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1. Introduction. Let F(X) = {Fik(\); j , k = 1, • • • , s} be an s X s matrix-
valued function of bounded variation on [•— w, ir]. By this we mean that every 
complex-valued element Fik(\) is of bounded variation. Further, let every 
difference F(\t) — F(k2) be Hermitian. It will be convenient and in no way less 
general to take F(-~ir) = 0, the null matrix. Let 

(1) rk(dF) - ~ f eikX dF{\)} k = 0, ± 1, • • ■ , 

be the sequence of Fourier-Stieltjes coefficients of F. The sequence rk(dF) is a 
sequence of s X s matrices. Let the Hermitian matrix 

(2) Rn(dF) = {r^k(dF);j} k = 1, - < • , n) 
be the ns X ns block Toeplitz matrix generated by dF. Since F is of bounded 
variation, its derivative 

(3) /(A) = ^ 

exists almost everywhere and is Hermitian. Let /^(A) ^ ^2(X) ;S • • • S M«00 
be the eigenvalues of /(A) in order of magnitude. The functions M* (X), j = 1, • • • , s, 
are measurable (see GYIRES [3]). Let ju*,n , j = 1, • • • , ns, be the eigenvalues of 
Rn{dF) and JV»(aO the number of eigenvalues of Rn(dF) less than or equal to x. 
We show that 

(4) lim ^ ^ = ~ 1 : m{\ | M,(X) ^ *} 
?IS Z7TS ,-„! 

at every point of continuity of the right hand side, where m is Lebesgue measure 
on [■—7r, 7r]. The case of Toeplitz matrices arises when s = 1 and was treated by 
SZEGO and GRENANDER & SZEGO (see [2]). The result obtained in this paper is a 
generalization of that given by GYIRES [3] and ROSENBLATT [6] for block Toeplitz 
matrices. 

* The results presented in this paper were obtained in the course of research carried out 
under grant NSF-G19046 of the National Science Foundation. 
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A crude upper bound is obtained for the maximal eigenvalue of Toeplitz 
matrices generated by an absolutely continuous F. This upper bound is used to 
obtain a result on the asymptotic distribution of covariance estimates of normal 
stationary processes. 

2. Nondecreasing F(\). We first prove the result on the asymptotic 
distribution of eigenvalues of block Toeplitz forms in the case of nondecreasing 
F(k). The function F(\) is said to be nondecreasing if F(\i) — F(k2) is a positive 
definite matrix whenever Xi ^ X2 . 

Lemma 1. Let F(X) be an s X s nondecreasing matrix-valued function of 
bounded variation on [—-ir, x]. The limiting distribution of the eigenvalues of the 
block Toeplitz matrix Rn(dF) as n —» o° is given by 

(5) ^ E m{\ | Ml(X) ^x}. 

Let Gn(x) be the distribution function of the eigenvalues of Rn(dF), that is, 

(6) <?„(*) = ^ j j & . 

We need only consider the distribution functions Gn(x) on [0, <»). Now 

(7) f x dGn(x) = ± £ /i,-,n = ^• sp (Rn(dF)) = ^ sp (r0(dF)) 

where sp (M) denotes the trace of the matrix M. Notice that 

(8) y[l - Gn(y)] £ f * dGn(x) ^ ~sp (r0) = c, 

so that 

(9) 1 - GM S f-
y 

Consider any weak limit G(y) of a subsequence of the sequence Gn(y). Clearly 
any such limit must also satisfy 

(10) 1 - G(y) ^ * 

and hence is a distribution function. Let z be a nonnegative number. The basic 
result on the determinant of the prediction error covariance matrix in the 
multidimensional prediction problem tells us that 

-j ns /»oo 

— Y, log (1 + zni>n) = / log (1 + zx) dGn{x) 
ns 3==i Jo 

(ii) 

~* i /.',log det {I+2/(x)) dx = i S /_'r log (1+^(x)) dx 
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as n —•> a> (see [5] and [6]). On integrating by parts we see that 

[ log (1 + zx) dGn(x) = log (1 + zx)(Gn(x) - 1) |" 
(12) Jo 

+ /„" I T S <x " GM) dx = /." IT^(1 " G-«"» *• 
Relations (11) and (12) imply that for any weak limit G(y) of a subsequence of 
Gn(y) 

(1 3) [ Y+Vx (1 " G{x)) dx^^sti f\ log (1 + *M/(X)) dX-
The distribution function (5) obviously satisfies (13). To complete the proof for 
nondecreasing F we only have to show that 0 is uniquely determined by the 
transform (13). Consider the uniqueness problem for the transform 

(14) f~j^H(z)dx, z^O, 

where H is of bounded variation and satisfies \H(x)\ S k/(l + x) for some 
constant k. This is equivalent to the uniqueness problem for the Stieltjes 
transform 

(15) f^^xH{x)dx} z>0. 

A proof of uniqueness is easily given. Suppose 

(16) f~7^H(>x)dxEs0 

for all z > 0. Equation (16) can be rewritten as 

(17) [ e~zu [ e~xuH(x) dx du = 0, 

But this implies that 

(18) f e~xuH(x) dx S3 0. 
Jo 

It follows that H{x) = 0 almost everywhere. The proof of Lemma 1 is complete. 
It is readily seen that the conclusion of Lemma 1 holds for every F of bounded 

variation such that F(\) + a(X + TT)I is nondecreasing for some real value a. 
It similarly holds for every F of bounded variation such that F(k) + a(X + ir)I 
is nonincreasing for some real value a. 

3. General F. In this section it is shown that the conclusion of Lemma 
1 holds for general Hermitian F of bounded variation. The extension will depend 
on the following remarks. Given two n X n Hermitian matrices A, B with 
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A — B ^ 0 (difference positive definite), the eigenvalues A, and fif of A and £ 
respectively (assume the eigenvalues are indexed in order of magnitude) satisfy 
the corresponding inequalities, that is, 

(19) A, ^ & , j = 1, ••• ,n. 
This follows readily from the minimax property of eigenvalues (see HILBERT & 
COURANT [1]). 

Theorem 1. Let F(k) (F( —7r) = 0) be an SXS Hermitian matrix-valued 
junction of bounded variation on [—7r, IT}. The limiting distribution of the eigenvalues 
of the block Toeplitz matrix Rn(dF) as n —> » is jrwen fey 

2 ^ E m { A U ( A ) ^ * 1 -

We first prove the desired result for such a function F whose singular part is 
nondecreasing. Let /(A) = dF(k)/dk. The singular part of F is given by 
F(\) - f_T /(M) cfo. Let 

(20) £«== {A|/(A) + a / ^ 0 } , 
and Sa be the complement of Sa . The sets Sa are nondecreasing as a —» » and 
such that the Lebesgue measure m(Sa) —> 27r as a —» » . This follows from the 
fact that /(A) is integrable, that is, every element of / is integrable. Given any 
value A, let 

(21) f (X)= Z s|/u.„(X)|-7. 

Note that 

(22) /(X) ^ f(X) 
(.A î  J3 means that A — JS ^ 0). Inequality (22) is to be understood as holding 
almost everywhere where the elements of the matrices are finite and hence well 
defined. Let 

(23) F\X) = F(K) - [X m djx + t f GO <fo 

where 

(24) f (A) = i / (X) ° n Sa 

lf(A) on &. 

Because of (22) it follows that 

(25) Rn(dF) ^ Rn(dFa) 
for all a. Further, Rn(dFa) is nonincreasing as a —> » . Let G(w)(a;), G(

a
n)(x) be the 

distribution functions of the eigenvalues of Rn(dF) and Rn(dFa) respectively. 
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It then follows that 

(26) G(
a
n)(x) £ G(n\x) 

for all n, a, and x. The integrability of /(A), f+(X), inequality (25), and the fact 
that m(Sa) —> 0 as a —> <» imply that for every e > 0 there is an a(e) > 0 such 
that for a > a(e) 

0 ^ -sp(Rn(dFa) -Rn(dF)) 
(27) m 

f x d[Gln\x) - GM(x)] = [ [GM(x) - G?\x)] dx 
J— CO J — CO 

< 6 

independently of n. By the remarks at the end of section 2, it follows that 
G(

a
n)(x) has the limiting distribution 

(28) Ga(x) = ~ Z m{\ | „;(X) ^ *} 

as n —> oo where the /x"(X) are the eigenvalues of / a (X). Let H(x) be the limit of 
any subsequence of the functions GM(x). It follows that 

(29) Ga(x) ^ H(x) 
for all x and a. Inequality (29) implies that 

(30) 0 ^ [ [H(x) - Ga(x)} dx S e 
« / — 0 0 

for all a > a(e). The family of functions Ga(x) is nondecreasing at each x as 
a —»• <» and has as limit as a —» °° 

(31) G(x) = ^ g m{\ | M,(X) ^ x } . 

Thus 

(32) #(z) ^ (?(*) 

and 

(33) 0 g f [#(*) - (?(*)] cte ^ <= 
«/—oo 

for every €. But this implies that H(x) = G(x). Since this is true for the limit 
H(x) of any subsequence of G(n)(x), there is a limiting distribution which is 
given by G(x). The proof is complete for F with a nondecreasing singular part. 

We now complete the proof of Theorem 1 by showing that (5) is the asymptotic 
distribution of eigenvalues of Rn(dF) for a general Hermitian F of bounded 
variation. The singular part of F is 

(34) H{\) = F(X) - f f(fx) d» 
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where /(X) = dF(\)/dh. Let 

(35) H\\) = £ s T |dff„.,G0|.J. 
U,V-1 J — T 

Set 

(36) FX(X) = f /(M) dy. + J/+(X), F2(X) = t /(M) dM ~ #+(A)-
J —IT *J —TV 

Fx has a nondecreasing singular part H* and F2 a nonincreasing singular part 
-H+. Further, 

(37) RJflFO ^ Rn{dF) ^ Z 4 W 
for all n. Since RnidFx), Rn{dF2) have the same asymptotic eigenvalue distribu
tion (5) by the result on the asymptotic distribution of eigenvalues for a function 
with a nondecreasing singular part given in the last paragraph, it follows from 
(37) that Rn(dF) has the asymptotic eigenvalue distribution (5). 

4. Asymptotic distribution of covariance estimates. It will be useful to 
have an upper bound on the maximal eigenvalue of the ordinary Toeplitz matrix 
Rnif) generated by a nonnegative function / £ L2 in our derivation of the asymp
totic distribution of the covariance estimates of a normal stationary process. 
There are refined estimates of Xn,n when / is a bounded function satisfying certain 
regularity conditions (see [2]). However, we wish to allow / to be unbounded. Let 

G(x) = ^m{A| / (A) Sx}. 

Lemma 2. The maximal eigenvalue XWf„ of the Toeplitz matrix Rn(f) generated 
by f zL is bounded above by 

(38) n [ xdG(x) 
Jb(n) 

where b(n) is the supremum of the values a such that 1 — G(a) > 1/n. If f t L2, 
this upper bound is of smaller order than n* as n —> <». 

The eigenvalue Xn,n is the maximal value attained by the quadratic form 
cRncf with c an n-vector subject to the restraint ccf = 1. But 

(39) cRnc' = ^ / ' |cn(ea)|2 /(A) dk, cn(ea) = ]£ c/a 

and the absolute maximum of \cn(ea)\2 subject to the restraint ccf = 1 is n. Let 

(40) & = { A | / ( X ) ^ z } . 

We certainly overestimate XWfW by replacing |cn(e*x)|2 by a function equal to n 
on the set $6(w) . Now 
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ir™ \ ffr)d\ = n [ xdGix). 

If / e L2 then J x2 dG(x) < °° and by the Sehwarz inequality 

n xdG(x) ^n\ dG(x) x2 dG(x) = o(n1/2). 

An upper bound for the maximal eigenvalue of a block Toeplitz matrix can be 
obtained by similar techniques. 

We now consider the asymptotic distribution of the estimates 
1 N-\k\ 

(41) rt = ^ J2 XiXj+k , k = 0, 1, • • • , s, 
i V j = i 

of the covariances rk , k = 0, 1, • • • , s, of a normal stationary process {X*}. 

Theorem 2. Let {Xk ; & = 0, ± 1 , • • •} be a normal stationary process with 
mean E I j = 0 and covariances 

(42) rk = cov (X, , Xy+/C) = ~ f eik*f(\) dX fc = 0, ± 1, • • • , 

M ! / e L2. Then 

(43) ViV (rt - E r | ) , Jfc = 0, 1, • • • , «, 
are asymptotically jointly normally distributed with mean zero and covariances 

1 fT 

(44) c,f k = - / cos jX cos &X /2(X) dX; j , fc = 0, 1, • • • , s. 

The joint characteristic function of the random variables (43) is 

E (exp | E ih{r% - E r%) VNj) 

= exp { - ± ihVNE r*]^1'2" \RN\~1/2 

(45) l k=0 } 

• / ••• / exp {ixTNx'/V~N - fraR^V} (fo 

= |J - 2iR*2V V t f |~1/2 exp { - E i4 V iV E r*J 

where a; is a row iV-vector, 22̂  = RN(1), and 2V = {tith ; ;, fc = 1, • • • , iV} is 
the Toeplitz matrix with £it< == f0 9 tifi+h = | 2m if 0 < k ^ s, and all other 
elements zero. Now expression (45) can be written as 

exp | - i £ [log (1 - 2ipi%N/VN) + 2 *7W VFj j 

where the JK,-,*- are the eigenvalues of R^TNR1^2. Here i ? | is the positive definite 
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square root of RN . However, 

liUN = OCmaxo^ E I*/1); 
i i 

where the aJtN are the eigenvalues of R^. By Lemma 2 the eigenvalues of RN 
are o{Nh) uniformly in j so that /*/,#/ ViV = o(l) uniformly in j . Therefore (45) 
can be given as 

(46) exp { - sp {RNTNf/N + o( E |M,^ |V^ 3 / 2 )} . 

But 

(47) E k ,* | 3 ^ ( E M2,* E M/^)1/2 = fe {RNTN)2 sp (I^7V)4]1/2. 
Furthermore 

(48) 0 S sp ( l ^ ) 2 * ^ sp (M„)2*, fc = 1, 2, • • • , 

where MN is the N X N Toeplitz matrix with elements 
mi-i = E |*W-„|-K|. 

Notice that MN is generated by a real-valued function g t L2 since m* = ra__* 
and E k*l* < °°. The fact that E ™>l < °° implies that sp (M^) = 0(iV). 
Since g e L2, Lemma 2 indicates that the eigenvalues iqJtN of MN are all uniformly 
o(Nh). But then 

(49) sp (MNy = E HJ.IT = o(N) sp (ilf„)2 - o(2V2). 

This implies that 

(50) t k.*|3/tfs/2 = o(l) 
j - 1 

as N —> oo. A simple computation indicates that 

(51) 

1 5 1 
lim-^sp (RNTN)2 = L̂r 1(1 + */,o)(l + **.o)*m*i*i 77~ 

where c,,& is given by (44). The proof of asymptotic normality is complete by the 
correspondence between characteristic functions and distribution functions, for 
the limit of (45) as N —> °° 

exps — | E c,-,ktjtk\ 

is the characteristic function of s + 1 jointly normal random variables with 
mean zero and covariances citk . 

Some results related to Theorem 2 are discussed in [4]. Relatively simple 
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examples can be constructed to show that one need no longer have asymptotic 
normality if / 4 L2 (see [7]). In fact, given any p with 1 ^ p < 2 one can construct 
an / c U but not in L2 such that one does not have asymptotic normality of the 
covariance estimates. 
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