Skip to main content

The Role of Fluid Replacement in Acute Endotoxin Shock

  • Chapter
Shock and the Adult Respiratory Distress Syndrome

Part of the book series: Current Concepts in Critical Care ((CRITICAL CARE))

Abstract

While it is generally agreed that volume replacement is one of the most important aspects of the treatment of septic shock, the choice of the volume substitute continues to be the subject of controversy. In this chapter we shall review some of the more relevant literature concerning volume replacement and the pathophysiology of septic shock. In addition, new aspects of hyperdynamic endotoxaemia evolving from a recently developed experimental model in the pig are discussed with respect to the effects of volume substitution using either Ringer’s lactate or dextran 60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baue AE (1975) Multiple, progressive or sequential systems failure: a syndrome of the 1970s. Arch Surg 110:779–781.

    PubMed  CAS  Google Scholar 

  • Blaisdell FW (1981) Controversy in shock research: the role of steroids in septic shock. Circ Shock 8:673–682.

    PubMed  CAS  Google Scholar 

  • Brigham KL, Bowers RE, Haynes J (1979) Increased sheep lung vascular permeability caused by Escherichia coli endotoxin. Circ Res 45:292–297.

    PubMed  CAS  Google Scholar 

  • Carroll GC, Snyder JV (1982) Hyperdynamic severe intravascular sepsis depends on fluid administration in Cynomolgus monkey. Am J Physiol 243:R131–R141.

    PubMed  CAS  Google Scholar 

  • Clowes GHA, Vucinic M, Weidner MG (1966) Circulatory and metabolic alterations associated with survival or death in peritonitis. Ann Surg 163:866–885.

    Article  PubMed  Google Scholar 

  • Clowes GHA, O’Donnell TF, Ryan NT, Blackburn GL (1974) Energy metabolism in sepsis. Ann Surg 179:684–696.

    Article  PubMed  Google Scholar 

  • Clowes GHA, Hirsch E, Williams L et al. (1975) Septic lung and shock lung in man. Ann Surg 181:681–692.

    Article  PubMed  Google Scholar 

  • Dodds WJ (1982) The pig model for biomedical research. Fed Proc 41:247–256.

    Google Scholar 

  • Erdmann AJ, Vaughn TR, Brigham KL (1975) Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ Res 37:271–278.

    PubMed  Google Scholar 

  • Fleck A, Raines G, Hawker F, Trotter J, Walace PI, Ledingham McA, Caiman KC (1985) Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet I:781–783.

    Article  Google Scholar 

  • Gabel JS (1985) Choices for correct fluid therapy: should there be a controversy? Intensivmed Notfallmed Anaesthesiol 52:18–26.

    Google Scholar 

  • Gruber UF, Messmer K (1977) Colloids for blood volume support. Prog Surg 15:49–76.

    PubMed  CAS  Google Scholar 

  • Grundmann R, Schwarzkopf N, Oette K (1985) Der Einfluss einer postoperativen Humanalbumintherapie auf die Serumeiweissfraktion septischer und aseptischer Patienten. Infusionstherapie 12:246–250.

    CAS  Google Scholar 

  • Gunnar RM, Loeb HS, Winslow ES (1973) Hemodynamic measurements in bacteremia and septic shock in man. J Infect Dis 128:5295–5298.

    Article  Google Scholar 

  • Hauser CJ, Shoemaker WC, Turpin I, Goldberg SJ (1980) Oxygen transport responses to colloids and crystalloids in critically ill surgical patients. Surg Gynecol Obstet 150:811–816.

    PubMed  CAS  Google Scholar 

  • Hess ML, Hastillo A, Greenfield LJ (1981) Spectrum of cardiovascular function during gram-negative sepsis. Prog Cardiovasc Dis 23:279–298.

    Article  PubMed  CAS  Google Scholar 

  • Hill SL (1980) Changes in lung water and capillary permeability following sepsis and fluid overload. J Surg Res 28:140–150.

    Article  PubMed  CAS  Google Scholar 

  • Houtchens BA, Westenskow DR (1984) Oxygen consumption in septic shock: collective review. Circ Shock 13:361–384.

    PubMed  CAS  Google Scholar 

  • Jardin F, Eveleigh MC, Gurdjian F, Delille F, Margairaz A (1979) Venous admixture in human septic shock. Circulation 60:155–159.

    PubMed  CAS  Google Scholar 

  • Kant CJ, Sturm JA, Neumann C, Oestern HJ (1985) The capillary membrane and interstitium of the lung during alternative volume therapy after traumatic-hemorrhagic shock. Langenbecks Arch (1985) [Suppl]:75–79.

    Google Scholar 

  • Kohler JP, Rice CL, Yarins CK, Cammack BF, Moss GS (1981) Does reduced colloid oncotic pressure increase pulmonary dysfunction in sepsis? Crit Care Med 9:90–93.

    Article  PubMed  CAS  Google Scholar 

  • Krausz MM, Perel A, Eimerl D, Cotev S (1977) Cardiopulmonary effects of volume loading in patients in septic shock. Ann Surg 185:429–434.

    Article  PubMed  CAS  Google Scholar 

  • MacLean LD, Weil MH (1956) Hypotension (shock) in dogs produced by Escherichia coli endotoxin. Circ Res 4:546–556.

    PubMed  CAS  Google Scholar 

  • MacLean LD, Muigan WG, McLean APH, Duff JH (1967) Patterns of septic shock in man: a detailed study of 56 patients. Ann Surg 166:543–558.

    Article  PubMed  CAS  Google Scholar 

  • Messmer K (1982) Pathophysiologie des septischen Patienten. Intensivmed Notfallmed Anaesthesiol 37:12–26.

    Google Scholar 

  • Messmer K (1985) Septic shock: pathophysiology and clinical features. Intensivmed Notfallmed Anaesthesiol 52:2–3.

    Google Scholar 

  • Oettinger W, Seifert J (1982) Pathophysiologische Bedeutung der Prostanoide im septischen Schock. Fortschr Med 100:2169–2174.

    PubMed  CAS  Google Scholar 

  • Pine RW, Wertz MJ, Lennard ES, Dellinger EP, Carrico CJ, Minshew BH (1982) Determinants of organ malfunction or death in patients with intra-abdominal sepsis. Arch Surg 118:242–249.

    Google Scholar 

  • Robin ED, Carey LC, Grenvik A, Glauser F, Gaudio R (1972) Capillary leak syndrome with pulmonary edema. Arch Intern Med 130:66–72.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker WC (1971) Cardiorespiratory patterns in complicated and uncomplicated septic shock. Ann Surg 174:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker WC, Hauser CJ (1979) Critique of crystalloid versus colloid therapy in shock and shock lung. Crit Care Med 7:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Sibbald WJ, Driedger AA (1981) Pulmonary alveolar capillary permeability in human septic respiratory distress syndrome. In: Cowley RA, Trump BF (eds) Pathophysiology of shock, anoxia and ischemia. Williams and Wilkins, Baltimore, pp 372–387.

    Google Scholar 

  • Siegel JH, Greenspan M, Del Guercio LRM (1967) Abnormal vascular tone, defective oxygen transport and myocardial failure in human septic shock. Ann Surg 165:504–517.

    Article  PubMed  CAS  Google Scholar 

  • Staub NC (1974a) “State of the art” review. Pathogenesis of pulmonary edema. Am Rev Respir Dis 109:358–372.

    PubMed  CAS  Google Scholar 

  • Staub NC (1974b) Pulmonary edema. Physiol Rev 54:678–811.

    Article  PubMed  CAS  Google Scholar 

  • Sturm JA, Creutzig H, Oestern HJ, Maghsudi M, Wisner DH, Schober O (1985) Albumin extravasation as a method of following pulmonary permeability changes in multiple-trauma patients. Langenbecks Arch (1985) [Suppl]:69–73.

    Google Scholar 

  • Tonnesen AS, Gabel JC, McLeavey CA (1977) Relation between lowered colloid osmotic pressure, respiratory failure, and death. Crit Care Med 5:239–241.

    Article  PubMed  CAS  Google Scholar 

  • Udhoji VN, Weil MH (1965) Hemodynamic and metabolic studies on shock associated with bacteremia. Ann Int Med 62:966–978.

    PubMed  CAS  Google Scholar 

  • Villazon SA, Sierra UA, Lopez SF, Rolando A (1975) Hemodynamic patterns in shock and critically ill patients. Crit Care Med 3:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Virgilio RW, Rice CL, Smith DE, James DR, Yarins CK, Hobelmann CF, Peters RM (1979) Crystalloid vs. colloid resuscitation: is one better? Surgery 85:129–139.

    PubMed  CAS  Google Scholar 

  • Waisbren BA (1951) Bacteremia due to gram negative bacilli other than Salmonella. Arch Intern Med 88:467–488.

    CAS  Google Scholar 

  • Waisbren BA (1964) Gram-negative shock and endotoxin shock. Am J Med 36:819–824.

    Article  PubMed  CAS  Google Scholar 

  • Waisbren BA (1978) A paradigm that explains gram-negative shock. Am J Med 65:403–405.

    Article  PubMed  CAS  Google Scholar 

  • Wiles JB, Cerra FB, Siegel JH, Border JR (1980) The systemic septic response: does the organism matter? Crit Care Med 8:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S, Gunnar R (1973) Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med 54:421–433.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreimeier, U., Yang, Z., Messmer, K. (1988). The Role of Fluid Replacement in Acute Endotoxin Shock. In: Kox, W., Bihari, D. (eds) Shock and the Adult Respiratory Distress Syndrome. Current Concepts in Critical Care. Springer, London. https://doi.org/10.1007/978-1-4471-1443-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1443-7_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1445-1

  • Online ISBN: 978-1-4471-1443-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics