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The notion of a sufficient statistic—a statistic that summarizes in itself all the relevant informatios.
in the sample x about the universal parameter w—is acclaimed as one of the most significant
discoveries of Sir Ronald A. Fisher. It is however not well-recognized that the related notion of a
partially sufficient statistic—a statistic that isolates and exhausts all the relevant and usable
information in the sample about a sub-parameter 8 = 6{w)—can be very elusive if the question is posed
in samplc space terms. In this review article, the author tries to unravel t1ie mystery that surrounds the
notion of partial sufficiency. For mathematical details on some of the issues raisec hzre one may refer
to Basu ;1977).
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1. lotroductior

In the beginning we have a parameter of interest—an unknown state of nature 6.
With a view to gaining additional information on 6, we plan and then perform a
statistical experiment & and thus generate the sample x. The problem of data analysis is
to extract all the relevant information in the data (£, x) about the parameter of interest
0.

The notion of partial sufficiency arises in tne context where the statistical model
{(Z,.4,P,): weQ}

of the experiment & involves t'.e univarsa! parameter w and where 6 =f(w) is a sub-
parameter In this case it is natural to ask:

Question A: What is the whole of the relevant information about 6 that is avaiiablc
the data (&,x)?
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2 D. Basu

It is not easy for a non-Baycsian to face up to this question. Most of us would feel
more at ease when the question is rephrased in the following familiar form:

Questior B: What statis:ic T su.amarizes in itself the whole of the relevant information
about @ that is available in t.e sample x?

Let us understand that the twc questions A and B, though similarly phrased, are very
different in their orientaticns. Question A is clearly addressed to the particular data
(€, x). But in B we are scarching Jor a principle of data reducticn. We may rephrase B in
the following nearly equivalent form:

QuestionB* Does there exist a statistic T such that, in some meaningful sense, there is
no loss of information on @ in the reauction of the data (&, x) o (6, t), where &5 is the
marginal experiment—perform & but record only ¢ = T(x)—corresponding to the
statistic T?

Questions B or B*, when asked in the context of the universal parameter w, led
Fisher to the important notion of a sufficient statistic. But the same question, when
asked in the context of a sub-parameter 6, turns out to be surprisingly resistant to a neat
solution. The notio~ of partial sufficiency is indeed shrouded in a lot of mystery.

It is intzresting to note that Sir Ronald introduced the notion of sufficiency into
statistical literature (Fisher, 1920) first in the context of partial sufficiency. With a
sample x = (x,,X,....,x,) from a normal population with unknown u and o, Fisher
(1920) was concerned with the relative precisions of the two estimators

sy = () 2Y |x; — x| n, s=[} (x,—x)¥n]'?

of the standard deviation o. [Fisher had used the notations ¢, and a, for the above
estimators, but we have opted for the more familiar s.] Introducing this paper in Fisher

(1950). Sir Ronald described the main thrust of his 1920 argument in the following
terms.

... but the more general point is established that, for a given value of s, the
(conditional) distribution of s, is independent of ¢. Consequently, when s, the
estimate based on the mean square is known, a value of s, the estimate based
on the mean deviation, gives no additioral information as to the true value
(of ). It is shown that the same proposition is true if any other estimate is
substituted for s,, and consequently the whole of the relevant information

respecting the variance which a sample provides is summsd up in the single
estimate <.

[Authcr’s note: The proposition stated in the final sentence of the above quoted
paragraph was not proved in Fisher (1920). Indeed, the proposition is not true unless
we himit the discussion to location invariant statistics.]

In Fisher (1922), p. 316 we %ind the first mention of the now famous:

Criterion of Sufficiency: That the statistic chosen should summarize the whole of the
relevant :nformation supplied by the sample.
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rarual suff-ciency 3

On th. same page we find it suggested that, in the case of a sample x,, x,, ..., x, from
N, o), the statistic s fully satisfies the criterion of sufficiency. It 's thus clear that from
the very beginning Sir Ronald had been grappling with the nc« » of partial sufficiency.

In this article we shall be examining several definitions of par:iz | sufficiency that have
been proposed from time to time. In every case we shall look back on this original
problem of Fisher and ask ourselves the question: “Does this definition make s
partially sufficient for ¢?”

[Author’s note: The name “sufficient” is, of course, very misleac ing. We should never
have allowed an expression like “T is sufficient for 6” to crezp into any statistical text. It
is less misleading to use expressions like “T is sufficient for the sample x*’ or “T isolates
and exhausts all the infor.nation in x about 6”. Perhaps we should agree to substitute
the name “sufficient” by the more descriptive characterization “exhaustive”, which also
comes from Fisl ci. Having said all these, we are nevertheless going to use the
expression “partially sufficient for 6 in the rest of this essay!]

