MURRAY ROSENBLATT’S CONTRIBUTIONS TO STRONG MIXING

By Richard C. Bradley

1. Introduction. Murray Rosenblatt’s research has contributed much to the field of
“strong mixing conditions,” (i) by providing many results of his own in that field, and
(ii) by inspiring a vast amount of research in that field by other people. This note will give
just a small snapshot of (i) and an even smaller snapshot of (ii).

Within the broader field of probability theory, the field of “strong mixing conditions”
seemed to “take off” with the publication in 1956 of the paper of Rosenblatt [17] titled
“A central limit theorem and a strong mixing condition.” Before that, weaker notions
of “mixing” had been studied by Eberhard Hopf [9] and others in ergodic theory; and
“strong” forms of “mixing” had been implicitly present in the work of Doeblin [4] involv-
ing what is now known as “Doeblin’s condition” for Markov chains, and also in Doeblin’s
[5] work on continued fractions (see Tosifescu [13] for details on this latter work). But it was
Rosenblatt’s [17] paper — which introduced the “strong mixing” (“c-mixing”) condition,
showed how it “coordinated” well with a Bernstein-type blocking scheme and produced a
central limit theorem under that condition — that really seemed to light a spark and lead
to the development of “strong mixing conditions” as a field of its own. In particular, the
1956 paper inspired a considerable number of papers by other researchers in which variants
of “strong mixing conditions” were proposed and used in various types of limit theorems.
Those papers include, among many others, Ibragimov [10, 11], Kolmogorov and Rozanov
[14], and Cogburn [2]. Subsequently, the field of “strong mixing conditions” exploded into
an active and vibrant area of research.

Strong mixing conditions and the associated central limit theorems have enjoyed broad
appeal beyond probability and into the mainstream statistics community. Applications of
strong mixing include applications as diverse as block or stationary bootstrapping of time
series (see e.g., Politis and Romano [16]); inference for linear time series; and parametric
and nonparametric inference for nonlinear time series (see e.g., Fan and Yao [7]). Strong
mixing is often the key tool for establishing asymptotic normality of various estimators of
complicated time series models. In particular, inference for popular financial time series
models such as GARCH and stochastic volatility models, often rely on the process being
strongly mixing.

A short note such as this on Rosenblatt’s work on strong mixing conditions cannot
do justice to all of his own contributions to this field, and it cannot even begin to touch
on the many key advances in this field that have been made by others. For details on the
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history of the development of the field, see e.g. [6] or the series [1]. This article will pro-
vide a sampling of just a few of the many contributions that Rosenblatt has made to this
field, with a couple of examples of their direct inspiration of subsequent research by others.

To set the table for the discussion to follow, the rest of Section 1 here will be devoted
to the definition of strong mixing and two other mixing conditions.

Suppose (2, F, P) is a probability space. For any two o-fields A and B C F, define
the following three measures of dependence:

a(A,B):= sup |P(ANB)— P(A)P(B)|, (1.1)
AcA,BeB

(A, B) := sup |P(B|A) — P(B)|, and (1.2)
A€A,BeB,P(A)>0

p(A, B) = sup [Corr(f, 9| (1.3)

where this last supremum is taken over all pairs of square-integrable random variables f
and g such that f is A-measurable and g is B-measurable.

Now suppose X := (X, k € Z) is a strictly stationary sequence of random variables
on our given probability space (2, F, P). For each positive integer n, define the following
three dependence coeflicients:

an) = a(o(Xk, k <0),0(Xg, k >n)), (1.4)
o(n) := ¢(o(Xp, k <0),0(Xi, k>n)), and (1.5)
p(n) = plo(Xi, k <0),0(Xg, k>n)). (1.6)

Here and below, the notation o(...) means the o-field of events generated by (...). The
(strictly stationary) sequence X is said to be “strongly mixing” (or “a-mixing”) if a(n) — 0
as n — 00, “¢p-mixing” if p(n) — 0 as n — oo, and “p-mixing” if p(n) — 0 as n — oo.
The “strong mixing” (“a-mixing”) condition is the one that was introduced and used in a
central limit theorem in the 1956 paper of Rosenblatt [17]. The “¢-mixing” condition was
introduced by Ibragimov [10] and was studied by both Cogburn [2] and Ibragimov [11]. The
“p-mixing” condition was introduced by Kolmogorov and Rozanov [14]. (The “maximal
correlation coefficient” defined in (1.3) had been studied earlier in statistical contexts that
did not involve “random sequences.”) It is well known that ¢-mixing implies p-mixing,
that p-mixing implies strong mixing (a-mixing), and that the converses of both of those
statements are false. For a formulation of other classic strong mixing conditions and their
connections with the ones here, see e.g. [6] or [1, V1, Chapters 3 and 5].

2. Markov chains. An ongoing theme of research by many people is the question of
what strong mixing properties are satisfied by random sequences with various other spe-
cific types of dependence structure. The books by Rosenblatt [20, 24, 26] gave (along with
much other material) a treatment of different facets of this general question. In particular,



strong mixing conditions for strictly stationary Markov chains (with, say, state space R)
has been a topic of much research by Rosenblatt. A small selection of specific contributions
of his on this topic will be briefly reviewed here.

Strong mixing conditions for Markov chains are treated extensively in Chapter 7 of
Rosenblatt’s 1971 book [20] on Markov processes. Along with much other information,
that chapter gave what were, to the best of my knowledge, (1) the first known examples
of strictly stationary Markov chains that are ¢-mixing in the “usual” direction of time but
fail to be ¢-mixing in the “reversed” direction of time, and (2) the first known examples
of strictly stationary p-mixing Markov chains such that for every positive integer n, the
n-step (conditional) transition probability distributions are almost surely singular with
respect to the marginal distribution.

Central limit theory under the p-mixing condition apparently started with central
limit theorems of Rosenblatt [19] [20, Chapter 7] for square-integrable “instantaneous”
functions of strictly stationary p-mixing Markov chains, and also with his paper [18] giv-
ing central limit theorems for some kernel-type estimators of marginal probability density
for p-mixing Markov chains with an absolutely continuous marginal distribution. Shortly
thereafter, the development of central limit theory for general (not necessarily Markovian)
strictly stationary p-mixing sequences was promoted by Ibragimov [12]. (For more on that
theory, see e.g. [1, V1, Chapter 11].)

In [18] and [20, Chapter 7], Rosenblatt used the Riesz Convexity (Interpolation) The-
orem to prove the equivalence of a class of mixing conditions (including p-mixing) for
Markov chains. That was apparently the first use of “interpolation theorems” of that type
for comparison of different mixing conditions. This work subsequently inspired a more ex-
tensive use (not restricted to Markov chains) of various interpolation theorems to establish
“covariance” and “cumulant” inequalities under various strong mixing conditions, and to
compare different measures of dependence on which strong mixing conditions are based.
For some of the main results and history of that later development, see [1, V1, Chapter 4],
including the notes at the end of that chapter.

In [23], Rosenblatt showed that (in essence) an ultra-strong version of a “Markov reg-
ularity condition” that had been used in various papers, could not be satisfied by strictly
stationary Markov chains other than the i.i.d. sequences. Around the same time, Rosen-
blatt conjectured to me that this condition could not be satisfied by any strictly stationary
sequences, Markovian or not, except the i.i.d. sequences. Shortly thereafter, I was able to
confirm the conjecture. For a detailed exposition, see [1, V2, Theorem 24.2].

3. A little known contribution. A remarkable paper of Rosenblatt [21] contains some
ingenious fundamental insights in connection with the strong mixing condition for Markov
chains. Unfortunately, this paper seems to have been practically unknown for at least
thirty years after its publication. In this section, the content and the connections of this
paper with the work of other researchers will be reviewed in some detail.



It will be useful to first formulate a classic result of Doeblin [4] (just the “aperiodic”
case) involving what is now known as “Doeblin’s condition” for Markov chains. It is well
known that Doeblin’s result can be reformulated in a different but equivalent way in terms
of the ¢-mixing condition (which was defined a couple of decades later), as follows:

Theorem 3.1 (Docblin (reformulated)). Suppose X := (Xy,k € Z) is a strictly
stationary Markov chain which is ergodic, aperiodic, and satisfies ¢p(n) < 1 for somen > 1.
Then ¢(n) — 0 (at least exponentially fast) as n — oco.

We shall return to this theorem below, after picking up some other threads.

For strictly stationary random sequences, Cogburn [2] introduced, under the name
“uniform ergodicity,” a “Cesaro” variant of the strong mixing condition, and (along with
other results) proved a central limit theorem involving this condition. The uniform ergod-
icity condition need not be formally defined here. Now (for strictly stationary sequences)
strong mixing implies uniform ergodicity, and uniform ergodicity implies ergodicity. A
natural question, pertinent to the development of limit theory for strictly stationary se-
quences, is how much weaker uniform ergodicity is than strong mixing. Rosenblatt [21]
examined this question and proved the following result involving Markov chains:

Theorem 3.2 (Rosenblatt). Suppose X := (X, k € Z) is a strictly stationary Markov
chain which is “mixing” (in the ergodic-theoretic sense) and satisfies uniform ergodicity;
then a(n) — 0 as n — oo (strong mixing).

In the same paper, Rosenblatt [21] also suggested that this result might still hold for
general strictly stationary sequences (i.e., without the Markov assumption). That now
seems to be an open question, with (so far) no decisive evidence either way.

Formally, Theorem 3.2 was the “goal” of Rosenblatt’s [21] paper. However, the var-
ious arguments in this paper contained further peculiar and ingenious insights that have
remained little known. In particular, Rosenblatt showed that if X := (Xy, k € Z) is a
strictly stationary Markov chain that fails to satisfy strong mixing, then there exists a
number g € (0,1) such that the following condition holds: For every positive integer N
and every 6 > 0, there exist events G € o(Xy,k < 0) and H € o(Xg,k > N) such that
q—0 < P(H) < g+ 6 and P(GAH) < 6. (Here A denotes symmetric difference. Ob-
viously, adjusting the parameters a little, one can have ¢ — 0 < P(G) < ¢ + 0 as well.)
Rosenblatt also showed that this condition holds for every ¢ € (0, 1) under the additional
assumption of a trivial (past or) future “tail o-field.” Combining this fact with ¢ = 1/2
and other arguments in Rosenblatt’s [21] paper, implicitly yields the following theorem:

Theorem 3.3 (Rosenblatt). Suppose X := (X, k € Z) is a strictly stationary Markov
chain which is ergodic, aperiodic, and satisfies a(n) < 1/4 for somen > 1. Then a(n) — 0
as n — oo.



Now for any two o-fields .4 and B, one has by trivial arguments that «(A,B) < 1/4
and ¢(A, B) < 1. Hence for a given strictly stationary sequence (Markovian or not), one
has that a(n) < 1/4 and ¢(n) < 1 for every positive integer n. Thus Theorem 3.3 is a
nearly exact analog, for strong mixing, of Doeblin’s result (transcribed to “¢-mixing”) in
Theorem 3.1. The only significant difference is that in the context of Theorem 3.1, the
mixing rate has to be (at least as fast as) exponential, whereas in Theorem 3.3, the mixing
rate need not be exponential (as was shown, for example, for the Markov chains studied by
Davydov [3]). Yet while Theorem 3.1 receives frequent attention in the literature, Theorem
3.3 was apparently “absent from the radar screen” for three decades after the publication
of [21].

For a detailed exposition of the material in Rosenblatt’s [21] paper (including The-
orems 3.2 and 3.3 and the other insights from that paper described here), see [1, V2,
Sections 21.25-21.28 and 24.17-24.22].

4. Strong mixing conditions and estimation problems for random fields.
At this point, we depart from Markov chains and turn to some contributions of Rosenblatt
involving more general random sequences as well as random fields.

As Richard Olshen explained to me about 30 years ago, a major motivation behind
Rosenblatt’s [17] paper and the subsequent development of the field of strong mixing con-
ditions, was to provide a way of proving limit theorems for use in statistical inference for
data from time series that seemed to be “weakly dependent” but did not necessarily seem
to “fit” more specific models of dependence such as Markov chains, martingales, Gaussian
sequences, or ARMA models. Since then, in that spirit, a vast amount of research has been
done by many researchers on statistical estimation of various kinds under strong mixing
conditions. The 1985 book of Rosenblatt [24] was a prominent treatise on this topic. Fur-
ther, much of that book gave a treatment of random fields (not just random sequences)
satisfying strong mixing conditions, an ongoing topic of research of Rosenblatt and many
others. We shall return to that book after providing some background information.

Suppose d is a positive integer, and X := (X, k € Z%) is a strictly stationary random
field. For a given positive integer n, define

a*(n) :==supa(o(Xp, k € A),0(Xk, k € B)), (4.1)

where the supremum is taken over all pairs of nonempty, disjoint sets A, B ¢ Z% such that

dist(A4,B) := min |la —b|| > n. (4.2)
acAbeEB
Here, for a given k € Z4, ||k|| denotes the Euclidean norm of k. The (strictly stationary)
random field X will be said to be “a*-mixing” if a*(n) — 0 as n — oc.

