initial phase, 
demyelination occurs in regions of inflammatory infiltrates with 
relatively little tissue necrosis. During the latter phase, 
demyelination occurs in conjunction with necrosis, of both gray and white 
matter. Immunosuppression inhibits early but not late demyelination 
(109). Visna may provide an excellent model for TSP and may be very 
useful as a means to test new therapies. 

F. Theiler's Murine Encephalomyelitis Virus 

Wild-type Theiler's murine encephalomyelitis virus (TMEV) usually 
produces an asymptomatic enteric infection in mice, and only rarely 
encephalomyelitis. One strain of TMEV, DA, has been isolated which 
reliably produces a biphasic neurologic disease in Swiss mice (110). 
Mice strains vary in their degree of susceptibility to TMEV (118,119). 
Nine to 20 days following intracerebral inoculation with the DA strain of 
TMEV, 80 percent of mice develop encephalomyelitis. Between one and five 
months post-infection, survivors develop a mild gait disturbance in 
conjunction with the occurrence of demyelination in areas of intense 
mononuclear inflammation in the spinal cord leptomeninges and white 
matter. During the acute phase, TMEV can be found in neurons and glial 
cells. During the late phase, TMEV is present only in glial cells 
(111,112). Immunosuppression prevents demyelination, although results in 
increased neuronal necrosis with a concomitant increase in mortality 
(113). Timing of the initiation of immunosuppression is critical in 
preventing demyelination (114). Immunosuppression initiated at the time 
of infection prevents early demyelination. Immunosuppression begun later 
is ineffective. MBP appears in the CSF and serum during chronic TMEV 
infection. The level of MBP parallels the clinical severity of 
demyelination (115). MBP appears to be a marker of demyelination rather 
than a target of attack by the immune system. Treatment with myelin 
components cannot prevent demyelination in TMEV (116) as is observed in 
experimental allergic encephalomyelitis, or even perhaps, in MS (117). 

Demyelination occurs during TMEV infection as a result of a delayed 
type hypersensitivity (DTH) response against persistently infected 

135 



Table I Animal Models of Viral-Induced Demyelination 

Virus Host Possible Mechanism 

Theiler's Mouse Immunopathological in a 
persistent infection 

Semliki Forest Mouse Immunopathological 

Mouse Oligodendrocidal in a 
persistent infection 

Rat Immunopathological 

Herpes Simplex Mouse Immunopathological 

Canine Distemper Dog Oligodendrocidal 

Visna Sheep Oligodendrocidal +/or 
immunopathologic 

Table 2 Possible Mechanisms of Virus-Induced Demyelination (124) 

Direct viral effects 

Viral infection of oligodendrocytes or Schwann cells 
causing demyelination through cell lysis or an alteration 
of cell metabolism 

Myelin membrane destruction by the virus or viral products 

Virus-induced immune-mediated reactions 

Antibody and/or cell-mediated reactions to viral antigens 
on cell membrane 

Sensitization of host to myelin antigens 

Breakdown or myelin by infection with introduction 
into the circulation 

Incorporation of myelin antigens into the virus 
envelope 

Modification of antigenicity of myelin membranes 

Cross-reacting antigens between virus and myelin proteins 

Bystander demyelination 

Viral disruption of regulatory mechanisms of the immune system 
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oligodendrocytes (120). The development of demyelination correlates with 
the establishment of high levels of DTH against TMEV antigens (121). It 
does not appear to be due to an autoimmune response against CNS antigens. 
Examination of the fine specificity of class II restricted T cell 
responses reveals that the DTH is against viral antigens. Mice 
chronically infested with TMEV do not mount a DTH response against mouse 
spinal cord homogenate, myelin basic protein, or proteolipid protein 
(122). While demyelination during TMEV is not due to autoimmunity, 
procedures which increase inflammation, such as opening the blood brain 
barrier, lead to increased demyelination (123). TMEV provides an 
excellent system for studying viral-induced immune-mediated 
demyelination. 

MECHANISMS OF VIRAL-INDUCED DEMYELINATION 

Viral infections can induce demyelination through a variety of 
mechanisms (124). We have previously discussed new demyelination may 
result from lysis (JHMV) , or interference with the normal metabolism 
(PML) of oligodendrocytes and immune-mediated destruction of virus 
infected oligodendrocytes (TMEV, SFV). Demyelination has recently been 
shown to arise as a consequence of molecular mimicry, where antibodies­
synthesized against a viral protein inadvertently cross-react with a host 
protein. Experimental allergic encephalomyelitis (EAE) can be elicited 
by inoculation of MBP in Freund's adjuvant. MBP and the polymerase 
protein of hepatitis B are homologous for six amino acids. Inoculation 
of those six amino acids in Freund's adjuvant results in pathologic 
lesions which resemble EAE (125). Finally, demyelination may result as a 
consequence of a virus infection disrupting the normal regulatory 
mechanisms of the immune system which prevents autoimmunity. Chronic JHM 
infection in rats induces Class II antigens on glial cells, which may 
allow astrocytes to function as antigen-presenting cells and process an 
oligodendrocyte and/or myelin protein, such as MBP into an auto-antigen. 
Demyelination could result if a normal host protein becomes a target of 
the immune system. MS does not appear to arise as a consequence of the 
direct effect of a viral infection on oligodendrocytes and/or myelin. 
Instead, MS probably occurs as a result of either a virus-induced immune­
mediated reaction or through alteration of the regulatory mechanisms of 
the immune system. Further studies into the pathogenesis of MS will be 
greatly aided by the availability of animal models of both mechanisms. 
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