2. Specific sufficient statistics

In Neyman and Pearson (1936) we find one of the earliest atiempts at riaking some
sense of the elusive rotion of partial sufficiency. Let us suppose that the parameter of
interest 6 has a “variation independent” complement ¢—that is, the universal
parameter w may be represeated as w = (0, ¢) with the domain of variation Q of w bzing
the Cartesian product @ x @ of the respective domains of § and ¢. in this case. we have
(from Neyman-Pearson) the following:

Definition (specific sufficiency). The statistic T:2 -7 is specific sufficient for the
parameter @ if, for every fixed ¢ e ®, the statistic T is sufficient in the usual sense—that
is, T is sufficient with respect to the restricted model

{(Z, o, P, 4):0€ 0, lixed}

for the experiment £.

With a sample x=(x,, x,,...x,) of fixed size n from Ny, o), the sample mean x is
specific sufficient for u. The sample standard deviation s is. however, not specific
sufficient for . Even though x is specific sufficient for g, in no meaningfui sense of the
terms can we suggest that X exhaustively isolates all the relevant information in the
sample x about the parameter u. Surely, we also need to know s :n order to e able to
speculate about, say, the precision of x as an estimate of u. Clear'y, we are looking for
something more than specific sufficiency.

The fact of T being specific sufficient for @ may be characterized in terms of the
fol' ~wing factorization of the frequency (or density) function p or: :he sample space &'

2x|0,6)=G(T(x),0,¢) H(x,$).
Alternatively, we may characterize the specific sufficiency of T (for 8) by saying that the

conditional distribution of any other statistic 7;, given T and (€. $), depends on (0, ¢)
only through ¢.
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3 D Basu

Before going on to other notions of partial sufficiency, it will be useful to state the
following:

Definition (0-oriented statistics). The statistic T: 4 —.7 is 0-oriented if the marginal (or
sampling) distribution of T-—th:.t is, the measure P, T~ ' on J -depends on w only
through 8 =0(w). In other worc.s, O(w,)=08(w,) implies

P, (T 'B)=P, (T"'B)

for all ‘measurable’ sets B<.7.

It should be noted that the notion of 9-orientedness does not rest on the existence of a
variaticn independent complementary parameter ¢. In our basic example of a sample
from N (i, 0), observe thai X is not p-oriented but that s is g-oriented.

3. Partial sufficiency

If we put together the two definitions of the previous section, then we have the
following definition of partial sufficiency that is usually attributed to Fraser (1956).

Definition. The statistic T is partially sufficient for 8 if it is specific sufficient for § and is
also 0-oricnted.

See Basu (1977) for a number of examples of partially sufficient statistics. In the
example of a sample (x,.x,.....x,) from N(y, o), the statistic X is not partially sufficient
for p as it is not p-oriented and the statistic s is not partially sufficient for ¢ as it is not
srecific sufficient for 6. In view of the specific sufficiency part of the above definition, it is
r.ecessary that the parameter 0 has a variation independent complement ¢. The
requirement of (-orientedness brings in the unpleasant consequence that T may be
partially sufficient for 0 but a wider statistic T, need not be. Indeed, the whole sample x
1s never partially sufficient for 0.

The notion of partial s ifficiency may be characterized in terms of the following
factorization criterion:

pix|0.¢)=g(T|0) h(x|T.¢)

where g and h denote respectively the marginal probability function of T and the
corditional probability function of x given T. Note that the marginal distribution is -
oriented and the conditional distribution is ¢-oriented.

The interest in the Fraser definition of pertial sufficiency stems from the following
generalization (Fraser. 1956; of the Rao-Blackwell argument. Let a(8) be an arbitrary
real valued function of ¢ and let W(y, 0! denote the loss sustained when a(€) is
estimated by v. Let us suppose that, for each 6 € ®, the loss function W (3, #)is convex in
v. Finally, let # be the ciass of aii estimators U such that the risk function

rel)=ru(0, ) =E[W(U. )]0, 6]

is finite and depends on (0, ¢) only through 0.
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Partial sufficiency 5

Theorem (Fraser). If T is partially sufficient for 6, then for any U € U there exists an
estimator Ug=Uo(T)€% such that ry (0)<ry(0) for all 6 ®.

~ The proof of the theorem: consists of choosing and fixing a particular value ¢, of ¢
and then considering the staustic Uy =Uy(T)=E(U ] T, 0, ¢,) as an estimator of ¢(0).
That U, does not involve the parameter 6 follows from the supposition that 7' is
sufficient for @ when ¢ is fixed at ¢,. That U, e # follows from the supposition that T is
O-oriented. The rest follows at once from Jensen’s inequality.

The above theorem may be generalized along the lines suggested by Hajek (1967).
Let 4’ be the class of all estimators U for which the risk function ry (0, ¢) is finite (but

not necessarily free of ¢). Let Ry(6)=sup, ry(0, ¢) be the maximum risk associated
with U for a particular 6.

Theotem (Hajek). If T is partially sufficient for 0, then for any U € %' there exists a U,
=U,o(T) such that Ry (6)< Ry(6) for all 6.

The definition of U, is the same as in the previous thzorem. The rest of the proof
follows: from the following chain of relations

Ry(@)2ry(0, o)z ry, (0, ¢0)=Ry,(6).

If U e %, that s, if the risk function for U isfree of ¢, then ry(8)= Ry (6)and so the above
thcorem is a generalization of the Fraser theorem.

Let us take note of the fact that the proofs of the previous two theorems rest heavily
on the supposition that T is 6-oriented but make very little use of the supposition that
T is specific sufficient for 8. What is needed is the sufficiency of T' (for 0) for just one
specified value ¢, of ¢. Consider the following example.

Example. Let x = (X,,X2,.. X3 ¥1>V25- -+ ¥a) b€ m+n independent normal variables
with unit variances and with E(x;)=0 (i=1,2,...,m) and E(y;)=0¢ (j=1.2,....n),
where 0 € [a, b] is the parameter of interest and ¢ € {0, 1} is the nuisance parameter. The
likelihood function factors as

p(x]6,¢)=Aix)exp[—im(x —0)]exp[ —in(y—09)*].

The pair (X, ) constitute the minimal sufficient statistic. The statistic X is @-oriented
and is sufficient for @ when ¢ =0. Therefore, we can invoke either the Fraser or the
Hajek complete class theorem and suggest a reduction of the data x to the statistic X.
However, such a data reduction will clearly result in a substantial loss of information in
theevent ¢ = 1. Looking at the full data we should usually be able to make a good guess
of the true value of ¢. For instance, if m=2, n=200. x~=16.02 and y=17.45 then we
know Jor (almost) sure that #—1! and should naturally rebel against the idea of
reducing the data to X.

This example highlights the inherent weakness of the Fraser-Hajek argument.
Fraser limited his discussion to the class # of estimators U whose risk functions involve
only 6. It is not at all clear why we have to limit our universe of discourse to such a
limited class. [It is true that the statistical literature is so full of Fraser-type limited
complete class theorems. Familiar examples of such theorems abound in the theories of
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6 D. Basu

best unbiased estimates, best similar region tests, best invariant procedures, etc.] In this
example, the class of estimators of § that are functions of (X, ) is complete in the class
#' of all estimators, provided the loss function is convex. Bat the only functions of (%, ¥)
that belong to # are those th«t do not involve y. Thus, Fraser’s requirement that we
limit the discussion te % sort -f forces j out of the picture even though it contains a lot
of information on 6.

Haijek considered the wider class %’ but eliminated the nuisance parameter from the
argument by redefining the risk function as

Ry(@y=supry(8,9).
@

This method of eliminating the nuisance parameter from the risk function has bee:
made popular by Lehmann (1959) in his famous text on tests of statistical hypotheses. A
generalized version of the Minimax Principle is being invoked in this elimination
argument. The author is not at all clear in his mind about the statistical content of this
generalized principle. The example of this section is clearly in conflict with the principle.

4. H-sufficiency

Hajek (1967) pushed Fraser’s notion of partial sufficiency to its natural boundary in
the following manner. For each 6@ let Q= {w:0(w)=0} and let Z, be the convex
hull of the family 2, = {P,,: w € Q,} of the probability measures on the sampic space Z".
The class .#, is the class of all probability measures Qg on 4" that has the represenitation

Qu(A) =[P, (A)dés()

for all measurable sets A. where &, is some ‘mixing’ probability measure on £2,. [ Note
that we are riding slipshod over the usual measurability requirements.]

Definition (H-Sufficiency). The statistic T is H-sufficient (partially sufficient in the sense
of Hajek) for 6, if, for each 6 ¢ O, there exists a choice of a Q,€ P, such that

(i) T is sufficient with respect to the model {(Z, &, Qy): 0 O} and

(it) T is O-criented in the model {(4, &/, P,):weQ}.

