Skip to main content

Role of Polypeptide Growth Factors and Their Receptors in Human Pancreatic Cancer

  • Chapter
Pancreatic Cancer

Abstract

Carcinoma of the pancreas is the fifth leading cause of cancer death in the Western world (12). The 1-yr overall survival rate in patients with pancreatic carcinoma is approx 12%; the 5-yr overall survival is approx 3–5% (12). The diagnosis of pancreatic cancer is frequently established at an advanced stage, when the majority of patients are not candidates for surgery. Furthermore, nonsurgical treatment for pancreatic cancer is generally ineffective, because of the tumor’s propensity to metastasize, and because of the resistance of pancreatic cancer cells to cytotoxic agents. Considerable effort has been directed, therefore, at understanding the molecular alterations that occur in this disorder, with the hope that this will lead to improved diagnostic and therapeutic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gudjonsson B. Cancer of the pancreas. 50 years of surgery. Cancer 1987; 60:2284–2303.

    CAS  Google Scholar 

  2. Warshaw AL and Ferandez-Del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326:455–465.

    Article  PubMed  CAS  Google Scholar 

  3. Aaronson SA. Growth factors and cancer. Science 1991; 254:1146–1153.

    Article  PubMed  CAS  Google Scholar 

  4. Kingsley DM. (1994) The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994; 8:133–146.

    Article  PubMed  CAS  Google Scholar 

  5. Henderson JR and Daniel PM. A comparative study of the portal vessels connecting the endocrine and exocrine pancreas, with a discussion of some functional implications. Quart J Exp Physiol Cog Med Sci 1979; 64:267–275.

    CAS  Google Scholar 

  6. Massague J and Pandiella A. Membrane-anchored growth factors. Ann Rev Biochem 1993; 62:515–541.

    Article  PubMed  CAS  Google Scholar 

  7. Korc M, Chandrasekar B, and Shah GN. Differential binding and biological activities of epidermal growth factor and transforming growth factor a in a human pancreatic cancer cell line. Cancer Res 1991; 51:6243–6249.

    PubMed  CAS  Google Scholar 

  8. Gan BS, Hollenberg MD, MacCannell KL, Lederis K, Winkler ME, and Derynck R. Distinct vascular actions of epidermal growth factor-urogastrone and transforming growth factor-α. J Phar Exp Ther 1987; 242:331–337.

    CAS  Google Scholar 

  9. Fen Z, Dhadly MS, Yoshizumi M, Hilkert RJ, Quertermous T, Eddy RL, Hows TB, and Lee M-E. Structural organization and chromosomal assignment of the gene encoding the human heparin-binding epidermal growth factor-like growth factor/diphteria toxin receptor. Biochemistry 1993; 32:7932–7938.

    Article  PubMed  CAS  Google Scholar 

  10. Shing Y, Christofori D, Hanahan D, Ono Y, Sasada R, Igarashi K, and Folkman J. Betacellulin: a mitogen from pancreatic b cell tumors. Science 1993; 259:1604–1607.

    Article  PubMed  CAS  Google Scholar 

  11. Watanabe T, Shintani A, Nakata M, Shing Y, Folkman J, Igarashi K, and Sasada R. Recombinant human betacellulin. Molecular structure, biological activities, and receptor interaction. J Biol Chem 1994; 269:9966–9973.

    CAS  Google Scholar 

  12. Plowman GD, Green JM, McDonald VL, Neubauer MG, Disteche CM, Todaro GJ, and Shoyab M. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol 1990; 10:1969–1981.

    PubMed  CAS  Google Scholar 

  13. Johnson GR, Saeki T, Gordon AW, Shoyab M, Salomon DS, and Stromberg K. Autocrine action of amphiregulin in a colon carcinoma cell line and immunocytochemical localization of amphiregulin in human colon. J Cell Biol 1992; 10:1969–1981.

    Google Scholar 

  14. Barnard JA, Graves-Deal R, Pittelkow MR, DuBois R, Cook P, Ramsey GW, et al. Auto-and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 1994; 269:22817–22822.

    PubMed  CAS  Google Scholar 

  15. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchler M, and Beger HG. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 1992; 90:1352–1360.

    Article  PubMed  CAS  Google Scholar 

  16. Ebert M, Yokoyama M, Kobrin MS, Friess H, Lopez ME, Buchler MW, Johnson GR, and Korc M. Induction and expression of amphiregulin in human pancreatic cancer. Cancer Res 1994; 54:3959–3962.

    PubMed  CAS  Google Scholar 

  17. Yokoyama M, Ebert M, Funatomi H, Friess H, Büchler MW, Johnson GR, and Korc M. Amphiregulin is a potent mitogen in human pancreatic cancer cells: correlation with patient survival. Int J Oncol 1995; 6:625–631.

    PubMed  CAS  Google Scholar 

  18. Yokoyama M, Funatomi H, Kobrin MS, Ebert M, Friess H, Buchler MW, and Korc M. Betacellulin, a member of the epidermal growth factor family, is overexpressed in human pancreatic cancer. Int J Oncol 1995; 7:825–829.

    PubMed  CAS  Google Scholar 

  19. Kobrin MS, Funatomi H, Friess H, Büchler MW, and Stathis P. Induction and expression of heparin-binding EGF-like growth factor in human pancreatic cancer. Biochem Biophys Res Commun 1994; 202:1705–1709.

    Article  PubMed  CAS  Google Scholar 

  20. Smith JJ, Derynck R, and Korc M. Production of transforming growth factor α in human pancreatic cancer cells: evidence for a superagonist autocrine cycle. Proc Natl Acad Sci USA 1987; 84:7567–7570.

    Article  PubMed  CAS  Google Scholar 

  21. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, and Korc M. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 1993; 13:565–570.

    PubMed  CAS  Google Scholar 

  22. Funatomi H, Itakura J, Ishiwata T, Pastan I, Thompson SA, Johnson GR, and Korc M. (1997) Amphiregulin antisense oligonucleotide inhibits the growth of T3M4 human pancreatic cancer cells and sensitizes the cells to EGF receptor targeted therapy. Int J Cancer 1997; 72:512–517.

    Article  PubMed  CAS  Google Scholar 

  23. Prigent SA and Lemoine NR. The type 1 (EGFR-related) family of growth factor receptors and their ligands Prog Growth Factor Res 1992; 4:1–24.

    Article  PubMed  CAS  Google Scholar 

  24. Schlessinger J and Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron 1992; 9:383–391.

    Article  PubMed  CAS  Google Scholar 

  25. Pawson T and Schlessinger J. SH2 and SH3 domains. Curr Biol 1993; 3:434–442.

    Article  PubMed  CAS  Google Scholar 

  26. Cadena DL and Gill GN. Receptor tyrosine kinases. FASEB J 1992; 6:2332–2337.

    PubMed  CAS  Google Scholar 

  27. Ahn AG. The MAP kinase cascade Discovery of a new signal transduction pathway. Mol Cell Biochem 1993; 127:201–209.

    Article  PubMed  Google Scholar 

  28. Soltoff SP, Carraway III KL, Prigent SA, Gullick WG, and Cantley LC. ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 1994;14:3550–3558.

    Google Scholar 

  29. Carraway KL and Cantley LC. A Neu acquaintance for ErbB3 and ErbB4: a role for receptor heterodimerization in growth signaling. Cell 1994; 78:5–8.

    Article  PubMed  CAS  Google Scholar 

  30. Lemoine NR, Hughes CM, Barton CM, Poulsom R, Jeffery RE, Kloppel G, Hall PA, and Gullick WJ. The epidermal growth factor receptor in human pancreatic cancer. J Pathol 1992; 166:7–12.

    Article  PubMed  CAS  Google Scholar 

  31. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Kunz J, Beger HG, and Korc M. Overexpression of HER-2/neu oncogene in human pancreatic carcinoma. Hum Pathol 1993; 24:1127–1134.

    Article  PubMed  CAS  Google Scholar 

  32. Friess H, Yamanaka Y, Kobrin MS, Do D, Buchler MW, and Korc M. Enhanced erbB-3 expression in human pancreatic cancer correlates with tumor progression. Clin Cancer Res 1995; 1:1413–1420.

    PubMed  CAS  Google Scholar 

  33. Lemoine NR, Lobresco M, Leung H, Barton C, Hughes CM, Prigent SA, Gullick WJ, and Kloppel G. The erbB-3 gene in human pancreatic cancer. J Pathol 1992; 168:269–273.

    Article  PubMed  CAS  Google Scholar 

  34. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, and Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53:549–554.

    Article  PubMed  CAS  Google Scholar 

  35. Grunewald K, Lyons J, Frohlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, and Bartram CR. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 1989; 43:1037–1041.

    Article  PubMed  CAS  Google Scholar 

  36. Pellegata NS, Sessa F, Rneut B, Bonato B, Leone BE, Solcia E, and Ranzani GN. K-ras and p53 gene mutation in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 1994; 54:1556–1560.

    PubMed  CAS  Google Scholar 

  37. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res 1989; 49:4682–4689.

    PubMed  CAS  Google Scholar 

  38. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Kloppel G, et al. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer 1991; 64:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  39. Casey G, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, Beger HG, and Korc M. p53 Mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Lett 1993; 69:151–160.

    Article  PubMed  CAS  Google Scholar 

  40. Hahn SA, Schutte M, Shansul Hoque ATM, Moskaluk CA, da Costa LT, Fischer A, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 268:350–353.

    Article  Google Scholar 

  41. Goldstein AM, Fraser MC, Struewing JP, Hussussian CJ, Ranade K, Zametkin DP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with pl6INK4 mutations. New Engl J Med 1995; 333:970–974.

    Article  PubMed  CAS  Google Scholar 

  42. M Ebert, M Yokoyama, MS Kobrin, H Friess, MW Büchler, and M Korc. Increased MDM2 expression and immunoreactivity in human pancreatic ductal adenocarcinoma. Int J Oncol 1994; 5:1279–1284.

    PubMed  CAS  Google Scholar 

  43. Haines DS, Landers JE, Engle LJ, and George DL. Physical and functional interaction between wild-type p53 and mdm2 proteins. Mol Cell Biol 1994; 14:1171–1178.

    PubMed  CAS  Google Scholar 

  44. Wagner M, Cao T, Lopez ME, Hope C, Van Nostrand K, Korbin MS, et al. Expression of a truncated EGF receptor is associated with inhibition of pancreatic cancer cell growth and enhanced sensitivity to cisplatinum. Int J Cancer 1996; 68:782–787.

    Article  PubMed  CAS  Google Scholar 

  45. Mason IJ. The ins and outs of fibroblast growth factors Cell 1994; 78:547–552.

    Article  PubMed  CAS  Google Scholar 

  46. Jaye M, Schlessinger J, and Dionne C. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim Biophys Acta 1992; 1135:185–199.

    Article  PubMed  CAS  Google Scholar 

  47. Leung HY, Gullick WJ, and Lemoine NR. Expression and functional activity of fibroblast growth factors and their receptors in human pancreatic cancer. Int J Cancer 1994; 59:667–675.

    Article  PubMed  CAS  Google Scholar 

  48. Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, Onda M, Kobrin MS, and Korc M. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advan ced tumor stage. Cancer Res 1993; 53:5289–5296.

    PubMed  CAS  Google Scholar 

  49. Estival A, Monzat V, Miquel K, Gaubert F, Hollande E, Korc M, Vaysse N, and Clemente F. Differential regulation of fibroblast growth factor (FGF) receptor-1 mRNA and protein by two molecular forms of basic FGF. J Biol Chem 1996; 271:5663–5670.

    Article  PubMed  CAS  Google Scholar 

  50. Kobrin MS, Yamanaka Y, Friess H, Lopez ME, and Korc M. Aberrant expression of the type I fibroblast growth factor receptor in human pancreatic adenocarcinomas. Cancer Res 1993; 53:4741–4744.

    PubMed  CAS  Google Scholar 

  51. Wagner M, Kan M, Lopez ME, and Korc M. Suppression of fibroblast growth factor receptor signaling inhibits pancreatic cancer cell growth in vivo and in vitro. Gastroenterology, in press.

    Google Scholar 

  52. Le Roith D. Insulin-like growth factors. N Engl J Med 1997; 336:633–640.

    Article  PubMed  Google Scholar 

  53. Korc M. Normal function of the endocrine pancreas. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, and Scheele GA (eds), The pancreas: biology, pathobiology and disease, Raven, New York, 1993; pp. 751–758.

    Google Scholar 

  54. Daughaday WH. Editorial: The possible autocrine/paracrine and endocrine roles of insulinlike growth factors of human tumors. Endocrinology 1990; 127:14.

    Article  Google Scholar 

  55. Macaulay VM. Insulin-like growth factors and cancer. Br J Cancer 1992; 65:311-320.

    Google Scholar 

  56. Cheatham B and Kahn CR. Insulin action and the insulin signaling network. Endocr Rev 1995; 16:117–142.

    PubMed  CAS  Google Scholar 

  57. Nissley P, Kiess W, and Sklar MM. The insulin-like growth factor II/mannose 6-phosphate receptor. iIn: LeRoith G (ed.), Insulin-like growth factors: molecular and cellular aspects. CRC, Boca Raton, FL, 1991; pp. 111–150.

    Google Scholar 

  58. Zapf J. Role of insulin-like growth factor II and IGF binding proteins in extrapancreatic tumor hypoglycemia. Horm Res 1994; 42:20–26.

    Article  PubMed  CAS  Google Scholar 

  59. Bergmann U, Funatomi H, Yokoyama M, Beger HG, and Korc M. Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 1995; 55:2007–2011.

    PubMed  CAS  Google Scholar 

  60. Bergmann U, Funatomi H, Kornmann M, Beger HG, and Korc M. Increased expression of insulin receptor substrate-1 in human pancreatic cancer. Biochem Biophys Res Commun 1996; 220:886–890.

    Article  PubMed  CAS  Google Scholar 

  61. Bergmann U, Funatomi H, Kornmann M, Ishiwata T, Beger HG, and Korc M. Insulin-like growth factor II activates mitogenic signaling in pancreatic cancer cells via IRS-1: in vivo evidence for an islet-cancer cell axis. Int J Oncol 1996; 9:487–492.

    PubMed  CAS  Google Scholar 

  62. Ishiwata T, Bergmann U, Kornmann M, Lopez M, Beger HG, and Korc M. Altered expression of insulin-like growth factor II receptor in human pancreatic cancer. Pancreas 1997; 15:367–373.

    Article  PubMed  CAS  Google Scholar 

  63. Minniti CP, Kohn EC, Grubb JH, Sly WS, Oh Y, Muller HL, Rosenfeld RG, and Helman LJ. The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells. J Biol Chem 1992; 267:9000–9004.

    PubMed  CAS  Google Scholar 

  64. Saperstein LA, Jirtle RL, Farouk M, Thompson HJ, Chung KS, and Meyers WC. Transforming growth factor-beta 1 and mannose 6-phosphate/insulin-like growth factor II receptor expression during intrahepatic bile duct hyperplasia and biliary fibrosis in the rat. Hepatology 1994; 19:412–417.

    Article  PubMed  CAS  Google Scholar 

  65. Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, and Korc M. Enhanced expression of transforming growth factor-beta isoforms in human pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105:1846–1856.

    PubMed  CAS  Google Scholar 

  66. Ebert M, Yokoyama M, Friess H, Kobrin MS, Buchler MW, and Korc M. Induction of platelet-derived growth factor A and B chains and over-expression of their receptors in human pancreatic cancer. Int J Cancer 1995; 62:529–535.

    Article  PubMed  CAS  Google Scholar 

  67. Ebert M, Yokoyama M, Friess H, Buchler MW, and Korc M. Coexpression of the c-met proto-oncogene and hepatocyte growth factor in human pancreatic cancer. Cancer Res 1994; 54:5775–5778.

    PubMed  CAS  Google Scholar 

  68. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, and Lemoine NR. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55:1129–1138.

    PubMed  Google Scholar 

  69. Friess H, Yamanaka Y, Büchler M, Beger HG, Kobrin MS, Tahara E, and Korc M. Cripto, a member of the epidermal growth factor family, is over-expressed in human pancreatic cancer and chronic pancreatitis. Int J Cancer 1994; 56:668–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korc, M. (1998). Role of Polypeptide Growth Factors and Their Receptors in Human Pancreatic Cancer. In: Reber, H.A. (eds) Pancreatic Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1810-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1810-4_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7294-6

  • Online ISBN: 978-1-4612-1810-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics