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1. INTRODUCTION

The adult respiratory distress syndrome (ARDS) represents a common response of the
lung to a variety of different and often unrelated insults, most frequently sepsis, trauma,
aspiration and shock. Important consequences are the priming and activation of many
components of the inflammatory-immune system accompanied by alterations in the
permeability ofendothelial and epithelial cell membrane barriers manifest by accumulations
of inflammatory pulmonary edema fluid accompanied by phagocyte infiltrations in the
interstitial and alveolar compartments of the lung. The net physiologic result is severe
hypoxemic acute respiratory failure due to lung ventilation-perfusion mismatching and
extensi ve intrapulmonary shunts . As with inflammatory-immune activation states involving
other systems (e.g., rheumatoid arthritis in joints), reactive oxygen species (ROS) and reactive
nitrogen species (RNS) are likely to playa significant role in the pathobiology of the lung
injury seen in ARDS (Louie et aI., 1997; Forni et aI., 1997).

There are numerous potential sources for the generation of ROS and RNS in the
pathobiology of acute lung injury, not the least of which are the high concentrations of
oxygen and of nitric oxide (NO-) which are often administered to subsets of patients with
ARDS (Mankelow et aI., 1997; Troncy et aI., 1997). Some of these potential pathways are
listed in Table 1. In the present paper we will discuss possible oxidative mechanisms
involving phagocytes, focusing on pathways related to myeloperoxidase, ROS and RNS.

Table 1. Possible Pathways for ROSIRNS Generation in ARDS
• Xanthine oxidase • P-450 systems
• Mitochondrial respiration • Catecholamine oxidation
• PhagocytelNADPH oxidase/peroxidase • NOS pathways
• Non-phagocytic NADPH-oxidases/peroxidases • Proinflammatory cytokines
• Lipoxygenases • Redox-cycling metals
• NO· administration • O2 toxicity
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2. PHAGOCYTES AND ARDS

Although phagocytes are critical for our survival, it has been long recognized that
migration and activation of polymorphonuclear neutrophils (PMNs) in the lungs is almost
surely a major contributing factor to the acute lung injury that occurs in patients with ARDS
(Boxer et al., 1990; Repine and Beehler, 1991). This argument is buttressed by observations
that PMN depletionprevents animal models ofARDS (Heflin and Brigham, 1981), that PMNs
and their oxidative products contribute to endothelial cell injury in vitro and lung injury in
vivo (Shasby et al., 1983); and that PMNs and their products accumulate in the lungs of
patients with ARDS (Weiland et al., 1986).

However, PMN migration alone may not injure the lungs of normal humans. For
example, activation and priming of their proteolytic and oxidant injury mechanisms may be
required (Martin et al., 1989, 1991; Martin, 1997). The multitude of cytokines found to be
present in ARDS (Chollet-Martin et aI., 1992) would be expected to further potentiate PMN
activation, thereby increasing their production of reactive oxidant species . . . even the
circulating PMNs have been found to be activated in patients with ARDS (Zimmerman et al.,
1983; Martin et al., 1991; Chollet-Martin et al. , 1992).

Myeloperoxidaserepresents an important phagocytic enzyme, more plentiful in PMNs
than monocytes and macrophages (Odeberg et al., 1974; Bos et aI., 1978; Kettle &
Winterboum, 1997), and has been heavily used as a biomonitor of PMN traffic in numerous
organs undergoing various stages of cell injury and related inflammatory-immune system
activations including ARDS (Fantone& Ward, 1985; Weilandet aI., 1986; Denis et aI., 1994;
Shayeritz et al., 1995; Sinclair et al., 1995; Okabayashi et al., 1996; Koh et aI., 1996;
Kushimoto et al., 1996), as depicted in Table 2.