Observe that the notion of H-sufficiency (unlike the Fraser definition of partial
sufficiency) does not require 0 to have a variation independent complement ¢. If T is
partially sufficient in the sense of Fraser, then it is also H-sufficient. In order to see this,
we have only to choose and fix ¢,€® and then take Q,= P, , which is a mixture
probability corresponding to a degenerate mixing measure.

Also observe that the requirement of f-orientedness in the definition of H-sufficiency
has the same unfortunate consequence (as in the case of Fraser’s definition) that T may
be H-suflicient but a wider statistic (e.g., the whole sample x) need not be so. Hajek
{1467) sought to remedy th:s fault in his definition by putiing in the additional clause
{aimost as an afterthought) that any statistic T, wider than an H-sufficient T should be
regarded as H-sufficient. But such a wide definition of partial sufficiency cannot be
admitted when we are concerned with the problem of isolating the whole of the relevant
information about a subparameter.
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Partial sufficiency 7

The two theorems of the previous section may now be consolidated in the following
complete class theorem. [For a proof refer to p. 361 of Basu (1977).]

Theorem (Hajek). If T is H-sufficient for 0, then, for any Ue ¥, there exists a
Uqo=Uo(T) such that ry (0) < ry(0) for all 8. Furthermore for any U < #’ it is true that
Ry, (8)< Ry(B) for all 6.

Le* us look back on the classical problem of a sample x = (x, x,,.. ., x, ) of fixed size n
from N(u,0). No statistic T can be H-sufficient for u. This is because T can be u-
oriented only if it is an ancillary statistic, in which case it cannot, of course, be par‘ially
sufficient for u. [This remark holds true for a general location-scals parameter set-up
with y as the location parameter.] On the o:cher hand the statistic s is a-oriented. Let us
examine whether s is H-sufficient for o.

The density (or likelihood) function factors as

2 s 11)2
p(xlu,a)=A(a)exp[—%}]exp[—"“ﬁ 7“1]

<0

where A(o)=(\/2na)™".

For each o €(0, ), let &, be our choice of the mixing measure on the range space R,
of the nuisance parameter pu. The corresponding famiiy {Q,:0<0o < 0| of mixture
measures on the sample space R, will have the density function

ﬁ(XIa)=j p(> |, 0)dE, (k)

_ ns? ["' l— n(x — p)?
—A(O’)Cxp[—z&'i] J By CXPL—T]déa(#)-

We shall recognize s as H-sufficient for ¢ provided we can find a family ;¢,} of mix.ng
measures suck that

£ Y
J cxp[—-"—(" 1) ]dé,<u)=8<f)cm (1)

20?2

because in that case p(x|a) will factor as

ns?
202

p(xla)=A(a)exp[— ]B(X)C(ff)

esta’ .ishing condition (i) of the definition of H-sufficiency.

One wzy to ensure (1) is to choose for &, the uniform distribution over the wholc of
R,. But, with a family {Q,} of improper mixtures, the proof of the Hajck theorem will
break down. If the range of ¢ is the whole of the positive half line, then it can be shown
that the factorization (1) can be achieved with no pioper mixing. However, if we are
willing to set a finite upper bound K for the parameter s —froin a practical point of view
this is hardly a restriction—then it is easy to check that the choice of {, 2y he normal
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8 D. Basu

distribution with mean zero and variance (K®>—o?)/n will achieve the desired
factorization (1). The above argument of Hajek (1967) establishing the H-sufficiency of
sfor o (0 <o <K)is very intriguing. At this point we like to contrast the approaches of
IFisher and Hajek to the question of partial sufficiency of s for a. First, let us look at the
question from the:

Fisher Angle: The pair (X, s). being jointly sufficient for (i, ¢), contains the whole of the
available information on the parameter of interest o. Furthermore, the two statistics X
and s, being stochastically independent, yield independent (additive, that is) bits of
information on o. If 4 were known, then we have n ‘degrees of freedom’ worth of
information on g. Of these, the sta.istic s summarizes in itself n — 1 ‘degrees of freedom’
worth of information on . If the only (prior) information about u that we have is — oo
< p < %, then there is no way that we can recover any part of the (at most one ‘degree of
freedom’ worth of) informatior contained in x about u. It is in this situation of no
(prior) information on u that Fisher would label s as exhaustive of all available and
usable information on 6. And in the event of no (prior) information on o either (other
than 0 <o < x:) Fisher would invoke his celebrated fiducial argument to declare that
the status of the parameter g :1as been altered from that of an unknown constant to that
of a randem variable with (fiducial) probability distribution ,/ n5/x,- 1. Observe that
the fiducial distribution of ¢ depends on the sample only through the statistic s.

