Skip to main content

Screening for Pancreatic Cancer Using Techniques to Detect Altered Gene Products

  • Chapter
Pancreatic Cancer

Abstract

Although cancer of the pancreas accounts for only 2% of new cancer cases in the United States, it is the fifth leading cause of cancer death (1). This is true because many patients with pancreatic cancer are not diagnosed until late in the course of the disease, when the carcinoma has already metastasized or spread locally, and is no longer curable. Although 5-yr survival for all patients with cancer of the pancreas is 3% (2), 5-yr survival after successful pancreaticoduodenectomy (Whipple procedure) approaches 20% overall, and may be as high as 40% in patients with small tumors, negative lymph nodes, and negative surgical margins (34). Therefore, methods that can detect pancreatic cancers earlier, when they are still surgically resectable, will improve patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker SL, Tong T, Bolden S, et al. Cancer statistics. Ca Cancer J Clin 1996; 46:5–21.

    Article  PubMed  CAS  Google Scholar 

  2. Warshaw AL and Castillo CF. Pancreatic carcinoma. N Engl J Med 1992; 326:455–465.

    Article  PubMed  CAS  Google Scholar 

  3. DiGiuseppe JA, Yeo CJ, and Hruban RH. Molecular biology and the diagnosis and treatment of adenocarcinoma of the pancreas. Adv Anat Path 1996; 3:139–155.

    Article  Google Scholar 

  4. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy for cancer of the head of the pancreas: 201 patients. Ann Surg 1995; 221:721–733.

    Article  PubMed  CAS  Google Scholar 

  5. Cotran RS, Kumar V, and Robbins SL, eds. Robbins pathologic basis of disease, 5th ed., WB Saunders, Philadelphia, 1994; p. 272.

    Google Scholar 

  6. Tannock IF. Biology of tumor growth. Hosp Pract 1983; 18:81–93.

    CAS  Google Scholar 

  7. Tannock IF. Cell proliferation. In: Tannock IF, and Hill RP (eds), Basic science of oncology, 2nd ed., McGraw-Hill, New York, 1992; p. 154.

    Google Scholar 

  8. Vogelstein B and Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9:138–141.

    Article  PubMed  CAS  Google Scholar 

  9. Fearon ER and Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  10. zur Hausen H. Viruses in human cancers. Science 1991; 254:1167–1173.

    Article  PubMed  Google Scholar 

  11. Westra WH, Baas 10, Hruban RH, et al. K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res 1996; 56:2224–2228.

    PubMed  CAS  Google Scholar 

  12. Hruban RH, DiGiuseppe JA, and Offerhaus GJA. K-ras mutations in pancreatic ductal proliferative lesions: author’s reply. Am J Pathol 1994; 145:1548–1550.

    Google Scholar 

  13. Cubilla A and Fitzgerald PJ. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res 1976; 36:2690–2698.

    PubMed  CAS  Google Scholar 

  14. Kozuka S, Sassa R, Taki T, et al. Relation of pancreatic duct hyperplasia to carcinoma. Cancer 1979; 43:1418–1428.

    Article  PubMed  CAS  Google Scholar 

  15. Pour PM, Sayed S, and Sayed G. Hyperplastic, preneoplastic, and neoplastic lesions found in 83 human pancreases. Am J Clin Pathol 1982; 77:13–52.

    Google Scholar 

  16. Furukawa T, Chiba R, Kobari M, et al. Varying grades of epithelial atypia in the pancreatic ducts of humans. Arch Pathol Lab Med 1994; 118:227–234.

    PubMed  CAS  Google Scholar 

  17. Almoguera C, Shibata D, Forrester K, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53:549–554.

    Article  PubMed  CAS  Google Scholar 

  18. Smit VT, Boot AJ, Smits AM, et al. K-ras codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nuclei Acid Res 1988; 16:7773–7782.

    Article  CAS  Google Scholar 

  19. Hruban RH, van Mansfield ADM, Offerhaus GJA, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas: a study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 1993; 143:545–554.

    PubMed  CAS  Google Scholar 

  20. Grünewald K, Lyons J, Frohlich A, et al. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 1989; 43:1037–1041.

    Article  PubMed  Google Scholar 

  21. Motojima K, Urano T, Nagata Y, et al. Detection of point mutations in the Kirsten-ras oncogene provides evidence for the multicentricity of pancreatic carcinoma. Ann Surg 1993; 217:138–143.

    Article  PubMed  CAS  Google Scholar 

  22. Kalthoff H, Schmiegel W, Roeder C, et al. p53 and K-ras alterations in pancreatic epithelial cell lesions. Oncogene 1993; 8:289–298.

    PubMed  CAS  Google Scholar 

  23. Pellegata NS, Sessa F, Renault B, et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and non-ductal tumors progress through different genetic lesions. Cancer Res 1994; 54:1556–1560.

    PubMed  CAS  Google Scholar 

  24. Rail CJN, Yan Y, Graeme-Cook F, et al. Ki-ras and p53 mutations in pancreatic ductal adenocarcinoma. Pancreas 1996; 12:10–17.

    Article  Google Scholar 

  25. Seymour AB, Hruban RH, Redston MS, et al. Allelotype of pancreatic adenocarcinoma. Cancer Res 1994; 54:2761–2764.

    PubMed  CAS  Google Scholar 

  26. Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 1994; 54:3025–3033.

    PubMed  CAS  Google Scholar 

  27. Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the pl6 (MTS1) gene in pancreatic adenocarcinoma. Nature Genet 1994; 8:27–32.

    Article  PubMed  CAS  Google Scholar 

  28. Huang L, Goodrow TL, Zhang S, et al. Deletion and mutation analyses of the pl6/MTS1 tumor-suppressor gene in human ductal pancreatic cancer reveal a higher frequency of abnormalities in tumor-derived cell lines than in primary ductal adenocarcinomas. Cancer Res 1996; 56:1137–1141.

    PubMed  CAS  Google Scholar 

  29. Hahn SA, Schutte M, Shamsul Hoque ATM, et al. DPC4, a candidate tumor-suppressor gene at human chromosome 18q21.1. Science 1996; 271:350–353.

    Article  PubMed  CAS  Google Scholar 

  30. Huang L, Lang D, Geradts J, et al. Molecular and immunochemical analyses of RB1 and cyclin D1 in human ductal pancreatic carcinomas and cell lines. Mol Carcinog 1996; 15:85–95.

    Article  PubMed  CAS  Google Scholar 

  31. Goggins M, Schutte M, Lu J, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56:5360–5364.

    PubMed  CAS  Google Scholar 

  32. Rozenblum E, Schutte M, Goggins M, et al. Co-existent inactivations infer distinct tumor-suppressive pathways in pancreatic cancer. Cancer Res 1997; 57:1731–1734.

    PubMed  CAS  Google Scholar 

  33. Cerny WL, Mangold KA, and Scarpelli DG. K-ras mutations is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 1992; 52:4507–4513.

    PubMed  CAS  Google Scholar 

  34. DiGiuseppe JA, Hruban RH, Offerhaus GJA, et al. Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma. Am J Pathol 1994; 144:889–895.

    PubMed  CAS  Google Scholar 

  35. Yanagisawa A, Ohtake K, Ohashi K, et al. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res 1993; 53:953–956.

    PubMed  CAS  Google Scholar 

  36. Caldas C, Hahn SA, Hruban RH, et al. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 1994; 54:3568–3573.

    PubMed  CAS  Google Scholar 

  37. Lemoine NR, Jain S, Hughes CM, et al. Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology 1992; 102:230–236.

    PubMed  CAS  Google Scholar 

  38. Wilentz RE, Chung CH, Musler A, et al. Detection of K-ras mutations in duodenal fluid-derived DNA from patients with periampullary cancer. 1998; 82:96–103.

    CAS  Google Scholar 

  39. Smith RC, Kneale K, and Goulston K. In situ carcinoma of the pancreas. Aust NZ J Surg 1986; 56:369–373.

    Article  CAS  Google Scholar 

  40. Tabata T, Fujimori T, Maeda S, et al. The role of ras mutation in pancreatic cancer, pre-cancerous lesions, and chronic pancreatitis. Int J Pancreatol 1993; 14:237–244.

    PubMed  CAS  Google Scholar 

  41. Tada M, Ohashi M, and Shiratori Y. Analysis of K-ras gene mutations in hyperplastic duct cells of the pancreas without pancreas disease. Gastroenterology 1996; 110:227–231.

    Article  PubMed  CAS  Google Scholar 

  42. Barbacid M. Ras genes. Annu Rev Biochem 1987; 56: 779–827.

    Article  PubMed  CAS  Google Scholar 

  43. van Es JM, Polak MM, van den Berg FM, et al. Molecular markers for diagnostic cytology of neoplasms in the head region of the pancreas: mutation of K-ras and overexpression of the p53 protein product. J Clin Pathol 1995; 48:218–222.

    Article  PubMed  Google Scholar 

  44. Berthélemy P, Bouisson M, Escourrou J, et al. Identification of K-ras mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med 1995; 123:188–191.

    PubMed  Google Scholar 

  45. Watanabe H, Sawabu N, Songiir Y, et al. Detection of K-ras point mutations at codon 12 in pure pancreatic juice for the diagnosis of pancreatic cancer by PCR-RFLP analysis. Pancreas 1996; 12:18–24.

    Article  PubMed  CAS  Google Scholar 

  46. Tada M, Omata M, Kawai S, et al. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 1993; 53:2472–2474.

    PubMed  CAS  Google Scholar 

  47. Watanabe H, Sawabu N, Ohta H, et al. Identification of K-ras oncogene mutations in the pure pancreatic juice of patients with pancreatic adenocarcinoma and pancreatic cancers. Jpn J Cancer Res 1993; 84:961–965.

    Article  PubMed  CAS  Google Scholar 

  48. Shibata D, Almoguera C, Forrester K, et al. Detection of c-Ki-ras gene codon 12 mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res 1990; 50:1279–1283.

    PubMed  CAS  Google Scholar 

  49. van Laethem J-L, Vertongen P, Deviere J, et al. Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumors. Gut 1995; 36:781–787.

    Article  PubMed  Google Scholar 

  50. Apple SK, Hecht JR, Novak JM, et al. Polymerase chain reaction-based K-ras mutation detection of pancreatic adenocarcinoma in routine cytology smears. Am J Clin Pathol 1996; 105:321–326.

    PubMed  CAS  Google Scholar 

  51. Miki H, Matsumoto S, Harada H, et al. Detection of c-Ki-ras point mutations from pancreatic juice. Int J Pancreatol 1993; 14:145–148.

    PubMed  CAS  Google Scholar 

  52. Kondo H, Sugano K, Fukayama N, et al. Detection of point mutations in the K-ras oncogene at codon 12 in pure pancreatic juice for diagnosis of pancreatic carcinoma. Cancer 1994; 73:1589–1594.

    Article  PubMed  CAS  Google Scholar 

  53. Liu T, Wang Z, and Cui Q. Significance of the detection of Ki-ras codon 12 mutation in the diagnosis and differential diagnosis of pancreatic carcinoma. Int J Surg Pathol 1995; 3:93.

    Google Scholar 

  54. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327:293-297.

    Google Scholar 

  55. Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1988; 327:298–303.

    Article  Google Scholar 

  56. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. New Eng J Med 1988; 319:525–532.

    Article  PubMed  CAS  Google Scholar 

  57. Fearon ER, Hamilton SR, and Vogelstein B. Clonal analysis of human colorectal tumors. Science 1987; 238:193–197.

    Article  PubMed  CAS  Google Scholar 

  58. Mullis KB and Faloona FA. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol 1987; 155:335–350.

    Article  PubMed  CAS  Google Scholar 

  59. Winter E, Yamamoto F, Almoguera C, et al. A method to detect and characterize point mutations in transcribed genes: amplification and overexpression of the mutant c-K-ras allele in human tumor cells. Proc Natl Acad Sci USA 1985; 82:7575–7579.

    Article  PubMed  CAS  Google Scholar 

  60. Meyers RM, Lann Z, and Maniatis T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 1985; 230:1242–1246.

    Article  Google Scholar 

  61. Verlaan-de Vries M, Bogaard M, van den Elst H, et al. A dot-blot screening procedure for mutated ras oncogenes using synthetic oligodeoxynucleotides. Gene 1986; 50:313–320.

    Article  PubMed  CAS  Google Scholar 

  62. Tao LC. Liver and pancreas. In: Bibbo M. (ed), Comprehensive cytopathology, Saunders, Philadelphia, 1991; p. 844.

    Google Scholar 

  63. Venu RP, Geenen JE, Kini M, et al. Endoscopic retrograde brush cytology: a new technique. Gastroenterology 1990; 99:1475–1479.

    PubMed  CAS  Google Scholar 

  64. Goodale RL, Gajl-Peczalaka K, Dressel T, et al. Cytologic studies for the diagnosis of pancreatic cancer. Cancer 1981; 47:1652–1655.

    Article  PubMed  CAS  Google Scholar 

  65. Nakaizumi A, Tatsuta M, Vehara H, et al. Cytologic examination of pure pancreatic juice in the diagnosis of pancreatic carcinoma. Cancer 1992; 70:2610–2614.

    Article  PubMed  CAS  Google Scholar 

  66. Edoute Y, Lemberg S, and Malberger E. Preoperative and intraoperative fine-needle aspiration cytology of pancreatic lesions. Am J Gastroenterol 1991; 86:1015–1019.

    PubMed  CAS  Google Scholar 

  67. Hyoty MK, Mattila JJ, and Salo K. Intraoperative fine-needle aspiration cytology examination of pancreatic lesions. Surg Gynecol Obstet 1991; 173:193–197.

    PubMed  CAS  Google Scholar 

  68. Schadt ME, Kline TS, Neal HS, et al. Intraoperative pancreatic fine-needle aspiration biopsy: results in 166 patients. Am Surg 1991; 57:73–75.

    PubMed  CAS  Google Scholar 

  69. Berthélemy P, Bouisson M, Escorerrou J, et al. Identification of K-ras mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med 1995; 123:188–191.

    PubMed  Google Scholar 

  70. Levine AJ. The p53 tumor-suppressor gene. N Engl J Med 1992; 326:1350, 1351.

    Article  Google Scholar 

  71. Weinberg RA. Tumor-suppressor genes. Science 1991; 254:1138–1146.

    Article  PubMed  CAS  Google Scholar 

  72. Bartek J, Bartkova J, Vojtesek B, et al. Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 1991; 6:1699–1703.

    PubMed  CAS  Google Scholar 

  73. Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science 1991; 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  74. Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342:705–708.

    Article  PubMed  CAS  Google Scholar 

  75. Scarpa A, Capelli P, Mukai K, et al. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Surg Pathol 1993; 142:1534–1543.

    CAS  Google Scholar 

  76. DiGiuseppe JA, Hruban RH, Goodman SN, et al. Overexpression of p53 protein in adenocarcinoma of the pancreas. Amer J Clin Pathol 1994; 101:684–688.

    CAS  Google Scholar 

  77. Barton CM, Stoddon SL, and Hughes CM. Abnormalities of the p53 tumor-suppressor gene in human pancreatic cancer. Br J Cancer 1991; 64:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang SY, Ruggeri B, Agarwal P, et al. Immunohistochemical analysis of p53 expression in human pancreatic carcinomas. Arch Pathol Lab Med 1994; 118:150–154.

    PubMed  CAS  Google Scholar 

  79. Boschman CR, Stryker S, Reddy JK, et al. Expression of p53 protein in precursor lesions and adenocarcinoma of human pancreas. Am J Pathol 1994; 145:1291–1295.

    PubMed  CAS  Google Scholar 

  80. Baker SJ, Preisinger AC, Jessup JM, et al. p53 gene mutations occur in combination with 17p allelic deletion as late events in colorectal tumorigenesis. Cancer Res 1990; 50:7717–7722.

    PubMed  CAS  Google Scholar 

  81. Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989; 86:2766–2770.

    Article  PubMed  CAS  Google Scholar 

  82. Reich NC, Oren M, and Levine AJ. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol 1983; 3:2143–2150.

    PubMed  CAS  Google Scholar 

  83. Hall PA and Lane DP. p53 in tumour pathology: can we trust immunohistochemistry?… Revisited. J Pathol 1994; 172:1–4.

    Article  PubMed  CAS  Google Scholar 

  84. Wynford-Thomas D. p53 in tumor pathology: can we trust immunocytochemistry? J Pathol 1992; 166:329, 330.

    Article  PubMed  CAS  Google Scholar 

  85. van den Berg FM, Baas IP, Polak M, et al. Detection of p53 overexpression in routinely paraffin-embedded tissue of human carcinomas using a novel target unmasking fluid (TUF). Am J Pathol 1993; 142:381-385.

    Google Scholar 

  86. Midgley CA, Fisher CJ, Bartek J, et al. Analysis of p53 expression in human tumors: an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci 1992; 101(Part 1): 183–189.

    PubMed  CAS  Google Scholar 

  87. Rodrigues NR, Rowan A, Smith ME, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci USA 1990; 87:7555–7559.

    Article  PubMed  CAS  Google Scholar 

  88. Baas IO, Mulder JWR, Offerhaus GJA, et al. Immunohistochemistry of altered p53 suppressor gene product in colorectal neoplasms. Lab Invest 1993; 68:43A (abstract).

    Google Scholar 

  89. Baas IO, Mulder JWR, Offerhaus GJA, et al. An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol 1994; 172:5-12.

    Google Scholar 

  90. van den Berg FM, Tigges AJ, Schipper MEI, et al. Expression of the nuclear oncogene p53 in colon tumours. J Pathol 1989; 157:193–199.

    Article  PubMed  Google Scholar 

  91. Slebos RJC, Baas IO, Clement M, et al. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/ciP1 in colorectal carcinoma. Br J Cancer 1996; 74:165–171.

    Article  PubMed  CAS  Google Scholar 

  92. El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  93. Peters G. Stifled by inhibitors. Nature 1994; 371:204, 205.

    Article  PubMed  CAS  Google Scholar 

  94. White E. p53, guardian of Rb. Nature 1994; 371:21, 22.

    Article  PubMed  CAS  Google Scholar 

  95. El-Deiry WS, Kern SE, Pietenpol JA, et al. Definition of a consensus binding site for p53. Nature Genet 1992; 1:45-49.

    Google Scholar 

  96. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 1991; 252:1708–1711.

    Article  PubMed  CAS  Google Scholar 

  97. O’Rourke RW, Miller CW, Kato GJ, et al. A potential transcriptional activation element in the p53 protein. Oncogene 1990; 5:1829–1832.

    CAS  Google Scholar 

  98. Harper JW, Adami GR, Wei N, et al. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75:805–816.

    Article  PubMed  CAS  Google Scholar 

  99. Xiong Y, Hannon GJ, Zhang H, et al. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366:701–704.

    Article  PubMed  CAS  Google Scholar 

  100. Kern SE. p53: tumor suppression through control of the cell cycle. Gastroenterology 1994; 106:1708–1711.

    PubMed  CAS  Google Scholar 

  101. DiGiuseppe JA, Redston MS, Yeo CJ, et al. p53-independent expression of the cyclin-dependent kinase inhibitor p21 in pancreatic carcinoma. Amer J Pathol 1995; 147:884–888.

    CAS  Google Scholar 

  102. Halevy O, Novitch BG, Spicer DB, et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 1995; 267:1018–1024.

    Article  PubMed  CAS  Google Scholar 

  103. Michieli P, Chedid M, Lin D, et al. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 1994; 54:3391–3395.

    PubMed  CAS  Google Scholar 

  104. Sidransky D, Eschenbach DV, Tsai YC, et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 1991; 252:706–709.

    Article  PubMed  CAS  Google Scholar 

  105. Eguchi S, Kohara N, Komuta K, et al. Mutations of the p53 gene in the stool of patients with resectable colon cancer. Cancer 1996; 77(8 Suppl): 1707–1710.

    PubMed  CAS  Google Scholar 

  106. Schaaper RM, and Radman M. The extreme mutator effect of Escherichia mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J 1989; 8:3511–3516.

    PubMed  CAS  Google Scholar 

  107. Mao L, Lee DJ, Tockman MS, et al. Microsatellite alterations as clonal markers for the detection of human cancer. Proc Natl Acad Sci USA 1994; 91:9871–9875.

    Article  PubMed  CAS  Google Scholar 

  108. Brentnall TA, Chen R, Lee JG, et al. Microsatellite instability and K-ras mutations associated with pancreatic adenocarcinoma and pancreatitis. Can Res 1995; 55:4264–4267.

    CAS  Google Scholar 

  109. Han H-J, Yanagisawa A, Kato Y, et al. Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 1993; 53:5087–5089.

    PubMed  CAS  Google Scholar 

  110. Goggins M, Offerhaus GJA, Hilgers W, et al. Adenocarcinomas of the pancreas with DNA replication errors (RER+) are associated with a characteristic histopathology. Am J Pathol 1998; in press.

    Google Scholar 

  111. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260:812–816.

    Article  PubMed  CAS  Google Scholar 

  112. Ionov Y, Peinado M, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993; 363:558–561.

    Article  PubMed  CAS  Google Scholar 

  113. Thibodeau SN, Bren G, and Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993; 260:816–819.

    Article  PubMed  CAS  Google Scholar 

  114. Mao L, Schoenberg MP, Scicchitano M, et al. Molecular detection of primary bladder cancer by microsatellite analysis. Science 1996; 271:659–662.

    Article  PubMed  CAS  Google Scholar 

  115. Lynch HT. Genetics and pancreatic cancer. Arch Surg 1994; 129:266–268.

    Article  PubMed  CAS  Google Scholar 

  116. Lynch HT, Fusaro L, and Lynch JF. Familial pancreatic cancer: a family study. Pancreas 1992; 7:511–515.

    Article  PubMed  CAS  Google Scholar 

  117. Lynch HT, Smyrk TC, and Kern SE. Familial pancreatic cancer: a review. Semin Oncol 1996; 23:251–275.

    PubMed  CAS  Google Scholar 

  118. Fernandez E, La Vecchia C, D’Avanzo B, et al. Family history and the risk of liver, gallbladder, and pancreas cancer. Cancer Epidemiol Biomarkers Prev 1994; 3:209–212.

    PubMed  CAS  Google Scholar 

  119. Lumadue JA, Griffin CA, Osman M, et al. Familial pancreatic cancer and the genetics of pancreatic cancer. Surg Clin N Am 1995; 75:845–855.

    PubMed  CAS  Google Scholar 

  120. Lynch HT, Fusaro L, Smyrk TC, et al. Medical genetic study of eight pancreatic cancer-prone families. Cancer Invest 1995; 13:141–149.

    Article  PubMed  CAS  Google Scholar 

  121. Ghadirian P, Boyle P, Simard A, et al. Reported family aggregation of pancreatic cancer within a population-based case-control study in the Francophone community in Montreal, Canada. Int J Pancreatol 1991; 10:183–196.

    PubMed  CAS  Google Scholar 

  122. Lynch HT, and Fusaro RM. Pancreatic cancer and the familial atypical multiple-mole melanoma (FAMMM) syndrome. Pancreas 1991; 6:127–131.

