Skip to main content

A Rapidity-Independent Parameter in the Star-Triangle Relation

  • Chapter
MathPhys Odyssey 2001

Part of the book series: Progress in Mathematical Physics ((PMP,volume 23))

Abstract

The normalization factor in the star-triangle relation can be evaluated in a simple form by taking determinants. If we combine this with the rotation symmetries, then we can show that a certain simple quantity I has to be independent of the rapidities. In this sense it is an invariant. We evaluate it for several particular models and find it is one for self-dual models, and is related to the modulus k (or k’) for the Ising, Kashiwara—Miwa and chiral Potts models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Johnson, S. Krinsky and B. M. McCoy. Critical Index y of the Vertical-Arrow Correlation Length in the Eight-Vertex Model.Physical Review Letters29:492–494, 1972; Vertical-Arrow Correlation Length in the Eight-Vertex Model and the Low-Lying Excitations of the X-Y-Z Hamiltonian.Physical ReviewA, 8:2526–2547, 1973.

    Article  Google Scholar 

  2. R. J. Baxter. Star-triangle and star-star relations in statistical mechanics.International Journal of Modern Physics B11:27–37, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. J. Baxter, J. H. H. Perk and H. Au-Yang. New solutions of the star-triangle relations for the chiral Potts model.Physics Letters A128:138–142, 1988.

    Article  MathSciNet  Google Scholar 

  4. V. B. Matveev and A. O. Smirnov. Some Comments on the Solvable Chiral Potts Model.Letters in Mathematical Physics19:179–185, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. G. Stroganov. A new calculation method for partition functions in some lattice models.Physics Letters A74:116–118, 1979.

    Article  MathSciNet  Google Scholar 

  6. R. J. Baxter. The Inversion Relation Method for Some Two-Dimensional Exactly Solved Models in Lattice Statistics.Journal of Statistical Physics28:1–41, 1982.

    Article  MathSciNet  Google Scholar 

  7. R. J. Baxter.Exactly Solved Models in Statistical Mechanics.Academic Press, London, 1982.

    MATH  Google Scholar 

  8. R. J. Baxter. Superintegrable Chiral Potts Model: Thermodynamic Properties, an “Inverse” Model, and a Simple Associated Hamiltonian.Journal of Statistical Physics57:1–39, 1989.

    Article  MathSciNet  Google Scholar 

  9. L. Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition.Physical Review65:117–149, 1944.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. M. McCoy and T. T. Wu.The Two-Dimensional Ising Model.Harvard University Press, Cambridge, Massachusetts, 1973.

    Google Scholar 

  11. J. Ashkin and E. Teller. Statistics of Two-Dimensional Lattices with Four Components.Physical Review64:178–184, 1943.

    Article  Google Scholar 

  12. F. J. Wegner. Duality relation between the Ashkin—Teller and the eight-vertex model.Journal of Physics C: Solid State Physics5:L131–132, 1972.

    Article  Google Scholar 

  13. F. Y. Wu and K. Y. Lin. Two phase transitions in the Ashkin—Teller model.Journal of Physics C: Solid State Physics7:L181–184, 1974.

    Article  Google Scholar 

  14. R. J. Baxter. Eight-Vertex model in Lattice Statistics.Physical Review Letters26:832–833, 1971.

    Article  Google Scholar 

  15. R. J. Baxter. Partition Function of the Eight-Vertex Model.Annals of Physics70:193–228, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Kashiwara and T. Miwa. A class of elliptic solutions to the star-triangle relation.Nuclear Physics B275 [FS 17]:121–134, 1986.

    Article  MathSciNet  Google Scholar 

  17. K. Hasegawa and Y. Yamada. Algebraic derivation of the broken ZN-symmetric model.Physics Letters A146:387–396, 1990.

    Article  MathSciNet  Google Scholar 

  18. M. Gaudin. La relation étoile-triangle d’un modèle elliptiqueZN. Journal de Physique 11:351–361, 1991.

    MathSciNet  Google Scholar 

  19. I. S. Gradshteyn and I. M. Ryzhik.Table of Integrals Series and Products.Academic Press, 1965.

    Google Scholar 

  20. H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang and M. L. Yan. Commuting transfer matrices in the chiral Potts models: solutions of star-triangle equations with genus > 1.Physics LettersA, 123:219–223,1987.

    Article  MathSciNet  Google Scholar 

  21. B. M. McCoy, J. H. H. Perk and S. Tang. Commuting transfer matrices for the four-state self-dual chiral Potts model with a genus-three uniformizing Fermat curve. Physics Letters A, 125:9–14, 1987.

    Article  MathSciNet  Google Scholar 

  22. R. J. Baxter. Chiral Potts Model with Skewed Boundary Conditions. Journal of Statistical Physics 73:461–495, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. J. Baxter. Free Energy of the Solvable Chiral Potts Model.Journal of Statistical Physics52:639–667, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. J. Baxter, V. V. Bazhanov and J. H. H. Perk. Functional relations for transfer matrices of the chiral Potts model.International Journal of Modern Physics B4:803–870, 1990.

    Article  MathSciNet  Google Scholar 

  25. R. J. Baxter. Elliptic parametrization of the three-state chiral Potts model. In L. Bonora, G. Mussardo, A. Schwimmer, L. Girardello and M. Martellini, editorsIntegrable Quantum Field Theoriespages 27–37, Plenum, New York, 1993.

    Google Scholar 

  26. V. Fateev and A.B. Zamolodchikov. Self-dual solutions of the star-triangle relations inZN models.Physics LettersA, 92:37–39, 1982.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baxter, R.J. (2002). A Rapidity-Independent Parameter in the Star-Triangle Relation. In: Kashiwara, M., Miwa, T. (eds) MathPhys Odyssey 2001. Progress in Mathematical Physics, vol 23. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0087-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0087-1_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6605-1

  • Online ISBN: 978-1-4612-0087-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics