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1, Summary. Let xn , n = 0, ± 1 , ±2 , • • • , be a strictly stationary process. 
Two closely related problems are posed with respect to the structure of strictly 
stationary processes. In the first problem we ask whether one can construct a 
random variable £„ = g(xn , xn~t , • • •)> & function of xn , xn„x, • • • , that is inde
pendent of the past, that is, independent of xn-x , £w_2 , • • • . Such a sequence 
of random variables {£n} is a sequence of independent and identically distributed 
random variables. Further, given such a construction, is xn a function of ?» , 
£n_i , • • • . Necessary and sufficient conditions for such a representation are ob
tained in the case where xn is a finite state Markov chain with the positive 
transition probabilities in any row of the transition probability matrix P = (ptJ) 
of xn distinct (Section 3). Such a representation is comparatively rare for a 
finite state Markov chain. In the second problem, the assumption that the 
independent and identically distributed £n's be functions of xn , xn-x , • • • is 
removed. We ask whether for some such family {£n} there is a process {yn}, 
yn = gr(£n f g n - 1 f . . . ) , with the same probability structure as {xn}. This is shown 
to be the case for every ergodic finite state Markov chain with nonperiodic 
states (Section 4). Sufficient conditions for such representations in the case of 
a general strictly stationary process are obtained in Section 5. 

2. Introduction. There are problems on the representation of strictly 
stationary processes that are motivated by certain results in the linear prediction 
problem and remarks of P. LEVY. 

In the linear prediction problem one considers a weakly stationary process 
Xn 9 n = 0, ± 1 , • • • , that is, a process xn with 

(1) Ea£ < » , Exnxm = rn_m , Ezn s 0. 
Under certain conditions on the spectrum of the process (the spectral distribution 
function F(K) absolutely continuous with log F'(\) integrable), the process xn 
can be represented as a one-sided weighted moving average of orthonormal 
random variables £n defined on the present and past of the process. More explicitly, 
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666 M. ROSENBLATT 

£n is an element of the closed linear manifold (closure in mean square) generated 
by xm , m S n, with 
(2) E& s 0, E ^ w = 5n,m 

and xn has a representation 
CO 

(3) xn = X) a*£n-* > X) a* < °° 

(see [1]). This suggests a corresponding representation problem with orthogonality 
replaced by independence and linear relationship by functional dependence. 

Before going on to present the problem, it should be noted that any state
ment made in the paper is to be understood modulo sets of measure zero, where 
the measure is the probability measure implicit in the problem at hand. Thus 
if £(•) is said to be measurable with respect to a Borel field of sets (B we under
stand that it is equal almost everywhere to a function strictly measurable with 
respect to (B. Further, two Borel fields (B, (B' will be said to be the same if given 
any set B e (B there is a set Bf t (B' with the measure of the symmetric difference 
of B and B' zero, and if (B' has the same property relative to (B. Clearly the two 
Borel fields are not the same strictly, but they are the same modulo sets of measure 
zero and that is of interest to us. 

Let xn , n = 0, ± 1 , • • • , be a strictly stationary process with T the corresponding 
one-step shift operator. (Bn is the Borel field of sets generated by 

Problem 1. (a) When can one find a random variable £0 measurable with 
respect to (B0 , independent of x-x , x~2 , • • • , and such that (B0 = (B_i X d0 
(product field) where ®0 is the Borel field generated by £0 ? 

(b) If (a) is satisfied, the random variables £rt = Tn%0 , n = 0, ± 1 , • • • , 
are a sequence of independent, identically distributed random variables. Let 
an be the Borel field generated by £n . Is xn measurable with respect to • • • X a»-i X 

A second problem is suggested by some remarks by P. LEVY [5]. Let xx,x2, 
be a sequence of random variables. Under rather broad conditions P. LEVY 
has shown that one can find a sequence of independent, uniformly distributed 
random variables & , £a, • • • and Borel functions yx = 0i(&), y2 = Q*(& > &), • • • 
of £i , £2 , • • • such that yt , y2 , • • • have the same probability structure as 
X\ , X2 , * • 

Problem 2. Let zn , n = 0, dbl, • • • be a strictly stationary process. Can 
one find a sequence of independent, uniformly distributed (on [0, 1]) random vari
ables £n , n = 0, ± 1 , • • • , and a Borel function g(£) = g(%0 , £-i , * • 0, £ = 
(••• , £-i , & , & , *-0, such that 
(4) y n = fl<n), w = 0, ± 1 , ± 2 , ••• , 
/tas </ie same probability structure as xn , n = 0, ± 1 , • • • ? Here T is the shift 
operator, that is, 
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STATIONARY PROCESSES 667 

Notice that g is a one-sided function of the sequence of random variables £n . 
If problem 1 is soluble, problem 2 is soluble. The converse is, however, not 

true. Notice that the solutions to these problems have nothing to do with the 
existence or nonexistence of moments of the process considered. They are prob
lems about the Borel fields (Bn generated by the process and the probability 
measure of the process on these fields. Let H (Bn be the Borel field of sets common 
to all the Borel fields (B„ , n = 0, ± 1 , • • • . 

Lemma 1. If problem 2 is soluble, the only functions measurable with respect 
to r\ (Rn are the constant functions. 

Consider any random variable z, E \z\ < <», measurable with respect to the 
Borel field generated by a stationary process {yn} for which problem 2 is soluble. 
We can assume that the random variables yn are bounded. Just consider any 
monotone one-one function h(-) mapping (— <», <») into (0, 1). The new process 
lVn}, yn = h(yn)9 is bounded and has the same Borel fields <Bn as {yn\. 

Since the random variables yn are bounded, given any fixed e > Owe can 
find a polynomial p(yn , • • • , yn-k) in an appropriately large but finite number 
of random variables yn , • • • , yn-.k such that 

(6) E |s - p| < €. 
Since the yn's are one-sided functions of the £„'s (independent and uniformly 
distributed [0, 1]), there is a Borel function g(£n , • • • , (■„_,) in £n , • • • , £„.., 
for j sufficiently large such that 

(7) E \q - p\ < 6. 
But then 

(8) E \z - q\ < 2e. 
Now 

(9) E(g|H(Bw) = ECfflfflJ - E(g|k , Zm-X , -•■) = Eg 
for m < n — j . But E(s | (Bm) —> E(s | C\ (B„) as ra —> — <» in absolute mean 
by a martingale convergence theorem [1], [6]. Further, 

(10) E |E(*|(Bm) - E(«|(Bm)| £ E \z - g| < 2e. 
This implies that 

(11) E(E(z(n$8n) - E ( z ) | <4e . 

Since this is true for every e > 0, E(z j H (Bn) = E(s) with probability one. 
Now consider any function w measurable with respect to C\ <B» . We can always 
assume that E |w| < «>, since otherwise one could find a one-one monotone 
function &(♦) such that z = h(w) has finite first moment. If z is a constant 
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668 M. ROSENBLATT 

almost everywhere so is w. But clearly z is a constant almost everywhere since 
E 0 | C\ (Rn) = Es. The proof is complete. 

It is an open question as to whether the converse of Lemma 1 is true. We 
shall look at this question in a few special but interesting cases. The necessary 
condition for the representation of problem 2 obtained in Lemma 1 is, of course, 
a necessary condition for the representation of problem 1. Let {xn\ be a strictly 
stationary process with the only functions measurable with respect to f~\ (Bn the 
constant functions. It is natural to call such processes purely nondeterministic 
processes. 

From this point on assume that the conditional probability distribution function 
of the process {xn}, 

(12) F(an\an-1 , aw_2 , • • • ) = Pfr» ^ a»K-i = aw_2 , %n-2 = an_2 , • • •], 
is a Borel measurable function of the real variables a» , an_i , * * * - Given this 
weak assumption, we shall look for conditions on the conditional probability 
distribution that imply that part (a) of problem 1 is satisfied. The following 
convenient notion of equivalence of two distribution functions F, G is introduced. 
F and G are equivalent if there is a one-one function mapping the jumps of F onto 
the jumps of G and preserving the size of the jumps. Notice that any two continuous 
distribution functions F, G are equivalent according to this definition. 

Lemma 2. There is a random variable Jn satisfying part (a) of problem 1 if 
and only if the distribution functions F(an | an_i , an_2 , • • •) (as functions of an) 
are equivalent for almost all an^ , an„2, • • • (with respect to the probability measure 
of the process {xn}). 

Since £n is independent of xn~x , xn~2 , • • • the conditional probability distribu
tion of £„ given #»_i , xn-2 , • • • is independent of a;n_i , &„_» , ♦ • • . Moreover, 
since (Bn = (Bn_2 X GLn the conditional probability distribution of %n given 
#w-i , xn-2 > - — must with probability one be equivalent to the conditional 
probability distribution of xn given #n_i, xn„2 9 ' • • • The probability distribution 
functions F(an | an~x , • • •) must therefore be equivalent for almost all an-x , 
an-2 } - - • • 

Conversely, assuming the equivalence of the distribution functions 
F(an | On.! , an_2, • • •) for almost all a»_i , an_2 , • • • we must show how to con
struct a random variable £n with the desired properties. If the distribution 
functions F(an | an_i , • • •) are continuous for almost all an_i , a«_2 , • • • there 
is no difficulty. Simply set 

(IS) | w = r (xn\Xn-i , Xn-.2 ? * * *)? 

and an argument of P. LEVY [5] indicates that £n is uniformly distributed [0, 1] 
and independent of #w_i , xn-2 , • • • . Further, 

(14) xn = F'\^n\xn^ , xn-2 , • • •) 
with probability one. Let us therefore consider what happens if the distribution 
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STATIONARY PROCESSES 669 

functions F(an | o».i , an_2 , • • •) have with probability one a discrete part. 
Let the jumps in the discrete part, ordered in terms of magnitude, be pt ^ 
p2 ^ • • • . For convenience assume there is strict inequality among the p4 . An 
obvious elaboration of the argument given in the case of strict inequality holds in 
the more general context with equality allowed. The magnitudes of the jumps 
Vi i V2 j •# • with probability one do not depend on an_i , an_2 , • • • because of 
the equivalence of the conditional probability distributions. Let A,- be the set 
of points 
(15) Af = \{an , an_x , • • ')\LF{an\an.x , • • • ) = vA 
where AF denotes the magnitude of the jump (if there is any) of the conditional 
distribution function at the argument indicated. We associate a set of integers 
S((an , an^ , • • •)) with every point (an , a*_i , • • •) % KJ Ai . The integer j e 
S((an , an_i , • • •)) if there is a set Ai and a point (a'n , an_x , an_2 , • • •) e Af 
with af

n < an . Of course, the set S((an , att_i , • • •)) m aY be the empty set. Set 

[j if (Xn , Xn-i , • • •) £ Ai 

n "" j F f e l ^ n - 1 , • • • ) — J2 Vi if fan , ^ n - 1 , • • ' ) t U i , - . 

Then fn is independent of a?n-i , xn_2 , • • • . The random variable £n is uniformly 
distributed on (0, 1 — X) Vi) with density function one and assumes the integral 
value j with probability p, ♦ Further, the construction indicates that xn is given 
with probability one by the knowledge of £n , #w_i , x„^2 , • • • • 

There is a case in which part (a) of problem 1 is satisfied trivially and yet 
there is no hope of having part (b) satisfied. Suppose F(an \ aw_i , • • •) is for 
almost all an_i , an_2 , • • • a pure jump function with a jump of size one. Then 
xn is determined with probability one given xn-x , xn„2 , • • • so that (Bn = 
(Bn.i = • • • for all ft. It is natural to call such a process a purely deterministic 
process. Such a process will satisfy the necessary condition of Lemma 1 only 
if the random variables xn are a constant c with probability one. Since we are 
interested in problems 1 and 2, the purely deterministic processes are to be 
avoided. 

3. Markov Chains and Problem 1. We shall not be able to obtain very broad 
results in the general context spoken of in Section 2. The discussion in the general 
context of strictly stationary processes is relegated to a later section (Section 5) 
because more detailed and enlightening results can be obtained for strictly 
stationary Markov chains with a finite number of states. 

Let {xn} be a strictly stationary Markov chain with transition probability 
matrix 
(17) P = (p„), pa = P[xn+l = j\xn = i], i, j = 1, 2, • • • , 
and stationary vector of probabilities 
(18) Pi - V[xn = *] > 0. 
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670 M. ROSENBLATT 

It is already clear from Lemma 2 that we shall not be able to construct a random 
variable £n measurable with respect to (Bn satisfying the conditions of part (a) 
of problem 1 unless the probability distributions {pi}- ; j = 1, 2, • • •} indexed 
by i are equivalent. An alternative way of stating this is as follows. Given 
any i, ip there is a permutation M (i, if) of the integers j such that 

(19) Pa = Pi>,M(i,i>)i 

for all j . Such Markov chains are admittedly rather special. Nonetheless they 
are interesting and give some insight into problem 1. We shall call such Markov 
chains uniform chains because the row probability distributions are the same 
except for permutation. Let the positive probability masses common to the 
distributions {pti , j = 1, 2, • * •} be qx ^ q2 ^ • • • > 0 in order of magnitude, 
22 Qi = 1- When the q^s are all distinct one can characterize the random variable 
£w simply. 

Lemma 3. If xn is a stationary uniform Markov chain with g/s distinct, £n 
is uniquely determined (up to a one-one transformation modulo sets of measure 
zero) and is of the form 

(20) £n = |(a;n , xn^) = k for (xn , xn^) such that pXn_t , Zn = qk . 
Without too much abuse of notation we can write £« = %(xn , xn^ , • • •). 

It is already clear that £ must take m distinct values (m ^ » the number of 
distinct q's) with probability one, and we label the values 1, 2, • • • for con
venience. Let the inverse function of £, as a function of xn for fixed xn-i, £n_2, • > • , 
be 7}(%y xn-i , xn^2 , • • •)• Since £„ is independent of z»_i , zn_2 , • • • 

= P[£« = i] = p.x ,vu,i1«.. •••) > o. 
But the g/s are distinct, and therefore for fixed ix , j the function rj(j, ix ,i2, • • •) 
must be independent of i2 , s3 , • • • . Thus ri(j, it ,i2 , • • •) = r?0*, ^) and hence 
%(xn , ajn_! , . • • )== £(#n , rcn-i). It is clear that £ must be constant on the set 

(22) {V,i)\Pn = «*}, 
and for convenience we set £ = fe on this set. Any other £ satisfying the con
ditions of part (a) of problem 1 must be a one-one function of this £. 

The random variable £n was seen to be essentially uniquely determined when 
the q^s are distinct. It is easy to see that it is not uniquely determined if the 
q/s are not distinct. For example, if the transition probability matrix is 

\a 

a 

J) 

a 

b 

a 

b 

a\ 

a\ 

(23) P = \a b a\ , a, b > 0, a 4= b, 

we can take 
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(24) %(Xn , %n-V — ) 

0 if (xn,xn-0 = (0,0), (0,1), (1,2) 

1 if (x. ,x._0 = (1,0), (2,1), (2, 2) 
2 otherwise 

or, alternatively, 

(25) £(#n j %n~l) — ] 

(2u) %\Xn , Xn-i , Xn-2J — 

[0 if ( ^ , ^ . 0 = (0,0), (2,1), (2, 2) 

1 if (xn,xn^) = (1,0), (0,1), (1,2) 

2 otherwise. 

In fact, £ need no longer be a function of only xn , xn-i , for one can take 

[0 if (xn , #„_! , xn-2) = (0, 0, 0), (1,0, 1), 

(0,0, 2), (0,1,0), (2, 1,1), (0 ,1 , 2), 

(1,2,0), (2, 2,1), (1,2, 2) 

1 if (XH , Xn-! , ZM_2) = (1, 0, 0), (0, 0, 1), 

(1,0, 2), (2, 1,0), (0, 1,1), (2, 1,2), 

(2, 2,0), (1,2,1), (2, 2, 2) 

,2 otherwise. 
Let us restrict ourselves to uniform Markov chains with distinct #/s and try 
to find out under what circumstances the answer to problem 1 is in the affirma
tive. We have already seen that a positive answer to problem 2, and hence 
to problem 1 (making use of Lemma 1), can be given only if all the functions 
measurable with respect to C\ <Bn are the constant functions. This means that 
the set of states of the Markov chain must be an irreducible closed set of ergodic 
(that is, nonperiodic) states [2], An interesting necessary and sufficient condition 
for a positive answer to problem 1 can be given in algebraic terms. 

Let Mk be the matrix 

(27) 
where 

(28) 

Mk - {6„(fc)| 

ea(k) = II if Vu = & 
[0 otherwise. 

Given the Markov chain \xn} there are m corresponding matrices Mk . Each 
matrix Mk has precisely one element equal to one in each row and all other 
elements zero. No two Mks have a one in the same entry. Every product of a 
finite number of the Jlf^s also has these properties. The family of matrices 
{Mk} corresponds to a family of mappings of the set of states of the process into 
the same set of states induced by the process {xn}. Consider the semigroup 
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672 M. ROSENBLATT 

(under multiplication) generated by the matrices Mk . This semigroup may or 
may not contain a matrix with a column of ones. If it does, we call the semigroup 
point collapsing. 

Theorem 1. Let {xn} be a finite state stationary uniform Markov chain with 
q{'s distinct. Let {Mk} he the family of mapping matrices generated by {xn}. The 
answer to problem 1 is positive if and only if the semigroup generated by {Mk} is 
point collapsing. 

First assume the semigroup generated by the family of matrices {Mk} is 
point collapsing. There is then a finite product Mkl • • • Mka of matrices of this 
family (with possible duplication) which has all the elements in the ith column 
one. Now the random variable %n satisfying the conditions of part (a) of problem 1 
is uniquely determined by Lemma 3 and is given by 

(29) £n = %{xn , xn-i) = k if eXn_ltXJk) = 1. 
Consider an event Ai of the form 

(30) Aj = {£,■ == fci , • • • , qj+a — ks \. 

If Ai occurs, it is clear that xi+8 ~ i with probability one. The events An„s , 
An_2. , • • • are independent, and hence by the lemma of Borel-Cantelli at least 
one of the events will occur with probability one. Thus at least one of the events 
Ai , j ^ n — s + 1, must occur with probability one. Let Th be the mapping 
induced by Mk , that is, Tki = j where j is the unique j such that e{i(k) = 1. 
We now construct a function g(£n , £n_! , • • •) such that xn = g(%n , £n_i , • • •) 
with probability one. Consider the sequences (• • • , £n_x , £n). Let S,- be the 
set of sequences (• • • , £n_i , £n) for which some A{ , i ^ n — s + 1, occurs 
and Ai is the A{ with largest index, i gg n — s + 1, that occurs. The sets 
Si , j ^ n — s + 1, are disjoint and P(VJ$3) = 0 (S denotes the complement 
of S) as already remarked above. Let 

(31) g& , ^ , • • • ) = \Ti" * ' ' r*'+,+1* lf ( ' *' ' L~' ' ^ ' Si 

[0 otherwise. 

It is then clear that xn = g(%n , ^n_i , •••) with probability one since 
(• • • , £»-i , £n) * &i ior some j i£ n — s + 1 with probability one. Thus the 
answer to problem 1 is positive. 

Now, on the contrary, assume that the semigroup generated by the family 
of matrices {Mk} is not point collapsing. Every matrix of the semigroup has 
a certain number of distinct columns containing a one as a column entry. The 
minimal number of distinct columns among all matrices of the semigroup is 
certainly greater than one (let us say r > 1) since the semigroup is not point 
collapsing. But this means that knowledge of all the i-Zs, i ^ n, can tell no 
more than that xn takes one of r distinct values. The answer to problem 1 must 
therefore be negative. 
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One might hope for a positive answer to problem 1 if there is a random variable 
£n satisfying part (a) of the problem and the necessary condition of Lemma 1 
is satisfied. However, by making use of Theorem 1 a large number of processes 
satisfying these conditions for which the answer to problem 1 is negative can be 
constructed. 

We give the simplest example exhibiting this interesting sort of pathology. 
Let {xn} be the strictly stationary Markov chain with the two states 1, 2, the 
stationary instantaneous distribution 

(32) P[x„ = 1] = T[xn = 2] — I 
~~ 2 

and transition probability matrix 

P = 
.2 V) 

0 < p , g = 1 — p < 1, p * g. 

Now 

(33) 

so that 

Mx = 

Sn SV^» ? %n—l) 

1 0 

0 1 
M, 0 1 

1 0 

fl if (aB_1 ,xn) = (1,1), (2, 2) 

12 otherwise 

is measurable with respect to (B„ and yet independent of Xn—i , Xn~2 j * * * • By 
Lemma 3 it is essentially the only random variable with these properties. Further, 
{xn} is purely nondeterministic. Nonetheless xn is not a function of £» , f»-i , 
since E(xn | £n , £n_! , - . - ) = Exn . 

One would like to give a neat characterization of the point collapsing semi
groups generated by the matrices {Mk) induced by a uniform Markov chain. 
This does not appear to be possible. However, one can easily sketch the details 
of a computational procedure that would determine whether or not such a 
semigroup is point collapsing. Let N < <*> be the number of states of the finite 
state uniform Markov chain {xn}. Let {Tk} be the family of mappings of the 
integers 1, • • • , N into the integers 1, • • • 9N determined by the matrices {iff*}. 
If the semigroup is point collapsing some Tk must map the N states onto iVi < N 
states. Given Nx states, consider the ensemble of all distinct iVVtuples (including 
the original one) that can be obtained from this iVi-tuple by applying a finite 
number of the Tk mappings. Some one of these iVVtuples must be collapsed 
further onto 2V2 < N% states by some Tk mapping if the semigroup is point 
collapsing. Continue in this manner until the original set of states is collapsed 
onto one state. If, at some stage in the construction, all the distinct iVVtuples 
(Ni > 1) obtained cannot be contracted, the semigroup is not point collapsing. 
If N is not small, this is admittedly a very tedious procedure. 
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4. Markov Chains and Problem 2. The answer to problem 1 is generally 
negative, even in the case of a finite state purely nondeterministic Markov chain. 
However, the answer to problem 2 for such Markov chains will be shown to be 
positive. The following theorem will be proved. 

Theorem 2. Let {xn} be a stationary purely nondeterministic Markov chain. 
Let there be an e > 0 and a finite number of states M such that 

(34) iLVii = Pi.M > € 
jzM 

for all L A representation of the type mentioned in problem 2 holds for such a process. 

Notice that this result holds for all ergodic finite state stationary Markov 
chains with nonperiodic states. Actually Theorem 2 is proved by enriching the 
probability space of the {xn) process in an appropriate way. 

Introduce the Markov process yn , 1 < yn < °°, with stationary probability 
density 

(35) p(y\y') = pa if yr t (i, i + 1], yt (j, j + 1], i, j = 1, 2, ••• , 
and stationary instantaneous probability distribution 

(36) P[yn t A] = £ pMAr\(i, i + 1]), 

where p{ = P[xn = %[. We shall construct a process on the probability space 
of the yn process with the same probability structure as that of the xn process. 
In spite of a possible abuse of notation we shall call this new process the xn 
process. The process xn can be taken as xn = g(yn) where g(y) = jifyt (j, j + 1] 
(see [7]). The probability space of the yn process is rich enough so that one can 
construct random variables an = G(yn | yn„0 independent of yn-i , yn-2 , • • • 
with an uniformly distributed on (0, 1). G(y \ y') is a Borel function of y, yf 

and is so constructed that, for fixed yn-x , G(yn | yn^) is with probability one a 
one-one function of yn . We can therefore write yn = G~1(an | yn-i). It will be 
convenient to introduce the associated family of transformations Ta , 0 < a < 1, 
where 

(37) Tay = G-\a\y). 

Notice that it is equivalent to give either G(y | yf) or the corresponding family 
of transformations {Ta} due to the essentially one-one character of G. Such a 
family of random variables an can be introduced, for example, by taking G{y \ yf) = 
F(y I V*) where F(y | yf) is the conditional distribution function of yn given yn„x . 
Note that in this case Ta for each a, 0 < a < 1, maps each interval (j, j + 1] 
into a single point. There are other families of transformations Ta , associated 
with random variables an of the above form, that have this property. We shall 
construct a convenient family Ta for our purposes in the proof of Theorem 2. 

By (34) for some fixed e > 0 there is a finite set of states which we can take 
as 1, • • • , M (by relabeling the states if necessary) such that J^jli Pa > e 
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for all i. Since the Markov chain \xn) is irreducible and the states are nonperiodic, 
there must be two paths from state one to state one of positive probability 
with lengths that are relatively prime. Add all the states passed through in 
these paths to the states 1, • • • , M. Further, add all the other states passed 
through in a path of minimal length and positive probability from state i to 
state j , i, j = 1, • • • , M. Call the collection of states included thus far S. We 
can then connect any two states i, j z S by a path of positive probability con
taining only states of S. If the states of S are N(S) in number it may be con
venient to relabel the states of the process so that they appear as the states 
1, 2, • • • , N = N(S). Notice that the matrix of transition probabilities of the 
process {xn}, as restricted to the states of S, is irreducible and aperiodic, that is, 
some sufficiently high power of the restricted matrix has all its elements positive. 

Let S' be any subset of S and N(S') the number of states in S'. Call Sf a 
contracting set if there is a set of states S" C S with N(S") < N(Sf) such that for 
each i z S; there is a j z S" with pu > 0. The set S" C S can be reached from 
S' C S if for each i z S' there is a j z S" with p{i > 0. S" is accessible from S' 
if for some k there is a sequence of subsets (of S) Si = S', S2 , • • • , # * = S" 
such that Sf can be reached from $?-_i , j = 2, • • • , k. If N(S;) > 1, S' C S, 
there is a set S" C S with N(S") < N(S') that is accessible from S'. For suppose 
there were not. Every m-tuple of states of S is accessible from every other 
m-tuple of states of S because of the irreducible and nonperiodic character of 
the transition matrix when restricted to the states of S. If there were no set 
of states S" with the desired property no m-tuple with m = N(S') > 1 could 
be contracted. Take any two distinct states i, j z S. Since they are in some 
m-tuple and no m-tuple is contracting, there is no state k t S such that 
p%k j Pik > 0. This means that for any i t S there is one and only one j = j(i) 
such that Pit > 0. But this implies that the matrix of transition probabilities, 
as restricted to the states of S, is periodic, a contradiction. 

Start with the whole set of states $0 = $ = {1, 2, • • • , N}. This set is con
tracting. Let Sx C S be a set of states with N(Si) < N(S) that is accessible 
from S0 in a minimal number of steps. Let S2 C S be a set with N(S2) < N(SX) 
that is accessible from Si in a minimal number of steps. Continue the construction 
until a set, say Sk , with one element is obtained. Let Mi , • • • , Ma be sets of 
states with Mx = £ 0 , M2 = Si , • • • , M2+rt = S2 , • • • , M2+rt+ra = Sz , • • • , 
Ma = Sk where a = 2 + rx + • • • + rk and ifcf f+1 can be reached from M,- . 
In other words, the M/s are the sets of states passed through in going from S0 
to Sk. The number of steps in going from £,• to £,-+1 can be at most N2 = N(S)2 

in number (see [8]). Therefore the total number of steps from Mi to Ma can be 
at most Nz. Let the minimal positive transition probability pa , i, j z S, be 
5 ( > 0). Given any state i z M,- , let I = fj(i) be the state of lowest index in 
Mi+X for which pu > 0. Further, given any state i % S. there is a state I = 
f(i) z S such that pit > e/N. Let 6' = min (e/N, 5). 

Now consider the Markov process {yn}, constructed at the beginning of our 
proof, and the Markov chain xn == g(yn). We now set up random variables 
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an = G(yn | yn-i)7 uniformly distributed and independent of yn-x , yn-2 , • • • 
with the associated family of one-one transformations Ta satisfying conditions 
now to be specified. Consider disjoint subintervals (7, , 5<), i = 0, 1, • • • , a, 
of (0, 1) with 0 < di - 7* < 8'/(N* + 1). The transformations Ta are to be 
set up (and can be set up) so that they satisfy the following conditions. Let 

(38) r . (M + i ] C ( / ( t ) , / ( H i ] if i*s, 
Ta(i,i+ 1] C(1,N + 1] if izS 

when 70 < a < 80 . Thus if 70 < an < 50 we know that 1 < yn ^ iV + 1 (or 
equivalently avc S). Further, let 

(39) Ta(j,i+l]C(Jt(i),m + l] 
for all z e M, if y,- < a < 5,- . Moreover, let the family of transformations Ta , 
0 < a < 1, map each interval (i, i + 1], t = 1, 2, • • • , into a single point. The 
point will generally depend on a. Now if the event A} occurs, 

(40) Aj = {70 < oti < S0 , • • • , 7a < «,-+« < Sa , 70 < ai+a+1 < S0}, 
we know with probability one the value of y3+a+i . For the first a + 1 conditions 
imply that i < yi+a S i + 1 where i is the single state of Ma . Thus #,-+«+1 = 
Taj+a+xih i + !]• The random variables {<*,«} are independent uniformly distri
buted random variables. Just as in the proof of Theorem 1, the Borel-Cantelli 
lemma implies that at least one of the events Ai , j ^ n — a — 1, occurs with 
probability one. Let 22, be the set of sequences (• • • , an-t , an) for which some 
Ai, i ^ n — a — 1, occurs and A, is the 4̂t- with largest index, i ^ n —• a — 1, 
that occurs. The events Ej are disjoint, and with probability one every sequence 
(• • • , an-i , an) lies in some Ef , j £ n — a — 1. Let 

/ ^ X X/ x _ \Tan ' • " TaHa+1(i, l+l] if (• • • , «n- l , <*«) « # / 
(,41) Aî a„ , an-t , • • • ; — -€ 

[0 otherwise. 

Then yn ~ h(an y an^x , • • •) with probability one and hence 

#M = g(h(an, an-i , • • •)) 

with probability one. The proof of Theorem 2 is complete. 
5. Stochastic Processes. We now consider some conditions sufficient (but 

not necessary) for a positive answer to problem 1, and hence problem 2 in the 
case of a general strictly stationary stochastic process {xn}. There are several 
conditions that will be introduced to avoid unduly tedious measure theoretic 
complications. We have already seen that there are difficulties in obtaining 
random variables £n satisfying the conditions of part (a) of problem 1 if the 
conditional distribution function F(an | aw_x , •••) has a discrete component 
with positive probability. To avoid this assume that F(an | an_i, • • •) is continuous 
in an with probability one. Further, let the random variables xn of the process be 
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hounded between zero and one. This last assumption is on restriction since it can 
always be brought about by considering a process zn = h(xn) where h is a one-one 
monotone function mapping (— <», oo) into (0, 1). Further, letF(an j an-x, • • •) 
be a strictly increasing junction of an , 0 < an < 1, with "probability one. By Lemma 
2 there is a random variable £n satisfying part (a) of problem 1. Such a random 
variable is, in fact, given by 

(42) £n = FiXnlXn-t , Zn-2 , ' ' 0-

This is not the only possible construction of such a random variable. The con
ditions to be specified will be enough to ensure that the process xn is of the form 

(43) xn = gfa ,£n_! , • • • ) ; 
in other words problem 1 has a positive answer with this particular construction 
(see formula (42)) of such a random variable. In a report KALLIANPUR & WIENER 
[3] discuss some work in this direction. The conjectured result is that a repre
sentation of the form (43) holds under the above conditions and under the 
assumption that {xn\ is purely nondeterministic. The argument given implies 
that the conjectured representation can be established in terms of the specific 
random variables (42). We shall later give an example for which a representation 
of the form (43) is valid, but not in terms of the random variables (42). This 
indicates that generally one has to consider constructing random variables %n 
satisfying part (a) of problem 1 which are not of the form (42). 

Let fi be the measure on half infinite sequences (a„ , an-x , • • •), 0 < a{ < 1, 
induced by the probability measure of the process {xn}. Let Ta , 0 < a < 1, 
be the family of transformations of the set of sequences (an , an_! , • • •) into the 
real numbers an+1, 0 < an+1 < 1, induced by the conditional distribution function, 
that is, 

(44) Ta(an , an-t , • • • ) = F~\a\an , an_x , • • •). 

Notice that 

(45) Xn = 1 £n\Xn-i , Xn-2 } * ' ') 

with probability one where £n is the uniformly distributed random variable 

(46) £, = F(xn\xn-X , • - •) 

independent of £n_i , xn„2 , • • • . If £„ = g(£n , £n-i , • • •) then clearly xn = 
E(xn | in , £n_t , • • •) and hence 

(47) xn - E(xn\£n , £ , - ! , - • • , &-*) -> 0 

in probability as k —> oo or equivalently 

(48) E t a - E ( x . | f c , . . . ,$n- ,) |~>0 

because of the boundedness of the random variables xn . Because of the station-
arity of the {xn} process, condition (48) could equally well have been written 
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(49) E | I S - E W | „ , • • • , €0! —> 0 

asw-4 c». To avoid cumbersome formulas we introduce the following notation. 
Let 

Xm \Xm j Xm—1 ? * )j 

(50) r u 2 » . i = Tu(xm^ , xw_2 , • • •), 

Theorem 3. The condition 

(51) E \xn - E(#j£n , • • • , $01 -* 0 as n -^ oo 
is satisfied if and only if there is a set S of y0 points of jx measure one such that 

(52) Ttn{T(,_t{-..{TM---}\ -Ttn{Tt._l{-~{TM--'}}-*0 
in £x , • • • , £n , • • • measure for all y0 , % e S as n —» oo. 

Suppose there is a set # of /x measure one satisfying condition (52). Let z01 S. 
Then for all x0 t S the measure 

as n —> oo for any fixed e > 0. But then 

r{\xn-T(A--{Ttjk}'--}\ >€} = /m{(fe ,••• ,M|r t .{. . .{r4 ts„}.. .} 

as n —» oo and hence 

in probability a s n - ^ oo. On the other hand, 

- E | E ( r { i l { . . . { r ^ } . . - } -r , .{---{r lA}---}l«. , ••• ,&)l 
gE(E(|r€ .{...{r^o}---} - ^ . { • • •{ r«A} . . . } | |& , . . . ,&» 
= E k - r u { - . - { r € l 2 o } - - - } | - * o . 

But then xn — E(#n |£n , • • • , £i) —» 0 as n —» oo in probability. 
Now suppose that xn — E(xn | £n , • • • , £t) —» 0 in probability as n —» oo 

and condition (52) is not satisfied. Then given a sufficiently small e > 0 there 
are sets Sx , S2 with M(#I), M ( ^ ) > 5(e) > 0 such that for x0 z St , xf

0 z S2 

m{(&, '•• , fO | | ^ . { - - -{^A}- - -} - r e . { - . - { r ^ } . . . } | >*)} > 5(e) 

for an infinite number of values of n. However, 

159 



STATIONARY PROCESSES 679 

xn - Efolfc, , • • • , &) -> 0 
implies that for almost all x0 (n measure) 

Tin{->>{TM--} -E{Tin{~-{TM---\\Sn, ••• , * i ) - 0 
in £1 , • • • , £n , • • • measure, a contradiction. 

Corollary 1. Let the family of transformations Ta , 0 < a < 1, be such that, 
given any two x0 , x'0 with 0 < #_, , xLi < 1, 

00 

(53) E \T^x0 - Tux'*\ S Z J8/ b - / - x'-f\ 

/or some sequence of positive constants &• with ]T) &• < 1. 77&en {#w} Aas a repre
sentation of form (43). TTie expectation in formula (53) is understood to be an average 
with respect to the uniformly distributed random variable £. 

It is clear that 

E|r € . { . . . {r l l« 0}---} - r ^ - . . { z v « } - - - } | £ ( 2 > , r 
so that 

^{•••{r £ lx 0}---} -T(n\---{T(x}---}-+o 
as n —> oo in probability for all xQ , x£ and hence the hypothesis of Theorem 3 
is satisfied. 

Corollary 2. Suppose there is a unique ergodic distribution corresponding to 
the transition probability measure generated by the conditional probability distribu
tion F(an | an^x , •••) and that the Doeblin condition (D) ([1], [6]) is satisfied 
by this transition probability measure. Further, given any two points x0 , XQ t S 
(see Theorem 3) with 0 < #_ 3 < xJ{ < 1 for all j , let 

(54) Tax0 < Tax£ 
for all a, 0 < a < 1. Then {xn} has a representation of the form (43). 

Notice that 

if x0 < xo , that is, if x-f < x-\ for all j ( ^ 0). However, the hypothesis 
of the corollary implies that xn , xf

n have a common limiting distribution, say 
F(a). But 

V[x'n > a, xn ^ a} + ¥{x'n S a] = Y{xf
n £ a] 

so that 

P{#n > a, xn j£ a} —> 0 

at every point a (F(a) is continuous since F(an | an-x , • • •) is continuous in an). 
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Given any € > 0 we can find k(e) points 61 < • • • < bk such that 
k 

U \Xn ^ h , Xn > &/} D {X'n — Xn > e} . 
3 - 1 

But then 

¥{x'n - xn > e} ->0 
for every € > 0 as n —> 00} and hence xr

n — #n —> 0 in probability as n —> 00. 
This argument has been carried out for any two points xQ , x'0 with x0 < x'0 . 
However, given any two points x0 , x'0 (without such an order relation) we can 
find a third point x'0f such that xf

Q
r < x0 , x'0 and hence x'n — xn —> 0 for ££ , a:n 

derived from any two points £0 > #o . Now simply apply Theorem 3. 
We now construct the simple example mentioned at the beginning of this 

section to show that even though a strictly stationary process {xn} may not 
be a one-sided function xn = g(%n , £w_i , • • •) of the random variables (42), 
it may have such a representation in terms of random variables (£ satisfying 
part (a) of problem 1 and defined in a different and more suitable manner. 
Set up a sequence of points 6t , i = 0, =fcl, • • • , with 0 < • • • < &»• < bi+l < 
. . • < 1. Let S C (0, 1) be 

(55) S = 0 {y\hi < V ^ b2i+1} 
%=—00 

and S = (0, 1) — S. Let \xn) be the strictly stationary Markov process with 
transition probability density 

(56) p(y\y') - lp' / (6'+1 ~ 5i) if fei < y - hi+1 ' v' e S ' 
iPi/ih - 6,-0 if h-x <y£bi9 yr e 8 , 

where the p t 's are distinct positive numbers with 23 P* = 1- Consider the 
family of transformations Ta generated by the conditional distribution function 
of the process {xj. If X)*--« P, < « ^ £ j—» P, , then bt < Tax ^ bi+l when 
a: e 8 and b ^ < Ta# g 6,- when a; £ S. Thus if we start out with two points 
x} xf with x z S, x' z 8 their transforms Tu • • • T^o:, T^ • • • T^s' will never 
be both in 8 or both in 8. Moreover, at any stage n we can separate the transforms 
by a quantity bounded below by a positive number by specifying an appropriate 
condition of the form / ? < ? „ < 0'. Thus the condition of Theorem 3 is not 
satisfied and hence \xn) does not have a representation of form (43) with the 
£n's given by (42). Nonetheless the process \xn] is of the same type as the process 
{yn} constructed in the proof of Theorem 2. By using the construction given 
in Theorem 2 we can generate random variables & satisfying the conditions of 
part (a) of problem 1 and such that xn = g(& , ££-1 > * • •)• 

In conclusion, it is worthwhile noting that problem 1 can be rephrased in 
the terminology of information theory [4]. The original process is passed through 
a deterministic channel that manufactures independent random variables £n 
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independent of the past, that is, independent of xn„x , xn„2 , • • • . We ask under 
what circumstances the original process {xn} can be expressed in terms of the 
output of the channel {£„} with the time sense preserved, that is, when xn = 
g(Zn , £«-i , • • •) for some Borel function g. 
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