    Article  PubMed  CAS  Google Scholar 

  123. Bergman W, Watson P, de Jong J, et al. Systemic cancer and the FAMMM syndrome. Br J Cancer 1990; 61:932–936.

    Article  PubMed  CAS  Google Scholar 

  124. Lynch HT, Smyrk TC, Watson P, et al. Genetics, natural history, tumor spectrum, and pathology of hereditary non-polyposis colorectal cancer: an updated review. Gastroenterol 1993; 104:1535–1549.

    CAS  Google Scholar 

  125. Tulinius H, Olafsdottir GH, Sigvaldeson H, et al. Neoplastic diseases in families of breast cancer patients. J Med Genet 1994; 31:618–621.

    Article  PubMed  CAS  Google Scholar 

  126. Kerber RA and Slattery ML. The impact of family history on ovarian cancer risk. Arch Int Med 1995; 155:905–912.

    Article  CAS  Google Scholar 

  127. Whelan AJ, Bartsch D, and Goodfellow PI. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Eng J Med 1995; 333:975–977.

    Article  CAS  Google Scholar 

  128. Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with pl6 INK4 mutation. N Engl J Med 1995; 333:970–974.

    Article  PubMed  CAS  Google Scholar 

  129. Thorlacius S, Olafsdottir G, Gryggvadottir L, et al. A single BRCA2 mutation in male and female breast carcinoma families from Iceland with varied cancer phenotypes. Nat Genet 1996; 13:117–119.

    Article  PubMed  CAS  Google Scholar 

  130. Phelan CM, Lancaster JM, Tonin P, et al. Mutation analysis of the BRCA2 gene in 49 site-specific breast cancer families. Nat Genet 1996; 13:120–122.

    Article  PubMed  CAS  Google Scholar 

  131. Couch FJ, Farid LM, DeShano ML, et al. BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nat Genet 1996; 13:123–125.

    Article  PubMed  CAS  Google Scholar 

  132. Berman DB, Costalas J, Schultz DC, et al. A common mutation in BRCA2 that predisposes to a variety of cancers is found in both Jewish Ashkenazi and non-Jewish individuals. Cancer Res 1996; 56:3409–3414.

    PubMed  CAS  Google Scholar 

  133. Hruban RH, Petersen GM, Hoo PK, et al. Genetics of pancreatic cancer: from genes to families. Surg Oncol Clin North Am 1998; 7: in press.

    Google Scholar 

  134. Moskaluk CA, Hruban RH, Lietman A, et al. Low prevalence of pl6 INK4 and CDK4 mutations in familial pancreatic carcinoma. Hum Mutat 1998; in press.

    Google Scholar 

  135. Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science 1995; 270:484–487.

    Article  PubMed  CAS  Google Scholar 

  136. Zhang L, Zhou W, Velculescu VE, et al. Gene expression profiles in normal and cancer cells. Science 1997; 276:1268–1272.

    Article  PubMed  CAS  Google Scholar 

  137. Zhou W, Sokoll LJ, Bruzek DS, et al. Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol Biomarkers Prev 1998; 7: in press.

    Google Scholar 

  138. Hruban RH, van der Riet P, Erozan YS, et al. Brief report: molecular biology and the early detection of carcinoma of the bladder-the case of Hubert H. Humphrey. N Eng J Med 1994; 330:1276–1278.

    Article  CAS  Google Scholar 

  139. Sidransky D. Advances in cancer detection. Sci Am 1996; 275:104–109.

    Article  PubMed  CAS  Google Scholar 

  140. Brennan JA, Mao L, Hruban RH, et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Eng J Med 1995; 332:429–435.

    Article  CAS  Google Scholar 

  141. Koch WM, Boyle JO, Mao L, et al. p53 gene mutations as markers of tumor spread in synchronous oral cancers. Arch Otolaryngol Head Neck Surg 1994; 120:943–947.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilentz, R.E., Slebos, R.J.C., Hruban, R.H. (1998). Screening for Pancreatic Cancer Using Techniques to Detect Altered Gene Products. In: Reber, H.A. (eds) Pancreatic Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1810-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1810-4_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7294-6

  • Online ISBN: 978-1-4612-1810-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics