Skip to main content

Smoothened Signaling Through a G-Protein Effector Network

  • Chapter
  • First Online:
Hedgehog signaling activation in human cancer and its clinical implications

Abstract

Disruption of the Hedgehog (HH) signaling pathway underlies an increasingly large array of different human tumors. Consistent with the important role HH plays in cancer, the tumor burden of patients treated with a novel HH inhibitor was ­dramatically reduced in a recent clinical trial. This drug binds directly to and antagonizes activity of the seven-transmembrane protein Smoothened (SMO), attenuating downstream signaling events that remain largely unknown. While functional studies of SMO signaling have provided a basic roadmap of information flow following ligand stimulation, the exact routes of signaling, and how they communicate with each other and with other signaling pathways, are not well characterized. We recently demonstrated that one route of SMO-mediated signal transduction involves activation of the heterotrimeric guanine nucleotide binding protein (G-protein) Gαi, suggesting that SMO can signal, at least in part, as a canonical G-protein-coupled receptor (GPCR). In this chapter, we discuss structural, functional, and mechanistic aspects of SMO signaling that relate to its function as a GPCR, and provide insight into how G-protein-dependent signaling might impact HH pathway activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson RL et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272(5268):1668–1671

    Article  PubMed  CAS  Google Scholar 

  2. Hahn H et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841–851

    Article  PubMed  CAS  Google Scholar 

  3. Unden AB et al (1996) Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: different in vivo mechanisms of PTCH inactivation. Cancer Res 56(20):4562–4565

    PubMed  CAS  Google Scholar 

  4. Wolter M, Reifenberger J, Sommer C, Ruzicka T, Reifenberger G (1997) Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 57(13):2581–2585

    PubMed  CAS  Google Scholar 

  5. Lam CW et al (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18(3):833–836

    Article  PubMed  CAS  Google Scholar 

  6. Xie J et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391(6662):90–92

    Article  PubMed  CAS  Google Scholar 

  7. Teglund S, Toftgard R (1805) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 2:181–208

    Google Scholar 

  8. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304(5678):1755–1759

    Article  PubMed  CAS  Google Scholar 

  9. Robbins DJ, Goetz JA, Yuan Z, Stegman MA (2005) Inhibitors of the hedgehog signal transduction pathway. Curr Cancer Ther Rev 1:227–288

    Article  Google Scholar 

  10. Xie J (2008) Hedgehog signaling pathway: development of antagonists for cancer therapy. Curr Oncol Rep 10(2):107–113

    Article  PubMed  CAS  Google Scholar 

  11. Jia J, Jiang J (2006) Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 63(11):1249–1265

    Article  PubMed  CAS  Google Scholar 

  12. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087

    Article  PubMed  CAS  Google Scholar 

  13. Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418(6900):892–897

    Article  PubMed  CAS  Google Scholar 

  14. Alcedo J, Noll M (1997) Hedgehog and its patched-smoothened receptor complex: a novel signalling mechanism at the cell surface. Biol Chem 378(7):583–590

    Article  PubMed  CAS  Google Scholar 

  15. Incardona JP, Gruenberg J, Roelink H (2002) Sonic hedgehog induces the segregation of patched and smoothened in endosomes. Curr Biol 12(12):983–995

    Article  PubMed  CAS  Google Scholar 

  16. Martin V, Carrillo G, Torroja C, Guerrero I (2001) The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr Biol 11(8):601–607

    Article  PubMed  CAS  Google Scholar 

  17. Denef N, Neubuser D, Perez L, Cohen SM (2000) Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102(4):521–531

    Article  PubMed  CAS  Google Scholar 

  18. Robbins DJ, Hebrok M (2007) Hedgehogs: la dolce vita. Workshop on Hedgehog-Gli ­signaling in cancer and stem cells. EMBO Rep 8(5):451–455

    Article  PubMed  CAS  Google Scholar 

  19. Jia J, Tong C, Jiang J (2003) Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes Dev 17(21):2709–2720

    Article  PubMed  CAS  Google Scholar 

  20. Lum L et al (2003) Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12(5):1261–1274

    Article  PubMed  CAS  Google Scholar 

  21. Ogden SK et al (2003) Identification of a functional interaction between the transmembrane protein Smoothened and the kinesin-related protein Costal2. Curr Biol 13(22):1998–2003

    Article  PubMed  CAS  Google Scholar 

  22. Ruel L, Rodriguez R, Gallet A, Lavenant-Staccini L, Therond PP (2003) Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat Cell Biol 5(10):907–913

    Article  PubMed  CAS  Google Scholar 

  23. Endoh-Yamagami S et al (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 19(15):1320–1326

    Article  PubMed  CAS  Google Scholar 

  24. Robbins DJ et al (1997) Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90(2):225–234

    Article  PubMed  CAS  Google Scholar 

  25. Zhang W et al (2005) Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell 8(2):267–278

    Article  PubMed  CAS  Google Scholar 

  26. Claret S, Sanial M, Plessis A (2007) Evidence for a novel feedback loop in the Hedgehog pathway involving Smoothened and Fused. Curr Biol 17(15):1326–1333

    Article  PubMed  CAS  Google Scholar 

  27. Farzan SF et al (2009) A quantification of pathway components supports a novel model of Hedgehog signal transduction. J Biol Chem 284(42):28874–28884

    Article  PubMed  CAS  Google Scholar 

  28. Costanzi S, Siegel J, Tikhonova IG, Jacobson KA (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15(35):3994–4002

    Article  PubMed  CAS  Google Scholar 

  29. Hofmann KP et al (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34(11):540–552

    Article  PubMed  CAS  Google Scholar 

  30. Morris MB, Dastmalchi S, Church WB (2009) Rhodopsin: structure, signal transduction and oligomerisation. Int J Biochem Cell Biol 41(4):721–724

    Article  PubMed  CAS  Google Scholar 

  31. Nusslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the second chromosome. Roux’s Arch Dev Biol 192:267–282

    Google Scholar 

  32. Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86(2):221–232

    Article  PubMed  CAS  Google Scholar 

  33. Bhanot P et al (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382(6588):225–230

    Article  PubMed  CAS  Google Scholar 

  34. Dann CE et al (2001) Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412(6842):86–90

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y et al (1996) A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem 271(8):4468–4476

    Article  PubMed  CAS  Google Scholar 

  36. Moro S, Hoffmann C, Jacobson KA (1999) Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor. Biochemistry 38(12):3498–3507

    Article  PubMed  CAS  Google Scholar 

  37. Murone M, Rosenthal A, de Sauvage FJ (1999) Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr Biol 9(2):76–84

    Article  PubMed  CAS  Google Scholar 

  38. Aanstad P et al (2009) The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. Curr Biol 19(12):1034–1039

    Article  PubMed  CAS  Google Scholar 

  39. Nakano Y et al (2004) Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech Dev 121(6):507–518

    Article  PubMed  CAS  Google Scholar 

  40. van den Heuvel M, Ingham PW (1996) Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382(6591):547–551

    Article  PubMed  Google Scholar 

  41. Yeagle PL, Albert AD (2003) A conformational trigger for activation of a G protein by a G protein-coupled receptor. Biochemistry 42(6):1365–1368

    Article  PubMed  CAS  Google Scholar 

  42. Reifenberger J et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58(9):1798–1803

    PubMed  CAS  Google Scholar 

  43. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7):1723–1729

    Article  PubMed  CAS  Google Scholar 

  44. Remsberg JR, Lou H, Tarasov SG, Dean M, Tarasova NI (2007) Structural analogues of smoothened intracellular loops as potent inhibitors of Hedgehog pathway and cancer cell growth. J Med Chem 50(18):4534–4538

    Article  PubMed  CAS  Google Scholar 

  45. Apionishev S, Katanayeva NM, Marks SA, Kalderon D, Tomlinson A (2005) Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol 7(1):86–92

    Article  PubMed  CAS  Google Scholar 

  46. Jia J, Tong C, Wang B, Luo L, Jiang J (2004) Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432(7020):1045–1050

    Article  PubMed  CAS  Google Scholar 

  47. Zhang C, Williams EH, Guo Y, Lum L, Beachy PA (2004) Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci USA 101(52):17900–17907

    Article  PubMed  CAS  Google Scholar 

  48. Pierce KL, Lefkowitz RJ (2001) Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2(10):727–733

    Article  PubMed  CAS  Google Scholar 

  49. Cheng S, Maier D, Neubueser D, Hipfner DR (2010) Regulation of smoothened by Drosophila G-protein-coupled receptor kinases. Dev Biol 337(1):99–109

    Article  PubMed  CAS  Google Scholar 

  50. Meloni AR et al (2006) Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 26(20):7550–7560

    Article  PubMed  CAS  Google Scholar 

  51. Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450(7167):252–258

    Article  PubMed  CAS  Google Scholar 

  52. Ogden SK et al (2008) G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456(7224):967–970

    Article  PubMed  CAS  Google Scholar 

  53. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  54. Davis RL, Kiger JA Jr (1981) Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J Cell Biol 90(1):101–107

    Article  PubMed  CAS  Google Scholar 

  55. Guichard A, Park JM, Cruz-Moreno B, Karin M, Bier E (2006) Anthrax lethal factor and edema factor act on conserved targets in Drosophila. Proc Natl Acad Sci USA 103(9):3244–3249

    Article  PubMed  CAS  Google Scholar 

  56. Trousse F, Marti E, Gruss P, Torres M, Bovolenta P (2001) Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog. Development 128(20):3927–3936

    PubMed  CAS  Google Scholar 

  57. DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR (2000) Smoothened activates Galphai-mediated signaling in frog melanophores. J Biol Chem 275(34):26322–26327

    Article  PubMed  CAS  Google Scholar 

  58. Kasai K et al (2004) The G12 family of heterotrimeric G proteins and Rho GTPase mediate Sonic hedgehog signalling. Genes Cells 9(1):49–58

    Article  PubMed  CAS  Google Scholar 

  59. Masdeu C et al (2006) Identification and characterization of Hedgehog modulator properties after functional coupling of Smoothened to G15. Biochem Biophys Res Commun 349(2):471–479

    Article  PubMed  CAS  Google Scholar 

  60. Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA 103(33):12607–12612

    Article  PubMed  CAS  Google Scholar 

  61. Low WC et al (2008) The decoupling of Smoothened from Galphai proteins has little effect on Gli3 protein processing and Hedgehog-regulated chick neural tube patterning. Dev Biol 321(1):188–196

    Article  PubMed  CAS  Google Scholar 

  62. Lum L et al (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299(5615):2039–2045

    Article  PubMed  CAS  Google Scholar 

  63. Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N (2005) A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet 37(12):1323–1332

    Article  PubMed  CAS  Google Scholar 

  64. Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330

    Article  PubMed  CAS  Google Scholar 

  65. Chinchilla P, Xiao L, Kazanietz MG, Riobo NA (2010) Hedgehog proteins activate ­pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9(3):570–579

    Article  PubMed  CAS  Google Scholar 

  66. Ogden SK et al (2006) Smoothened regulates activator and repressor functions of Hedgehog signaling via two distinct mechanisms. J Biol Chem 281(11):7237–7243

    Article  PubMed  CAS  Google Scholar 

  67. Birnbaumer L (2007) Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. Biochim Biophys Acta 1768(4):772–793

    Article  PubMed  CAS  Google Scholar 

  68. Gurevich VV, Gurevich EV (2008) Rich tapestry of G protein-coupled receptor signaling and regulatory mechanisms. Mol Pharmacol 74(2):312–316

    Article  PubMed  CAS  Google Scholar 

  69. Malbon CC (2005) G proteins in development. Nat Rev Mol Cell Biol 6(9):689–701

    Article  PubMed  CAS  Google Scholar 

  70. Lefkowitz RJ, Whalen EJ (2004) Beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol 16(2):162–168

    Article  PubMed  CAS  Google Scholar 

  71. Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153(Suppl 1):S167–S176

    PubMed  CAS  Google Scholar 

  72. Chen W et al (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306(5705):2257–2260

    Article  PubMed  CAS  Google Scholar 

  73. Philipp M et al (2008) Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Mol Biol Cell 19(12):5478–5489

    Article  PubMed  CAS  Google Scholar 

  74. Molnar C, Holguin H, Mayor F Jr, Ruiz-Gomez A, de Celis JF (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci USA 104(19):7963–7968

    Article  PubMed  CAS  Google Scholar 

  75. Zhu AJ, Zheng L, Suyama K, Scott MP (2003) Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev 17(10):1240–1252

    Article  PubMed  CAS  Google Scholar 

  76. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  PubMed  CAS  Google Scholar 

  77. Dessauer CW (2009) Adenylyl cyclase – A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76(5):935–941

    Article  PubMed  CAS  Google Scholar 

  78. Jiang J, Struhl G (1995) Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80(4):563–572

    Article  PubMed  CAS  Google Scholar 

  79. Li W, Ohlmeyer JT, Lane ME, Kalderon D (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80(4):553–562

    Article  PubMed  CAS  Google Scholar 

  80. Zhou Q, Apionishev S, Kalderon D (2006) The contributions of protein kinase A and smoothened phosphorylation to hedgehog signal transduction in Drosophila melanogaster. Genetics 173(4):2049–2062

    Article  PubMed  CAS  Google Scholar 

  81. Collier LS, Suyama K, Anderson JH, Scott MP (2004) Drosophila Costal1 mutations are alleles of protein kinase A that modulate hedgehog signaling. Genetics 167(2):783–796

    Article  PubMed  CAS  Google Scholar 

  82. Chiang C et al (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383(6599):407–413

    Article  PubMed  CAS  Google Scholar 

  83. Cooper MK, Porter JA, Young KE, Beachy PA (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280(5369):1603–1607

    Article  PubMed  CAS  Google Scholar 

  84. Incardona JP, Gaffield W, Kapur RP, Roelink H (1998) The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125(18):3553–3562

    PubMed  CAS  Google Scholar 

  85. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743–2748

    Article  PubMed  CAS  Google Scholar 

  86. Hardman J, Limbird L, Gilman A (2001) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York

    Google Scholar 

  87. Ma Y et al (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111(1):63–75

    Article  PubMed  CAS  Google Scholar 

  88. Bijlsma MF et al (2006) Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 4(8):e232

    Article  PubMed  Google Scholar 

  89. Corcoran RB, Scott MP (2006) Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 103(22):8408–8413

    Article  PubMed  CAS  Google Scholar 

  90. Dwyer JR et al (2007) Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 282(12):8959–8968

    Article  PubMed  CAS  Google Scholar 

  91. Romer JT et al (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6(3):229–240

    Article  PubMed  CAS  Google Scholar 

  92. Kimura H, Ng JM, Curran T (2008) Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13(3):249–260

    Article  PubMed  CAS  Google Scholar 

  93. Gottardo NG, Gajjar A (2008) Chemotherapy for malignant brain tumors of childhood. J Child Neurol 23(10):1149–1159

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Carroll, D. Fei, S. Marada, and S. Singh for their comments on the manuscript. This work was supported by NIH grants 1RO1CA82628 and 1RO1GM064011 (DJR), March of Dimes MOD5-FY10-6 (SKO), and by the American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children’s Research Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey K. Ogden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robbins, D.J., Ogden, S.K. (2011). Smoothened Signaling Through a G-Protein Effector Network. In: Xie, J. (eds) Hedgehog signaling activation in human cancer and its clinical implications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8435-7_3

Download citation

Publish with us

Policies and ethics