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SCALE RENORMALIZATION AND RANDOM SOLUTIONS 
OF THE BURGERS EQUATION 

M. ROSENBLATT,* University of California, San Diego 

Abstract 

Solutions of the Burgers equation with a stationary (spatially) stochastic 
initial condition are considered. A class of limit laws for the solution which 
correspond to a scale renormalization is considered. 

STATIONARY INITIAL CONDITION; SHORT-RANGE DEPENDENCE; LONG-RANGE 
DEPENDENCE 

Introduction 
The Burgers equation 

(1) ut + uux = fiu^, (i>0, 

u = u(x91) is a simple example of a non-linear partial differential equation 
that has been suggested as a simple model for turbulence (see Burgers (1948)) 
as well as for shock waves when //10 (see Whitham (1974)). Spatially 
stochastic solutions of the Navier-Stokes equation have been used in discus­
sions of turbulence (see Batchelor (1953)) and Vishik et al., (1979)). We shall 
consider solutions of the Burgers equation with spatially stationary stochastic 
initial conditions. 

Both Hopf (1950) and Cole (1951) have shown how the discussion of the 
Burgers equation can be reduced to that of the diffusion equation by a simple 
non-linear transformation. We shall give Hopf s formulation in the following 
theorem. 

Theorem 0 (Hopf). Let u(x,t)bea solution of Equation (1) with continuous 
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Scale renormalization and random solutions of the Burgers equation 329 

initial condition uQ(x) = u(x, 0). / / 

(2) f* Uo(Z)dt = o(x2) 

as \x\ -*oo, then 

u(x, t) = 
i: x-y exp ^-F(x,y,t) dy 

r. exp 2fi 
F(x, y, t) dy 

with 

F(x,y,t) = {^-r^-\ 
It 

J\(Z)dZ. 
Notice that if we set 

<Po(y) = exp 
1 cy 

T- u4y)dy 
2u Jo 

and 

J oo 

<Po(y) exp 
- 00 

(* - y)2 

dy 

then 

(3) u(x, t) = — 2/z — log (p(x, t). 
ox 

Random solutions. We shall be interested in the case in which UQ(X) is a 
continuous and stationary process in x. To use Hopfs representation of the 
solution and its consequences, we shall require that the stationary process UQ( •) 
satisfy (2). For the moment assume that this is the case. Simple conditions on 
the process w0( *) that imply (2) will be given a bit later. Our interest is in the 
asymptotics of 

(4) I u(x, t)dx = — 2/ilog 
P(0, 0 

as R -* oo with t > 0 fixed. Notice that 

<p(R,t) = (4a/tf)~m f ° (p0(R + v)exp 
%/ — 00 

with 

_ rfv 
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1 CR 1 1 CR+y 

<pQ{R + v) = exp - — Uo(y)dy\ exp - — u0(y)dy 
L 2/i Jo J I 2fi JR 

so that 
1 CR 

log<p(R,t)= -— Uo(y)dy 2/i Jo 
(5) 

f Too 1 rR+v v2 
+ log^(47r//0-1/2 exp - - Uo(y)dy- — 

[ J -oo L 2fi JR 4/it j 
The following simple remark can be made. 

dv\ 

Proposition 1. Ifu0(x) is a continuous stationary process in x that satisfies 
(2), then the process u(x, t) is stationary in xfor each fixed t>0. 

The proposition can be seen to be valid in the following way. If (2) is 
satisfied by w0( • )> the expression 

(6) J 00 J p*+V yl 

exp - — ujyydy- — 
-00 III Jx 4fit 

dv 

is well defined and determines a process that is jointly stationary in x with 
w0( •). On differentiating log (p{x, t) with respect to x and making use of (4) and 
(5), one sees that W(JC, /) is stationary in x. 

As an immediate consequence of the ergodic theorem we have the following 
remark. 

Proposition 2. Ifu0 is a stationary process with 

E\u0(x)\ <oo 

then 

(7) f\(y)dy = 0(x) 

as \x | -* oo and consequently (2) is satisfied. 

Under the assumptions of this proposition 

x Jo 

with probability 1 as | JC | -* oo where J is the tr-field of invariant sets for the 
process w0( • )• However, this immediately yields (7). 

Let us now consider stationary processes w0( •) with finite second moment 
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Eu0(x)2. For most such processes the variance 

a2(R) = var( JQ u0(y) 

will diverge as R -* oo though it is of course easy to construct processes for 
which this variance remains bounded as i?-»oo. Nonetheless, the most 
interesting processes are those for which the variance diverges and we shall 
assume that this is the case. Consider the scale renormalization 

Ry 
a(R)~l f "u(r\,t)dr\ 

Jo 
as R -* oo. Given a process z(x) consider 

>Ry 

h(R)~l f y{z(x)-c}dx = TR GO 

where h(R)^ oo as R -* oo. We shall say that TR(y) converges weakly (to some 
process W{y)) if for any given continuous functional y/ on C[0, 1] the 
distribution of 

V(TR(y),0<y<l) 
tends to the distribution of y/{W{y), 0 ̂  y ^ 1). We then have the following 
theorem. 

Theorem 1. Let u0( -)bea continuous stationary process with finite second 
moment such that G(R) diverges as i? — oo. Assume that WQ(-) is the initial 
condition for the Burgers equation and u(x,t) the solution of the Burgers 
equation. If the processes 

rRy 
(8) e(R)~l {u0(x)-Eu0(x)}dx, 

(9) (j(R)-1 f *{u(x,t)-Eu0(x)}dx 

both converge weakly asR^cc, they must converge weakly to the same random 
process. 

The theorem follows from the stationarity of (6) in x for each t > 0, together 
with relations (4) and (5). 

Theorem 1 is of interest because it implies that the low frequency behavior 
of the spatial spectrum of u(x, t) in the immediate neighborhood of 0 is the 
same independently of / > 0 and is the same as that of u0(x). Remarks 
suggesting something like this have been made in the case of homogeneous 
turbulence (see Batchelor (1953), Section 3.3). 
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332 M. ROSENBLATT 

We shall mention a number of conditions on the process UQ( •) (the initial 
condition) that allow one to determine the asymptotic behavior of (8) and (9) 
as R -* oo (but with fi > 0 and / fixed). Let 

^ = ^{W0(HO,H>^.X}, 

be the a-fields of events generated by UQ(W\ W ^ X , and UQ(W\ W^X, 
respectively. Thus, Mx and &x correspond to the spatial information to the left 
of Jt, and the spatial information to the right of x for the process HQ( •). Let a(d\ 
d > 0 be the coefficient 

a(d)= sup \P(AnB)-P(A)P(B)\. 
Aeax 

Berx+d 

Notice that a(d) is independent of x because of the assumption that HQ(X) is 
stationary in x. The process u0( •) is said to be strongly mixing if 

a(d)^0 

as d -* oo. The strong mixing property is one of the many non-equivalent ways 
of formulating a concept of short-range dependence. Let UQ( •) be stationary 
with 

Euo(x) = 0, 
( 1 0 ) E\uo(x)\2+S<oo 

with 0 < d ^ 1, and strongly mixing with 

a(rf) = Or ( 1 + i X 1 +^) 
for some 0 < e ^ 1. If <T(U)-* OO as R -* oo, these conditions are enough to 
guarantee that (8) and (9) converge weakly to a Brownian motion process B(y\ 
0 ^ y. This and even stronger results are directly implied by Theorem 1 and 
remarks in Dehling and Philipp (1982). 

A more restricted but less complicated result can be formulated in terms of 
the concept of an asymptotically uncorrelated process. If si is a a-field, let 
L\si) be the collection of random variables measurable with respect to si 
that have finite second moment. Let 

p{d)= sup |corr(/,£)| 
f^L\mx) 

geL2(^x+d) 

with corr(/,g) the correlation of/and g. The process WQ(-) is said to be 
asymptotically uncorrelated if fi(d) -* 0 as d -* oo. The asymptotically uncorre-

381 



Scale renormalization and random solutions of the Burgers equation 333 

lated condition is an even stronger formulation of a concept of short-range 
dependence than is that of strong mixing. 

Theorem 2. Let u0( -)bea stationary process that is asymptotically uncorre-
latedx satisfies (10), and is such that a(R )-»ccasR-+cc.It then follows that (8) 
converges weakly to a Brownian motion process B{y) asR-*oo. 

Theorem 2 follows directly from our Theorem 1 and a result of Ibragimov 
(1975) concerning asymptotic normality for asymptotically uncorrelated pro­
cesses. It is easy to see how to modify these results if the mean of u0( •) is 
non-zero. 

Let us now consider a special class of processes ty>( •) as initial condition 
which imply a weak limiting process different from the Brownian motion. 
These processes all exhibit a long-range dependence as contrasted with those 
processes dealt with earlier. This long-range dependence shows itself in terms 
of a singular mass accumulation in the neighborhood of 0 for the spectrum of 
the process w0(-). AH the processes w0(-) we exhibit are obtained by an 
instantaneous function of a Gaussian process. Let G(x) be a stationary 
Gaussian process with mean zero and covariance function 

(11) r(x) = EG(0)G(x)^x-DL(x) 

as x -* oo, L( •) slowly varying and 0 < D < 1 For convenience, assume that 
r(0) = 1. Let h( •) be a function with 

Eh(G(x)) = 0, 
( 1 2 ) Eh(G(x))2<oo. 

Our object is to take the initial condition for the Burgers equation u(x, 0) = 
uQ(x) a process of the form 
(13) u0(x) = h(G(x)). 
Consider the Fourier-Hermite expansion of h{ •) 

00 J(a) h(u)= I ^fhj(u) 

and let m be the first index with non-zero coefficient 7(m). The Hermite 
polynomials hj(u) have leading coefficient 1. We shall be interested in the 
range 

0<D<—. m 

The process w0(«) given by (13) satisfied the conditions of Theorem 1 and so 
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the asymptotic behavior of (8) will be the same as that of (9). Now 

O\R) = E( JRh(G(x))dxY 

\ m\ ) ( 1 - R2~mDLm(R) ml>)(2 - mD) 
as R —■ oo. Let W{ •) be the complex Gaussian process with 

EW(A)=0 

W(A) - W{ - A) 

for A an interval, 
71 

1 - 1 

for disjoint intervals A/, and covariance 

£ ( ^ ( A 0 ^ ^ ) ) = | A 1 n A 2 | 

(| A | is the length of A). Let the symbolJ^ denote integration over all of 
m-dimensional Euclidean space except for A,- = ± A,-, i ¥*j, i,j = 1,- • •, m. 
We introduce the process 

Zm(x) = C(m,D) f 
J n 

' exp (i(Xx + • • • + Am).x) - 1 

X l A , ^ - ^ . • • l A J ^ - ^ J W i ) - • • * W m ) 

with 

a m f 0 " ^ X 2 - m D ) ] 1 / 2 

i m ' j l2(m!X2r(D)cosDw/2rJ * 

Notice that the process is Gaussian only in the case m = 1. 

Theorem 3. Lef w0( •) 6e f/*e proem (13) satisfying (11) and (12). 7%ew 
rRy 

a(R)~l u(x,t)dx 
Jo 

w/// converge weakly to the process 

zjy) 
as i?-*oo. 
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Theorem 3 follows directly from our Theorem 1 and results of Taqqu (1981) 
(his Theorem 3.2) and Dobrushin and Major (1979) (their Theorem 1). The 
limiting process Zm{y) is Gaussian when m = 1 and is then a fractional 
Brownian motion. 

A counterexample for a growth conditon. The growth condition (2) has 
played an important part in our discussion. It is of some interest to give a 
simple example of a stationary process u0( •) that does not satisfy the con­
dition. The process will understandably not have moments in view of Proposi­
tion 2. It will be defined in terms of a stable symmetric process £( •) with 
coefficient a and with stationary independent increments. Let F(y) be the 
distribution function of £(1). It is well known that 

y 
as y -» oo with some constant c> 0 and 0 < a < 2. The characteristic function 
of £(1) is exp [ - | u |"]. Since the characteristic function of £(r), r > 0, is 
exp [ - r | u T] it follows that the distribution function £(T) is F{x~my) with 

(14) l-F{x-my)*-a 
y 

as y -* oc. Let #(0 be an increasing continuous non-negative function defined 
for t > 0. Now g(t) is called an upper function for £( •) if 

P\ lim sup£(Ote(0<lr=l 

and a lower function for <!;( •) if 

pjlim sup£(0/£(0>U=l-
t-* oo 

There are sufficient conditions for #(0 to be an upper or lower function for £( •) 
(see Gikhman and Skorokhod (1969)). A sufficient condition for g( •) to be an 
upper function for £(«) is 

(15) j ' " -tP{Z(t)>g{t)}dt< oo. 

A sufficient condition for g( •) to be a lower function for £( •) is that 

(16) | P{$(ak)>g(ak)} 

diverge for all a > 1. By using (14) and (15) it is clear that 
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g(t)-tVaQ.Ogt)Ua+' 
or 

g(t) = f1/o(log 0,/adog log t)Ua+< 
are upper functions for <!;( •) for any e > 0. 

Similarly (14) and (16) imply that 

g(t) = tl/a(loglogt)Ua 

or 

£(0 = f""(log f)""(log logO"" 

are lower functions for <̂( •). We shall now generate a stationary process «o( •) 
with continuous sample functions from the stable process <!;( •) with indepen­
dent stationary increments as follows. Let 

(17) Uo(x) = £ + l [$(w + 1) - Z{w)]dw. 

Now 

JO JO Jy 

(18) = fy[Z(y + D-Z(y)]dy+ f (x-y)[$(y + 1)-Z(y))dy 

JO J J C - 1 

+ f*~i[t(y + D-Z(y)]dy 

while 
(19) f ' K(y + i) - t(y)Viy = f Z(y)*y - FS(y)dy. 

J 1 J J C - 1 J 1 
From (18) and (19) it follows that the functions g(x) mentioned above as upper 
and lower functions for £(x) as x -* oo are also upper and lower functions for 

Jo Uo(y)dy 

with w0(-) given by (17). Notice that this implies that (17) satisfies the growth 
condition (2) if a > \ but does not if a ^ \. 

Varying \i. In the discussion of asymptotics in the earlier part of the paper 
one considered letting R -* oo in (4) but with JU and / fixed. It's clearly also of 
interest to look at the case in which i? -* oo and //10 but with t fixed or at least 
bounded. A simple estimate will show us that the asymptotics obtained earlier 
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are still valid in such a circumstance if one can assume that for the initial 
condition one has the finite bound 

|w0(x)| ^c 

for all x with probability 1. For then 

(20) 
f+x + v 

J Uo(y)dy + 
It 

— cv + — 
It 
v2 

cv + — 
It 

i fv^O 

ifv^O. 

This implies that an upper bound for (6) is given by 

1 (c2t exp — 
>/An/it \ 4// 

(v-ct)2\, r ° exp \ —— ) dv + j exp 
Ant 

(v + ct)2 

Apt dv 

(21) 
A lower bound for (6) can be obtained by noting that 

„2 

(20)' Cx+V v 
Jx u0(y)dy+—< 1 

cv + — 
It i fv^O 

cv+ — if v < 0 . 
It 

The lower bound for (6) is then 

y/4~njui \ W L J O 4fit r. %xp/_<i±£0!dvU f expf_(^iO!lrfv 
Ant 

< i 
C\1tt 

(c2t 

i f c , i ) l / 2 > I 

exp {-J [I -OKD] * ' ( £ ) % I-
The upper and lower bounds (21) and (22) for (6) together with the relations (4) 
and (5) imply that for a bounded initial condition w0( •) the results already 
obtained for R -* oo but with ji and t fixed are still valid when R -» oo, JLL 10 and 
t is bounded. 
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