In the case d = 1 (the classic case of strictly stationary random sequences), a*-mixing
is a stronger condition than the strong mixing (a-mixing) condition (involving (1.4)), be-
cause in (4.1) the two index sets A and B are not restricted to “past” and “future” (as



in (1.4)); they can instead be “interlaced,” with each set having elements between ones in
the other set.

Extending well known arguments and results of Kolmogorov and Rozanov [14] in-
volving the usual strong mixing and p-mixing conditions in the case of stationary Gaus-
sian sequences, Rosenblatt [22] showed that for a given stationary Gaussian random field
X = (Xi, k € Z%), (i) the a*-mixing condition is equivalent to the corresponding “p*-
mixing” condition (defined using in the right hand side of (4.1) the maximal correlation
coefficient from (1.3)), and (ii) those equivalent conditions are satisfied if X has a contin-
uous positive spectral density function. (An exposition of those results was also given in
[24, pp. 73-77].)

Later, it became known that observation (i) holds for general (not necessarily Gaus-
sian) strictly stationary random fields X := (Xy, k € Z%). (See[1, V3, Theorem 29.12(I1)(A)]
for the result, its proof, and its history.) We shall continue to use the term “a*-mixing”
(instead of “p*-mixing”) in the discussion below. Of course in contrast, for random se-
quences (the case d = 1), the strong mixing (a-mixing) condition (based on (1.4), with
the two index sets being just “past” and “future”) is strictly weaker than the p-mixing

condition (based similarly on (1.6)).

(In a slightly different vein, the paper of Rosenblatt [22] also gave a central limit
theorem for random fields under “martingale-like” assumptions similar to those used by
Gordin [8] in a classic central limit theorem for random sequences.)

Now let us return to the 1985 book of Rosenblatt [24]. This book gives an exten-
sive treatment of various estimation problems for strictly stationary a-mixing random se-
quences X := (Xj, k € Z) and strictly stationary a*-mixing random fields X := (X, k €
Z?). The problems considered there include the estimation of (under appropriate as-
sumptions) autocovariances, spectral densities, higher-order spectral densities, marginal
probability densities, and regression functions. The book contains a wealth of results and
opened up a broad spectrum of new research problems.

In the formulation of most of the theorems in the 1985 book involving a-mixing or
a*-mixing, there is no assumption on the rate of convergence of a(n) or a*(n) to 0; in-
stead the “mixing rate” is allowed to be arbitrarily slow. To compensate, there typically
are assumptions on higher-order moments and/or higher-order cumulants. For example,
in a central limit theorem for some estimators of spectral density for strictly stationary
random fields, Rosenblatt [24, p. 157, Theorem 7] assumes (in addition to a*-mixing)
the summability of cumulant functions of the Xj’s up to order 8. Now the usual esti-
mators of spectral density (such as ones based on periodograms) involve quadratic forms
of the X}’s, and hence the natural basic moment assumption for a central limit theorem
for those estimators is EX{ < oo, in order for the quadratic forms to have finite second
moments. A couple of years after the publication of his book, Rosenblatt [25] posed the
problem of whether in theorems such as the one alluded to here, one could get by with



just the summability of cumulants of order 4 (instead of order 8), or even with just the as-
sumption of finite fourth moments (of course in addition to the assumption of a*-mixing).

In his 1994 Ph.D. thesis at Indiana University (see also [15, Theorem 2]), Curtis Miller
gave an affirmative answer to that question for a class of estimators that involve “blocks”
of the Xj’s. Miller’s result only assumes EX§ < oc; no assumption of moments of higher
than fourth order and no further assumption on covariances or cumulants are required.
(Miller formally used the “p*-mixing” condition, but under strict stationarity that condi-
tion is equivalent to o*-mixing as noted above.) The question is apparently still open for
other estimators of spectral density, such as ones that involve averaging the periodograms
over neighboring frequencies. Anyhow, this is just another particular example of the many
ways in which the work of Rosenblatt on strong mixing conditions has directly inspired
the research in the field by others, including young researchers.

Starting with his 1956 paper [17], Murray Rosenblatt has contributed a great deal
to the field of strong mixing conditions, and has helped establish it as an active field
of research. His work has directly inspired many contributions in that field by other re-
searchers. Strong mixing conditions continue to be an active field of research that has
important modeling and inference ramifications in a variety of applications.

Acknowledgement: My thanks go to Richard Davis, who made many helpful com-
ments and suggestions and provided the third paragraph of this article.
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