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Introduction. Limit properties of the convolution sequence of a regular 
measure on a compact topological semigroup are examined in this paper. Similar 
questions, as they arise in the case of a compact group, were examined byKAWADA 
& ITO [4], Recently BELLMAN [1] and GRENANDER [3] considered special limit 
theorems for products of independent identically distributed random operators. 
Such problems are closely related to those in this paper. It should be noted that 
similar questions arise when considering the structure of stationary stochastic 
processes [7]. Various results on compact semigroups are used in characterizing 
the class of limit measures [5], [6], [8]. 

Basic Concepts. Let S be a compact Hausdorff space. Take (B as the Borel 
field generated by the open sets of the topology. Further, let S be a topological semi
group. This means that there is a product for pairs of elements of S and that the 
product operation is continuous with respect to the given topology (see [5], [6]). 
Let (B X (B be the Borel field in the product space S X S generated by the 
Borel field (B in the component spaces. The set 

(1) AB = {(x, y) \xyzB)z($>X($> 
if B 8 (B since it is true for open sets B. We can define the product measure 
v X M on (B X (B in the usual manner [2] and the convolution v * \x of two measures 
as 

(2) v * ix(B) - f cB{xy) d(v X **)((*, 2/)) 

for B z (B, where cB is the characteristic function of B. 
In Lemmas 1 and 2 some simple properties of a measure on a topological 

space are obtained. No use is made of the semigroup property. 

Lemma 1. Let v be a measure on a Borel field 9 of a topological space. Let $ 
be the collection of sets E z (B such that for any e > 0 there are open and closed sets 
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294 M. ROSENBLATT 

0, C such that 

(3) CQECO 

and 

(4) v(0 -E) <e, v(E - C) < e. 

Then ff is a monotone field. 
Consider any two sets Ex , E2 t $. Given any e > 0 there are open sets 0< 

and closed sets C< , 

(5) CtCEtCOt, * = 1,2, 
with 

(6) APt - Et) < h, v{E, - C<) < i«. 
But 

( 7 ) v{01 U02-E1U E2) ^ K(Oi - #i) U (02 - E2)) < e, 
v(E1 VJ E2 - Cx W C2) ^ viiE, - C,) VJ (#2 - C2)) < e. 

Thus ExKJ E2z JF. 
We now show that Ex — E2t $?. There is an open set Oi,2 and a closed set C2 

such that 

(8) El\JE2C01,2, C2CE2, 
with 

(9) KOi.a -ErU E2) < h, v(E2 - C2) < *e. 

Now Oi,2 — C2 is open and Ex — E2 C 0 l i 2 — C2 . Further, 

(10) 01)2 - C2 - ( ^ - #2) = (01>2 - # t W E2) \J (E2 - C2) 

and hence 

(11) v(0li2 - C2 - (Ex - E2)) < e. 
Note that the empty set 0 and the whole space B obviously belong to JF. One 
can reduce the problem of rinding an approximating closed set within Et — E2 
to the argument given above by complementation. Thus Ex — E2 t 3\ 

Now consider a monotone sequence of sets En c JF, En \ E. We shall show 
that E t 5. Let n be so large that v(E — En) < §e. There is then a closed set 
C C E» with v(En - C) < h- But then v(E - C) < e. Given each En there is 
an open set On , En C On , with v(On - En) < e/2B+1. Now 0 = \J On is open, 
E C VJ On , and 

(12) KO - £) £ *(U (0. - 1Q) < €. 
Thus 5 is a monotone field. 
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CONVOLUTION SEQUENCES OF MEASURES 2 9 5 

/ / v is a measure on the Borel field g and the monotone field $ of Lemma 1 is 
identical with S, we say that v is regular on g. 

Lemma 2. If v, ix are regular measures on (B, the product measure v X fx is 
regular on (B X (B. If the product measure v X \x is regular, the factor measures 
v, fx are regular. 

Clearly the product sets with projections on the factor spaces elements of (B 
have the property of Lemma 1. Therefore the cr-field (B X (B generated by these 
sets has this property. 

Conversely let v X M be regular and B e (B. Then there is a closed set C e 
<B X (B, C C B X O with v X /i (B X 0 - C) < e. Let C e (B X (B be the set 
of all points whose a: projection is the same as the x projection of some point 
of C. The set C is closed since f((x, y)) = x is continuous. Let the # projection 
of the set C be C" e (B. Then C" C 5 and 

(13) v{B - C") = y X /*(£ X 0 - CO ^ ? X fx(B X fi - C). 
Lemma 3. If v, \x are regular measures on (B, the convolution v * \x is regular 

{on (B). 

Let B e (B. Set 

(14) A* = {(«,K) laveJ?}. 
Now AB e (B X (B, and hence by the regularity of P X M there is a closed set 
C C AB with 

* X ix{AB - CO < €. 

Let 

(15) C = {s | 2 = xy for some pair (x, y) e C'}. 

It is clear that C C Ac C ^ B . Thus 

(16) v * M(B - C) = » X M(AB - Ac) < 6. 

Further, C is a closed set since it is the image of a continuous function on the 
closed set C . We can find an open set containing B with the desired properties 
by complementation. 

Let us now consider the family of regular probability measures 911 on the 
compact topological semigroup S. We shall say that the sequence of regular 
probability measures txn on S converges to a regular probability measure fx, /xn —»ju, if 

(17) / fd^-iffdv 

for every continuous function f on S. 
Since the continuous functions on a compact space are bounded, it is clear 

that it is enough to have convergence for continuous functions /, 0 ^ / ^ 1. 
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296 M. ROSENBLATT 

Let / be the closed unit interval [0, 1]. Consider the product space H / If where 
the coordinate spaces If are indexed by continuous functions /, 0 ^ / < 1, 
with the usual Tychonov topology [2]. H 7/ is a compact space since If is compact. 
Each measure M E 3TC can be considered as a point in J J If with component in 
the fh coordinate space / / = = / / dp. Let us consider a limit point c c H 7/ of 
the family of measures 9TL Clearly cf 2£ 0 for all / and c% = 1 (1 is the function 
/ « 1 ) . Further, given any two functions fx , /2 , 0 ^ jx , f2 , /i + U = 1? a n d 
any e > 0 there is a measure fi t M in the neighborhood 
(18) {C' | K - CA| < €, K ^ C/t| < 6, K + /2 - C / l + /2| < €}. 

But this implies that cfl+fa = cfl + cf% . Let cf = £(/). L(/) is a functional on 
the continuous functions /, 0 ;£ / ££ 1. We can similarly show that ca / = acf 
for a ^ 0 if 0 ^ a/, / ^ 1. Further, |c,| ^ ||/|| if 0 ^ / ^ 1 (absolute supremum 
norm). We now extend L to all continuous /. First suppose / ^ 0. Then there 
is a positive constant a such that 0 ^ af ^ 1. Let £(/) = L(af)/a. Thus L(/) 
is defined on all continuous nonnegative /. If / is not nonnegative, introduce 
/+ = max (0, /) and f = / — /+. Then /+, —f are nonnegative continuous 
functions. Let L(f) = L(f+) — 7,(—/"). L is linear on the continuous functions 
since L(af) = aL(f), L(fx + /2) = L(/,) + L(/2). L is positive, that is, L(/) ^ 0 
if / ^ 0. Further, L(j) S \\f\\ for / ^ 0. But then 

(19) | L ( / ) I = | L ( / + ) " L ( ~ r ) l ^ m a x (L(/+}> L ( ~ f ) ) 

^ m a x ( | | n i , H - r l l ) = 
for all continuous /, and thus ||L|| ^ 1. By the Riesz representation theorem [2] 
there is a regular probability measure M on S (since L(l) == 1) such that L(f) = 
/ / dp. Therefore c £ 9TC and 9fK, as a point set in J J 1/ , is closed. Thus 311 is 
compact. 