Table 2: Lung Myeloperoxidase in ARDS

• A monitor of PMN traffic
• Elevated in following ARDS models :

• Endotoxin, sepsis, IP zymosan
• Hemorrhagic shock, gut ischemia, pancreatitis
• IL-1, TNF, Complement (C') and PMN-activation
• Transplant and cardiopulmonary bypass

3. OXIDES OF NITROGEN AND THE LUNG

Nitric oxide (NO·) is now well-recognized for its participation in diverse biological
processes in nearly all aspects of life (Moncada and Higgs, 1991), including in inflammatory­
immune processes in the lung (Gaston et al, 1994). Multiple lung cells synthesize NO· under
both physiological and pathophysiological settings (Barnes and Belvisi, 1993), utilizing a
family of enzymes termed NO· synthases, which use arginine as their substrate . NO· can
travel significant distances to reach target cells neighboring the NO' generating cells
(Lancaster, 1994; Malinsk i and Taha, 1992). Along this migration, NO· can interact with
other oxidative molecules, including molecular O2, to form higher nitrogen oxides (e.g. N02· ,

Nz03) which can either react with other biomolecules (e.g., thiols , amines) or simply hydrolyze
to form N02- and N03- . Furthermore ,and importantly for the context of this paper, NO· and
its metabolites (e.g. N02- specifically) , themselves generated in increased amounts at
inflammatory-immune reaction sites, can react with several phagocyte-derived oxidants, to
form more reactive RNS (e.g., Koppenol , 1994). The extent of either of these reactions
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depends on the microenvironmental conditions under which NO· is released , and the
concentration of the other bioreactants present.

Concerning the interactive role of NO· with other active pro-oxidant species , most
recent research has focused emphasis on NO' reaction with 0 z' - , to yield the powerful oxidant
species peroxynitrite (ONOO-) (Beckman, 1995, 1996). Based primarily on the nearly
diffusion limited reaction kinetics of this reaction (Huie and Padmaja , 1993), it is predicted
that ONOO- is generated wheneverOr and NO· are produced simultaneously. The potential
in vivo importance of such a reaction is supported by findings that superoxide dismutase
(SOD) prolongs the biological half-life of NO· and increases its biological actions , putatively
by lowering Oz'- levels and minimizing degradation of NO, via reaction with 9 .- (e.g.,
Gryglewski et aI, 1986).

A second argument for in vivo generation ofONOO- (especially during inflammatory
condit ions) is detection of 3-nitrotyrosine in proteins from a large number of diseased or
inflamed tissues, often in conjunction with induction of iNOS and increased production of
NO' (Beckman, 1995, 1996; Halliwell , 1997). As NO' itself is unable to nitrate tyrosine
residues (e.g., Eiserich et aI., 1995), more reactive NO·-derived nitrogen oxides (NO z' ,
ONOO-) are thought responsible for tyrosine nitration, and based on kinetic considerations,
it is commonly assumed that 3-nitrotyrosine in vivo is caused by ONOO- . Using largely
immuno-histochemical techniques , 3-nitrotyrosine has also been detected at sites of
inflammatory-immuneprocesses in the lung (Saleh et ai, 1997), including ARDS (Haddad et
aI, 1994; Kooy et aI, 1995). However , the pathophysicolcgical importance of 3-nitrotyrosine
formation and the precise oxidati ve and nitrosative mechanism s involved in its formation are
relatively unknown . These issues will be the focus of the remainder of this paper.

4. TYROSINE NITRAn ON VIA RADICAL MECHANISMS

Chemical studies of tyrosine nitration by ONOO- have indicated that nitration can be
promoted in the presence of superoxide dismutase or Fe(III)EDTA, as well as heme
peroxidases (Beckman et al., 1992; Sampson et al., 1996), presumably by formation of an
NO z+- like intermediate , which is known to be capable of nitrating aromatic rings by
electrophilic aromatic substitution (Olah et al., 1989). However, another major product of
tyrosine oxidation by ONOO- is 3,3'-dityrosine, indicative of formation of intermed iate
tyrosyl radicals (van der Vliet et aI., 1995). Hence, nitration of tyrosine by ONOO- appears
to occur via a one-electron mechanism, involving initial formation of tyrosyl radical and N02' ,

and dityrosineand 3-nitrotyrosineare subsequently formed by radical combination reactions
(e.g., Protz et al., 1985; Lymar et al. , 1996), as illustrated in reactions 1-4.

ONOOH + Tyr-OH -. Tyr-O' + NOz' + H2O (1)
N02' + Tyr-OH -. Tyr-O' + NOz- + W (2)
N02' + Tyr-O' -. 3-nitrotyrosine (3)
2 Tyr-O' -. 3,3'-dityrosine (4)

Reaction (2) becomes more favorable over reaction (3) when tyrosine concentrations are
relatively high, resulting in relatively more dityrosine formation and less nitration, as was
indeed observed in studies with tyrosine in solution (van der Vliet et al, 1995), as well as in
studies in freshly obtained human plasma. In the latter case, ONOO--induced nitration and
dimerization of free or protein-associated tyrosine was markedly affected when plasma was
supplemented with free tyrosine . The overall formation of 3-nitrotyrosine was decreased ,
whereas more dityrosine was formed (unpublished results), consistent with a radical reaction
mechanism (reactions 1-4). Formationoftyrosyl radicals in plasma by ONOO- has recently
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been detected by ESR (Pietraforte and Minetti, 1997), which gives further support to this
nitration mechanism.

It has become clear that tyrosine nitration by N02+ in aqueous systems also occurs by
a one-electron mechanism via intermediate tyrosyl radicals, rather than via direct electrophilc
substitution. However, free N02+ is extremely unstable in aqueous solution and hydrolizes
rapidly to nitrate (N03-), and is thus unlikely to be involved in nitration reactions in vivo (van
der Vliet et al, 1996; 1997). Both tyrosine nitration and dimerization by ONOO- are
enhanced in the presence of bicarbonate (van der Vliet et al, 1994; Lymar et al., 1996; Gow
et al., 1996; Lemercier et al., 1997), which was discovered to be due to reaction of ONOO­
with CO2 to form ONOOC02- , which appears more efficient as a nitrating species (Lymar et
al., 1996). Collectively, irrespectiveof the nature of the nitrating species (ONOOH , N02' or
N02" ) , the mechanism of tyrosine nitration appears to involve intermediate formation of
tyrosyl radicals , and 3,3'-dityrosine is formed as an additional product.

S. ALL THAT NITRATES IS NOT PEROXYNITRITE

As tyrosine nitration is radical-mediated, involving formation of tyrosyl radicals and
N02' , formation of these intermediates from other sources would be expected to contribute to
tyrosine nitration in biological systems. Indeed, several such mechanisms can be envisioned
to occur in vivo, especially during inflammatory -immune processes . N02' can be generated
via autoxidation ofNO- . This reaction is slow, especially at physiological NO- levels, hence
formation of N02' by NO- autoxidation is expected to be minimal (e.g., Beckman and
Koppenol, 1996).

Additionally.NO,' can be generated via one-electron oxidation of N02- , and various
biological oxidants can be expected to promote such reactions . For instance, it has long been
recognized that heme peroxidases or pseudoperoxidases, such as methemoglobin or
metmyoglobin,are able to oxidize N02- in the presence ofHP2, and this has been postulated
to occur via one-electron mechanisms (van der Vliet et aI., 1997 and refs therein) .

Although N02' is capable of directly nitrating tyrosine residues in proteins (Protz et
aI., 1985), this process is considered relatively inefficient , as two N02' molecules are
necessary to nitrate one tyrosine residue . However, tyrosyl radicals can also be generated by
various mechanisms, including peroxidases (Kettle and Winterboum, 1997), and radical
combination between tyrosyl radicals and N02' is very rapid, yielding 3-nitrotyrosine.

Our recent studies have shown that N02- can be oxidized by various heme
peroxidases, including horseradish peroxidase, myeloperoxidase(MPO), and lactoperoxidase
(LPO), in the presence ofhydrogen peroxide (H202) , to most likely form N02- , and was found
capable ofpromoting tyrosine nitration, which may be relevant during inflammatory processes
(van der Vliet et aI., 1997). The physiological importance of such mechanisms depends on
whether N02- is a competitive substrate for MPO or other peroxidases in vivo. Phenolic
nitration by MPO-catalyzed N02- oxidation was found to be only partially inhibited by
chloride (Cn, the presumed major physiological substrate for MPO, and low concentrations
ofN02- (2-10 ,uM) were in fact demonstrated to catalyze MPO-mediated oxidation of Cl",
indicated by increased chlorinationofaromatic substrates, and simultaneouslycause aromatic
nitration. The observed enhanced MPO-mediated CI- -oxidation by N02- was similar to that
observed by other reductants, such as ascorbate or 5-amino salicylate (Bolscher et aI., 1984;
Zuurbier et aI., 1990), and can be attributed to reduction of MPO compound II, which is
inactive with respect to CI--oxidation, thereby recycling MPO (Fig. 1).
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Fig. 1

Peroxidase-catalyzed oxidation ofNOz- , as indicated by phenolic nitration, could also be
detected in the presence of thiocyanate (SCN-), an alternative physiological substrate for
mammalian peroxidases, suggesting that NOz- may act as a pathophysiological substrate for
the MPO (and perhaps other peroxidases). Thus , formation ofN02' via peroxidase-catalyzed
oxidation ofN02- may provide an additional pathway contributing to aromatic nitration in
vivo.

Interestingly, 3-nitrotyrosine and large amounts of active MPO have both been
detected in atherosclerotic lesions (Beckman et ai, 1994; Buttery et ai, 1996; Daugherty et ai,
1994), in joints ofpatients with rheumatoid arthritis (Farrell et ai, 1992; Kaur and Halliwell ,
1994), as well as in the lungs of patients with acute pulmonary inflammation (Haddad et ai,
1994; Kooy et ai, 1995), a condition characterized by activation and lung infiltrationofPMNs
as well as increased production of NO· and NOz- (e.g., Hunt et ai, 1995; Kharitonov et ai,
1996). Plasma nitrotyrosine levels have been noted to be elevated in septic shock (Fukuyama
et aI. , 1997), a condition known to be often associated with ARDS. However, it should be also
noted that studies performed on inducible NO synthase-deficient mice suggest a significant
role for augmented NO· levels in sepsis as being important as a homeostatic regulator in PMN
activation and recruitment to endothelial surfaces (Hickey et aI. , 1997).

Formation of Novel Nitrating and Chlorinating Intermediates During Reaction of N02­

with HOCIIOCl-

One of the most potent and plentiful oxidants produced by phagocytes is hypochlorous
acid (HOCl/OCI), which is formed via Ml'Ovcatalyzedoxidationof Cl" (Weiss et ai, 1983).
As NO· is also present in increased quantities at sites of inflammatory-immune reactions,
interactions between NO·-derived RNS with the inflammatory oxidant HOCl/OCI - can be
expected to occur under inflammatory conditions. Results from our laboratory have indicated
that NOz- , the major metabolite ofNO· in extravascularfluids, reacts with HOCIIOCI' to form
nitrate (NOn via intermediate formation of nitryl chloride (CIN02) and/or chlorine nitrite
(ClONO). These intermediates are powerful nitrating and chlorinating species , hence,
formation of CINOz/CIONO by this reaction may represent a previously unrecognized
mechanism ofinflammation-mediatedbiologicaldamage, and offer an additional or alternative
mechanism of tyrosine nitration independent of ONOO- formation (Eiserich et aI., 1996).
This argument is strengthened by the recent finding that hypochlorous acid and nitrate cause
oxidative modification and nitration of human lipoproteins (Panasenko et ai, 1997).

Normally,NOz- is present at levels ofO.5-3.6 I-lM in plasma (Leone et ai, 1994; Ueda
et ai, 1995), ~15 I-lM in respiratory tract lining fluids (Gaston et ai, 1993),30-210 I-lM in
saliva, and 0.4-60 I-lM in gastric juice, but extracellular NOz- levels are markedl y increased
during inflammatory processes , reflecting increased NO· production . For instance , increased
NOz-Ievels have been detected in synovial fluids ofpatients with rheumatoid arthritis (Farrell
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et ai, 1992), and serum NOz- levels of36 ,uM have been reported in human immunodeficiency
virus-infectedpatients with interstitial pneumonia (Torre et ai, 1996), dramatically higher than
normal serum NOz- levels. Increased NQ - levels have also been detected in condensed
exhalates from patients with asthma compared with those of healthy subjects (Hunt et al,
1995), consistent with increases in expired NO· by asthmatics compared with healthy control
subjects (Kharitonov et ai, 1996). Nitrite levels are reportedly very high in respiratory tract
surfaces (Goviadaraju et ai, 1997), far exceeding plasma levels (e.g., possibly 1000x higher
in the rat), presumably because epithelial cells generate NO· and the airway surface does not
have hemoglobin degradation systems oxidizing NO· (or nitrite) to nitrate (NO)-). [However,
it has been shown that most inhaled NO· results in *NO)-, as detected in blood and in urine
(Westfelt et ai, 1995).]

Do Human PMNs Utilize these Pathways?

We have obtained recent evidence indicating that activated human PMNs can utilize
these above-described MPO-dependent pathways to form both nitrating and chlorinating
intermediates (Eiserich et aI., 1997). Addition ofNOz- (1-50 ,uM) to PMA-stimulated PMN
was found to cause nitration of phenolic substrates and enhance PMN-mediated chlorination
reactions. The enhanced chlorination can be explained by: i) NOz--mediated recycling of
inactive MPO Compound II to the native ferric enzyme; and ii) the ability of NOz- to compete
with taurine released from PMN for reaction with HOCl/OCI- to form a more potent
electrophilic chlorinating intermediate (CIONO/CINOz). Furthermore, we have obtained
evidence that exposure of activated PMN to pathophysiologic fluxes of NO· resulted in
nitration and chlorinationreactions that in some conditions were dependent on active MPO,
rather than formation of ONOO-. Under identical conditions, addition of ISNOz- led to 'SN
enrichmentof nitrated phenolic substrates, unequivocally confirming contribution ofNOz- in
PMN-mediated reaction pathways .

In summary, formation ofNO·-derived reactive nitrogen species that are capable of
inducing aromatic nitration appears to occur by multiple mechanisms, especially during
inflammation and PMN activation, as schematically depicted below:

PHAGOCYTE

Fig. 2

Phagosome

There is likewise an accumulating documentation of increased formation of 3­
chlorotyrosine in tissues subjected to chronic inflammatory-immune reactions (Halliwell,
1997), and indeed in some of the same tissues where increased nitrotyrosine has been found
(e.g., Beckman et ai, 1994; Hazell et aI., 1996; Hazen et ai, 1997a). With increased sensitivity
of techniques designed to quantitate chlorotyrosine (Hazen et ai, 1997b), it can be expected
that chlorotyrosinewill be found in many tissues where elevated nitrotyrosinehas been found.
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6. POSSIBLE CONSEQUENCES OF THESE IRREVERSIBLE TYROSINE
MODIFICAnONS

Although there is ample evidence for the formation of 3-nitrotyrosine (and
3-chlorotyrosine or 3,3'-dityrosine) in a number of inflammatory diseases , the potential
contribution of these modifications to the development of tissue injury has received less
documentation. Nitrat ion of tyrosine residues using the N02+-donor tetranitromethane has
been used extensively to investigate the location and essentiality of tyrosine residues in a large
number of proteins (e.g., Riordan and Vallee, 1972; Mierzwa and Chan, 1987; Haddad et al.,
1996), and has indicated that nitration of tyrosine residues is often associated with a loss of
either enzyme or protein function . Increasingly , investigators are using peroxynitrite to
selectively inactivate proteins via tyrosine nitration mechanisms (Zou et aI., 1997).
Furthermore, studies with isolated tyrosine kinase systems have indicated that nitration of
critical tyrosine residues in tyrosine kinase substrates causes inhibition of tyrosine
phosphorylation(Martin et al., 1990; Kong et al., 1996; Gow et al., 1996). Hence, formation
of reactive nitrogen species may importantly affect signaling pathways involving (receptor)
tyrosine kinases , however , this possibility has not yet been convincingly documented in intact
cellular systems .

Cytoskeletal proteins such as actin or neurofilaments may represent important targets
for tyrosine nitration reactions , as they are abundant proteins and contain several tyrosine
residues which appear to be involved in structural assembly of these proteins. Chemical
nitration of actin or neurofilaments has been demonstrated to disrupt assembly of these
proteins , and modification of only a few subunits appears necessary to cause disruption ofa
structure involving thousands of subunits (Beckman, 1996 and refs. therein) . Although
extensive tyros ine nitration has been shown to occur in the myocardium during inflammatory
forms of myocarditis (Kooy et al., 1997), it is still speculative whether or not the nitration
plays a pathologic role in mediat ing the myocardial dysfunction.

More relevant to ARDS, several studies have indicated that ONOO- or related reactive
nitrogen species are capable of nitrating tyrosine residues in surfactant proteins, and nitration
of tyrosine residues in surfactant protein A has been causatively linked to decreases in its
ability to aggregate lipids or decreases in binding to mannose receptors . Hence, such
modification may disturb functions of SPA by diminishing its function to lowering alveolar
surface tension (Zhu et aI., 1996; Haddad et aI., 1996), or by compromising its function to
facilitate phagocytic uptake and killing of bacteria.

Similar to nitration , tyrosine chlorination or dimerizationmay affect cellular pathways
involving critical tyrosine residues . As techniques to measure and characterize these
compounds become increasingly available (Shigenenaga et aI., 1997; Leeuwenburgh et aI.,
1997a, 1997b; Yi et aI., 1997), their role in tissue pathobiology will become apparant. It has
been recently described that 3-nitro-tyrosine attenuates hemodynamic responses to
adrenoreceptor agonists and to angiotensin 11 (Kooy and Lewis, 1996).

7. REMAINING IMPORTANT QUESTIONS

One ofthe implicationsofour recent findings is that N02- may not be a stiochiometrc
marker of NO· production by phagocytes or at sites of inflammation, as it is potentially
removed by reaction with inflammatory oxidants . Detenninationof NO· production in tissues
and fluids of patients with acute and chronic inflammation, or from isolated phagocytes as
measured by N02- may likely be an underestimate, and should include analysis of both N02­

and NOJ- . Moreover, these N02- -oxidation mechanisms may also modulate PMN function
or affect PMN-dependent tissue injury. For instance, N02- has been shown to inhibit the
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bactericidal activity of HOCIIOCi, proposedly by direct reaction ofthese two species (Kono,
1995; Klebanoff, 1993). The reaction product ClNO/ClONO, although a strongly oxidizing
species and potentiallyan antimicrobialagent in its own right, is a short-lived intermediateand
appears less efficient in bacterial killing compared to HOCI in bacterial suspensions.

However , it is difficult to extrapolate such findings to the situation present in the
phagolysosome, where oxidant reactions with bacterial constituents are less likely to be
limited by chemical stability or diffusion. Moreover , NOz- may catalytically enhance
MPOlH z0z/CI- -dependent bacterial killing, via the mechanism depicted in Fig. 1.
Furthermore, peroxidases have been found capable of converting NOz- itself into a
bactericidal agent, presumably NOz' (Klebanoff, 1995; Kono, 1995). It remains unclear,
therefore , to what extent NO· or NOz- affect PMN function with respect to bactericidal
activity. Interestingly, cytokine-stimulated human PMNs were found to contain increased
levels of iNOS, which was co-localized with MPO in primary granules and tyrosine nitration
could be detected around ingested bacteria (Evans et ai, 1996), which is likely to involve
MPO-mediated pathways.

Taken together , augmented NO· generation at inflammatory-immune activation sites
may generate an expanding number of potential nitrosating and/or nitrating species and
potentially playa role in augmenting the production ofchlorinatingspecies, which collectively
could result in (ir)reversible modifications in proteins , lipids or nucleic acids. Although
irreversible tyrosine modificationsmay affect various cellular processes , the relevance of such
modifications to the pathobiology of ARDS or other localized or systemic inflammatory­
immune processes still needs to be established.
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