Lemma 4. The set of regular probability measures 3TTT on S is a compact set 
in II If • 

Now let us investigate the continuity of the convolution operation on the 
set of regular probability measures. First consider a continuous function f(x, y) 
on S X S. It is easy to see that the set of finite sums of products of continuous 
functions of the form 

(20) £ g^Hy) 
with g4(x), h{(y) continuous on S is an algebra of functions that separate points. 
For if (x, y) 4= (xf, yf) either x 4= xr or y #= y'. Suppose x =f= xf. Take a con
tinuous function g(x) that separates x, xf and let h(y) s= 1. Then g(x)h(y) = g(x) 
separates (x, y)} (a/, yr). Since S X S is compact, by the Stone-Weierstrass 
theorem any continuous function f(x, y) on S X S can be uniformly approxi
mated by a function of the form (20) with g{ , h{ continuous on S. We shall 
now prove Lemma 5. 
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CONVOLUTION SEQUENCES OF MEASURES 297 

Lemma 5. The convolution operation is continuous on the probability measures 
arc. 

It will be enough to show that the inverse image of a set in the subbasis for 
regular probability measures is open. Let us consider two probability measures 
v, ix t 9TL A subbasis neighborhood of v * fx is of the form 

(21) lc | J / d v * ft - C < e> 

where / is a continuous function, 0 ^ / :£= 1. Now 

(22) f i(x) d v * /*(») = f f(xy) d v X /*((*, v))> 

But / is a continuous function of (x, y), and hence there is an approximating 
function 

if 

(23) u(x, y) = £ gi(x)ht(y) 

with hi , gt continuous on S such that 

(24) \u(x, y) - f(x, y)\ < |e . 

Then 

(25) \J M%> V) - K%y)] dvX ti((x, y)) < ze. 

Let M < oo be such that [g^, \h{\ < M for all i. Consider the following neigh
borhoods of v, n respectively: 

(26) 
N(v) =rn\\j 9<b) dr)(x) - J 0<(x) dv(x) < S;i = 1, ••• ,NJ, 

< 8;i = 1, ••• ,N\-N(fi) = }v \ \ hi{x) di)(x) — I h{(x) dy,(x) 

If / e N(y), ix' e N(jx) then 

/ u(x, y) dvX n&x, y)) - / u(x, y) dv' X n'((x, y)) 
(27) | J J 

N I p 

^ E / 9i(x)ht(y)[d v X /*((«, V)) - dv' X ix'{(x, 2/))] 

and thus if 5 < e/4NM, 

^ 2N &M, 

(28) f fdv* n - f fdv' * ix' < €. 

The following theorem is an immediate consequence of the results obtained 
thus far. 
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Theorem I . The family of regular probability measures 9TI on S with the con
volution operation as a multiplicative operation is a compact Hausdorff topological 
semigroup. 

Limit Properties of Convolution Sequences. Let v be a regular probability 
measure on S. We shall now consider limit properties of the sequence of measures 
va) = v, J>(2) = v * *>, • • • , v{n+l) = vin) * v} • • • generated from v by convolution. 
A classical probability problem of this sort arises in considering the limit prop
erties of sums of independent, identically distributed random variables. The 
values taken on by the random variables (since they are numerical-valued) 
commute with each other. In our case, we are interested in limit properties of 
products of independent, identically distributed elements of a semigroup (possibly 
a semigroup of operators) and a non-abelian semigroup is of considerable interest 
to us. 

The notion of the spectrum of a regular measure v on S is of particular interest. 
The spectrum X(v) of a measure v e 91Z consists of the points s e S such that any 
open set 0 containing s has positive v measure. The spectrum is clearly a closed 
set. Given any two subsets A, B of the semigroup S let AB = {ss' \ s t A, s' t B}. 
Now the closure of the set of elements \Jn (2(*0)n is a closed semigroup and 
hence is compact. This is the relevant semigroup insofar as the sequence of 
convolutions vin) is concerned. Let us call this subsemigroup the semigroup 
generated by the spectrum of v. Since this semigroup is of importance in con-
sidering the limit properties of the sequence v(n), we shall take S = \<Jn (X(v))n 

(A is the closure of A). 
An element e of S is called an idempotent if e2 = e. Every compact Hausdorff 

semigroup has at least one idempotent [5], By a left (right) ideal of S we mean 
a nonvacuous subset L (R) of S such that SL C L (RS C. R).If M is both a 
left and right ideal of S, M is called a (two-sided) ideal of S. The minimal two-
sided ideal K of S exists and is given by K = f}e SeS [5]. The minimal ideal K 
is called the kernel of the semigroup S. K is closed and hence compact [5]. 

We shall say that M is a limit measure of the sequence v(n\ n = 1, 2, • • • , if 
there is a subsequence nk such that 

n = lim/w*\ 

Theorem 2. Let v be a regular probability measure on the compact Hausdorff 
semigroup S. Every limit measure /x of the sequence v(n) (v regular) has all its mass 
concentrated on the kernel of the semigroup generated by the spectrum of v. 

It is clear that we can take S = \J{*Z{v))n- Let k be an element of the kernel 
K of the semigroup generated by the spectrum of v. Let N(k) be any neighborhood 
of k. Then for m sufficiently large there are elements sx , • • • , sm t 2(*>) such that 
XIr=i S* £ N(k). By the continuity of the multiplicative operation there are 
neighborhoods N(s{) of s4 , i = 1, • • • , m, such that I l f - i #($<) C N(k). Let 
0 be any open set containing K. Then there must be a neighborhood of &, N(k), 
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CONVOLUTION SEQUENCES OF MEASURES 299 
such that SN(k), N(k)S C 0. For given any point s e S there are neighborhoods 
Nu(k)9 N28(k) of k and a neighborhood N(s) of s such that Nls(k)N(s), 
N(s)N2a(k) C 0 since SK - KS = X. Let #.(fc) - #lt(fc) H #2.(fc). Then 
N(s)N8(k), N,(k)N(s) C 0. The open sets N(s) cover $, and hence there are 
a finite number of &)% i = 1, • • • , n, such that the N{s)) cover $ (because of 
the compactness of S). N(k) = f \ Nail(k) is a neighborhood of k such that 
SN(k), N(k)S C 0. Given this neighborhood N(k) of & choose a finite number 
of elements $i , • • • , sw with corresponding neighborhoods iV(s*)> * = 1, • • • , m, 
such that HiT-i ^(s*) C N(k). Now consider the infinite product space of 
sequences (tx , 12 , • • •) of elements t{ of £ with product measure generated by v. 
Now v(N{Si)) > 0, i == 1, • • • , m. By the lemma of Borel-Cantelli there is at 
least one block of m successive elements from N(st), • • • , 2V(«m) respectively 
in any such sequence with measure one. Take n sufficiently large so that the 
measure of the set with a block of m such successive elements in truncated 
sequences of length n is greater than 1 — e. It then follows that v(n+1) (0) > 1 — e. 
But this implies that for any limit measure /* of the sequence v(n), M(0) = 1. 
However, this is true for any open set 0 containing K. Therefore p(K) = 1. 

Lemma 6. Let /((#, y)) be a continuous junction on S X S where S is a compact 
Hausdorff space. Then the family of functions fy(x) = f((x, y)) defined on S and 
indexed by y t S is eguicontinuous for all y t S. 

To say that the family {fy(x)} is equicontinuous is equivalent to stating that 
for any given e > 0 and any x e S there is a neighborhood N(x) of x such that 
for all x' z N(x) 
(29) |/,(*0 ~ /,(*)| < e 
independently of y. Suppose the family is not equicontinuous. Then for some 
e > 0 and some x t S there is no neighborhood N(x) of x such that 
\fy(x') — fy{x)\ < € for all x' z N(x) and all y. Index the neighborhoods Na of 
x by a. Given any neighborhood Na of x there is a point (xa , ya) z S X Sf 
xa z Na 9 such that \fya(xa) — fya(x)\ ^ e. The indices a are partially ordered 
if we set a ^ af when N«* QNa. Further, the indices are a directed set since 
any finite subset of them has an upper bound. Thus {xa} and {(xa , ya)) are 
generalized sequences of elements in S and S X S respectively [2]. Further, 
lim„ The generalized sequence (xa , ya) has a cluster (limit) point (x, y). 
But then \fv(x) — fy(x)\ = |0| = 0 ^ e > 0, a contradiction. 

Theorem 3. Let v be a regular probability measure on the compact Hausdorff 
semigroup S. There is then a unique limit measure of the averaged convolution 
sequence 

(30) M= l i m p l y " . 
n n p[ 

Further, 
(31) M * „ = „ * M = M

(2) = M# 

171 



300 M. ROSENBLATT 

Consider the regular probability measure v as an operator T on the family 
of continuous functions / on S} that is, 

(Tf)(x) = fj{xy)dv{y). 

The family of functions fy(x) = f(xy) is an equicontinuous family of functions 
by Lemma 6, and hence T maps the continuous functions into continuous func
tions. Consider iterates of the operator T, Tn, acting on /. Then 

(32) (Tnf)(x) = f (T^fiixy) dv{y) = f f(xy) dv{n\y). 

Let 

(33) r = ~ £ r. 
The sequence of functions (Tnf)(x) is an equicontinuous family of functions 
since fy(x) = f(xy) is equicontinuous. This implies that (Tnf)(x) is equicontinuous 
and hence {Tnj} is strongly compact (sequentially). Further, ||T|| = 1 and 
Tnf/n ~-» 0. Therefore Tn ~» T strongly where T is linear, 

(34) ||f|| = 1, TT = TT - T2 = f, 

and !f is positivity preserving. Hence there is a regular probability measure 
y such that 

(35) f Tf(x) dv{x) = f f(x) duix). 

But then 

(36) \ f fa) d( E ^"(s)) - / /(or) dM(x) 

for all continuous /, and hence (l/ri) 23?-1 ?(,) "~* J*. 

Limit Measures on the Kernel of the Semigroup. Consider limit measures 
of the kind discussed in Theorem 3. These measures are the idempotents in the 
semigroup of probability measures on S. For simplicity, we restrict ourselves 
to those measures v in this semigroup of measures whose spectrum generates S. 
By Theorem 2 the limit measure ju of (1/n) 23i ?(,) is concentrated on the kernel 
K of S. In Theorem 4 we shall show that the spectrum of a limit measure /x is K. 
The detailed structure of such measures will be examined in this section. 

However, we will require certain basic results on the structure of the kernel 
if of a compact Hausdorff semigroup. When studying K> it is natural to look 
at it with the relative topology, if is a completely simple semigroup, that is, 
KkK = K for all k z K and K has a minimal left and a minimal right ideal [8]. 
Every compact completely simple semigroup can be represented as the product 
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space T X X X Y of a compact topological group T and compact Hausdorff 
spaces X and Y where the multiplication is given by 

(37) (t, x} y)(t', z', yf) = (t<p(x, y')t', x> y y) 

with <p a continuous function on the product space X X Y into T [8]. We shall 
therefore identify K with such a space T X X X Y and the accompanying <p 
function. 

Theorem 4. Let S be a compact Hausdorff semigroup and v a regular measure 
on S whose spectrum generates S. The spectrum of the limit measure M = lim (1/n) 
£ l pU) is K, the kernel of S. 

Let k be any element of K. Let N(k) be a neighborhood of k. It is enough to 
show that p(N(k)) > 0. Any point k t K has the form k = (t, x, y). Let x = x(k), 
y — y(Jc) be the x, y coordinates of k. Further, let NXtV(k) be the collection of all 
points k (in K, of course) with x, y coordinates the same as those of points in 
N(k) r\ K. Take k' to be an element in the spectrum of fi. There is then a neigh
borhood Nx(k) such that 

(38) N1(k)kfN1(k) CNx,y(k). 
This follows from the continuity of the multiplicative operation. But then 
n(NXtV(k)) > 0 for any neighborhood N(k) of k. For 

(39) /*(#..,(*)) « / <*..,<»>(W3) dv^is,) d»(s2) dvin)(sz) 

and for some n 

(40) *(n)(A^(&)) > 0. 
Thus there is a point k" e NXfV(k) in the M spectrum. 

Given the neighborhood N(k) there is a point &' e i\T(fc) with a corresponding 
point fc" t Nx,y(k), x(k") = #(&'), y(k") = 2/(&')> that is, in the /x spectrum. 
There are then points k{', k'2f such that k['knkf

2> = kf. This implies that there 
are neighborhoods N(k['), N(k"), NQc'2') of k[f , &", k'2f such that 

(41) N{k[')N{k")N(V2') C W ) C N(k) 
by the continuity of the multiplicative operation and the structure of K, Then 
all of K is the spectrum of ju since 

(42) v™ * M * »(m) = /i. 
The proof is complete. 

Let us now consider a product measure p on K of the form 

(43) !z = xXaX(3 
where x is the normed Haar measure (x(T) == 1) of the compact topological 
group T and a and # are regular probability measures on X, Y respectively. 
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We shall show that such a measure is an idempotent on K. First consider a 
set G t (B which is a product set, that is, G = A X B X C where A, B, C are 
sets of the Borel fields on T, X, Y respectively. Let $~XG = {$' | ss' t G}. But 

(44) p(2\G) « f p(s^G)p (ds) » [ pis'^Pids). 

Now 

(45) Afr-1©) - £ £ x(Mx(s), y")TlA) da(x') dfi{y") - x(A)a(B) 

by the invariance of Haar measure. Thus 

(46) p(2\G) - f x(A)«(B)/i (da) = x(A)a(B)p{0 = /z(G). 

Since Pm(G) = /z((?) for all product sets, the relation holds for all G in the field 
of finite sums of product sets and hence for all G in the Borel field (B generated 
by these sets. 

Lemma 7. Let K be a completely simple compact semigroup. Any measure p 
of the form (43) is an idempotent measure on K. 

We shall now show that for a fairly wide class of completely simple compact 
semigroups, the p measures are the only idempotent measures. 

Theorem 5. Let K be a completely simple compact semigroup with the function 
<p(x, y) of the form <p(x, y) = <pi(x)<p2(y). Then every idempotent measure fx with 
spectrum the whole semigroup is a p measure. 

Assume that the function <p(x, y) = <Pi(x)<p2{y). Introduce the following function 
\p of k = (t, x, y): 

(47) f(k) - ftCidtoOc). 

Now \f/(k) is a continuous function of h since <p is. Suppose M is an idempotent 
measure on K with its spectrum K. Let v be the derived measure 

(48) v{A) = M(*(fc) e A) 

on the compact group T. Here A is an element of the Borel field on T. Since 
M is an idempotent measure on 2£, it follows that v is an idempotent measure on 
T [4]. The spectrum of v is the whole group T since the spectrum of M is the whole 
semigroup K. However, this implies that v is the normed Haar measure of T. Let 

/49x MA, C) = fi(k | Upx(x) zA,yt C)} 

v2(A, B) = fx(k | <p2(y)t t A, x z B). 
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Now if ju is an idempotent measure M(3> = i"> and hence 

(50) v(AXBXC) - f v2 (dt, B)v{rxAt)Vl (df, C) - *>2(-, £K( - , C>(ii) 

since *> is the Haar measure of Z\ Thus ju is a p measure. 
Corollary. If S is a compact Abelian Hausdorff semigroup, the kernel of S 

is an Abelian group. Any idempotent measure is concentrated on the kernel. If 
the spectrum of the measure is the kernel, it is the normed Haar measure of the kernel. 

This is almost an immediate consequence of Theorem 4. 
We shall now show that the result of Theorem 5 is true for a general finite 

completely simple semigroup. This makes one suspect that Theorem 5 very 
likely holds without the restriction on <p(x, y) = <pi(x)<p2(y). 

Theorem 6. Let K be a finite completely simple semigroup. Every idempotent 
measure \x with spectrum the whole semigroup is a p measure. 

Since M is idempotent 

(51) M(*0 = E Kk'k-'Mk) 
k 

where k'k'1 = {a | ak = k'\. Note that k'k'1 is the null set except when x(k) = 
x(k'). Thus 

(52) /iCfc"*;-1) = Yl^kf'k~1k'-1)^k'). 
k' 

But V'k'1 = {a | ak - k"}, k'^-'k''1 = {b \ bk'k = k"} = k'T"'1 where 
k'" = k'k, so that 

(53) Wk-1) = Y,n(k"k'~%(k'k-1). 
k' 

We can then regard ^{kk'"1) = p(k \ k') as the conditional probability of going 
from kf to k for a Markov chain with state space the states k. The measure fx 
assigns positive measure to each point k. Notice that there is an irreducible 
class of states for the Markov chain with transition probabilities ix{kk'~l) corre
sponding to each distinct x value. By the classical results on Markov chains 

(54) V{k\k')=\P{k) i f *M-*®> 
{ 0 otherwise. 

This tells us that 
(55) M(fc,/*/"1) = M( U ( r r V f e yT1, x, y")) 

X 

is independent of t', y' if x(k") — x(k'). But expression (55) is then independent 
of t", f, y'. Then 

(56) „(&') = Z nik'k-'Mk) = £ a(x,2/')M(s) = Kx',y'). 
x(.k')~x(.k) x{k)~x' 
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Thus 

(57) /*((•, x ' , y')) = E *»((•, *", vOMit, *', V)) = *V)W) 
x*' ,tty 

and 

(58) »((t, x , y)) = I a(x)b(y) 
71/ 

where n is the number of elements in the finite group T. 
Notice that if K contains exactly one minimal left (right) ideal, the idempotent 

measure /* is an r* (Z*) invariant measure in the sense of ROSEN [6]. 

A Special Class of Semigroups* In certain contexts it is of especial interest 
to determine whether the semigroup S is such that all elements of the kernel 
K are left (right) annihilators, that is, kS = k (Sk = k) for every k t K. This 
is of particular interest in certain structure problems for stationary processes 
(see [7]). We shall show that in this case not only do the averaged convolutions 
converge, but also the convolution sequence itself. 

Theorem 7. Let S be a compact Hausdorff semigroup with kS = k (Sk = k) 
for every k t K, the kernel of S. If the semigroup generated by the spectrum of the 
regular measure v on S is S, 

(59) lim vin) = M 
n—*co 

exists with M having K as its spectrum. 

Suppose kS = k for all k t K. Let 

(60) M = limiiyn. 

We shall show that n = lim„ v{n)'. Let N(k) be a neighborhood of k c K. For 
sufficiently large n vM(N(k)) > 0. Let KN = {k' e K \ ¥ e N(k)}. Take G C KH 
a closed set of points such that n(C) > n(KN) — e, e > 0. Given a point k' t C, 
there is a neighborhood N(k') of k' such that N(k')S C N(k). For, given each 
point s 2 S, there are neighborhoods N(s) of s and iV.(fc') of k' such that N,(k') 
N(s) C iV(fc). Since S is compact there are a finite number of points s< such that 
iV(s,-) cover S. Let #(&') = O #.,(&')• It is then clear that N(k')S C #(&)• 
Now \Jk,tC N(k')S C A (̂/c). Let N = U* £c #(&')• Then for some sufficiently 
large n, vM(N) > n(K„) - e. But then for all m > n 

(61) v'm\N{k)) = f vM(N(k)s-iym-n) (ds) ^ pM(N) > n(KN) - e. 

Thus 

(62) lim v(m\N(k)) ^ ix(N(k))* 
m—>co 
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This is not possible unless 

(63) limvim\N(k)) = n(N(k)). 
m-+a> 

Thus lim v = /z. The proof is essentially the same when Sk = k for every 
hzK. 

A very simple but interesting application of Theorem 7 can be given. Let v 
be a regular measure on the n X n probability matrices, that is, matrices with 
nonnegative elements and row sums one. Suppose the spectrum of v contains 
a matrix with identical rows. The assumption of Theorem 6 is then satisfied 
by the semigroup of matrices S generated by the spectrum of v. Thus lim vim) 

exists and is concentrated on the kernel K of S which consists of matrices with 
identical rows. Let ax, • • • , an, ]T) a{ = 1, be the random elements of the common 
row for the limit measure concentrated on the matrices of K. Then the charac
teristic function 

<pfa , • • • , zn-0 = E exp U Y, z^? 

( n - l I n-\ r n -1 "j N^ 

= E exp Y X) s»( Z) akVu + 1 " X) ak \PniJf 

(64) - Ej^E^exp U £ Zipni> exp U £ z1 £ (pki - pnj) \ pkjjjj 
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Addendum to 

"Limits of Convolution Sequences of Measures on a 
Compact Topological Semigroup"* 

M. ROSENBLATT 

It should be noted that in Theorem 5 the functions <pi(x), <p2(y) are assumed 
to be functions on X, Y respectively into the group T. 
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