A sort of improper Bayesian justification for the Fisher intuition on the problem at
hand can be given by suggesting that, for every prior q(u, o) for the parameter (1, o) that
is of the form

qp.o)dudo = g(o)dude

stand ¢ are independent a-priori and u has the (improper) uniform distribution over
ithe whole real line], the posterior margina distaiLsition of o depends on the sample x
only through the statistic s. Furthermore, the fiducial distribution of ¢ correspon-s to
the case where glo)=1/0 (0 <o < ). Although Fisher never put his arguments in the
above straightforward Bayesian framework, the fact remains that Fisher’s thinking on
the problem of‘inference had a distinct Bayesian orientation.

Hajek Angle: On the surface, Hajek's partial sufficiency argument carries a distinct
Bayesian flavour. His mixing measure &,-—neormal with zero mean and (K? —¢?)/n as
variance for y may be interpreted as the prior conditional distribution of u given o.
With any prior ¢(g, o) of the form

g(p.o)dpdo =[dé,(u)]g(c)do

the posterior marginal distribution of ¢ will depend on :he sample x only through the
statistic s. It will. however, be very hard to make any Bayesian interested in a prior
qp.0 jof the above form. Apart from the fact that 4 depends on the sample size (which it
should not), it 1s niot possible to make any sense of g as a measure of prior belief pattern.
The main thrust of the Hajek argument is, however, not Bayesian at all. He was using
the Bayesian device (of averaging over the parameter space) only as a mathematical
artifact to prove a complete class theorem in the fashion of Abraham Wald.
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Partial sufficiency 9

We have already pinpointed the flaw in Hajek’s definitior of partial sufficiency
through our example of the nrevious section. In that example, x is H sufficient for 0
even though marginalization to x will entail a substantial loss of information on 0 in the
case of the (easily discernable) event ¢ =1. Many such examples can be easily
constructed. [See Barndorff-Nielsen (1973) and Basu (1977) for other such examples.]

S. Invariantly sufficient statistics

In this section we briefly review George Barnard’s thoughts on the knotty question of
partial sufficiency of s for a. The following quotation is from p. 113 of Barnard (1963).

“The definition of sufficiency which has become universally accepted
required that the distribution of any function of the observations, conditional
on a fixed value of the suificient statistic, should be independent of the
parameter in question, and there is no doubt that with, this definition, s fails to
be sufficient for . However, as was usual for him, Fisher’s definition of
sufficiency was designed to embody a logical notion, that of providing the
whoie of the available relevant information for a given parameter and the
definition just referred to does not altogether succeed in this object.

The availability or otherwise of information is critically dependent on
knowledge or lack of knowledge. Obviously if ¢ is already known, s provides us
with no information whatsoever. The failure of s to satisfy the definition given
above for sufficiency arises from the fact that the distribution of X — u (with the
usual notations) depends also on 6. However,.. . u is given as unknown, and so
the information in X —u is unavailable.

As alre1dy remarked, Fisher was very much concerned, up to the end of his
life, with the difficulty of expressing in precise mathematical form, the notions
corresponding to ‘*known’ and ‘unknown’. The present writer several times
suggested to him, in connection with parametars such as u in the case of the
normai distribution, ..., that these parameters correspond to groups under
which the problems considered are invariant, and the notion of ignorance of u
can be represented in terms of group invariance properties”.

Barnard’s thoughts on the problem are best understood in the context of the simple
example of a sample x=(x,,X,,...x,) of fixed size n from N(i, o). The group G
={g,:aeR,} of transformations

8a(xy,X3,...%, )= (x; +a,x,+a,...x,+a)

of the sample space R, onto itself is associated with the group G=ig,:aeR,} of
transformations

g1 0)={u+a,0)

of the parameter space onto itself. The group G leaves the parameter of inteiest o
invariant but acts transitivelv on (traces a single orbit on the domain of) the nuisance
parameter u.

The problem of estimating the parameter ¢ is invariant with respect to the group G of
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10 D. Basu

transformations g,: % - . The maximal invariant is the differenc: statistic
D= (xl‘.\",x; =K. .‘x."‘x;)

The statistic s is invariantly sufficient for ¢ in the sense that
(i) s is a function of D and is, therefore, ¢-oriented, and
(ii) the conditional distribu’ion of any other invariant statistics s, =s, (D), given s, is
the same for all possible values of ¢ (and, of course, of u as well),
(The notion of invariantly sufficient statistic is due to Charles Stein. See Hall, Wijsman
and Ghosh (1965). and Basu (1969) for further discussion on the subject.]
We are now ready for the folloving

Question. What is the logical necessity for restricting our attention to only G-invariant
estimators of ¢?

‘The standard argument for restricting attention to only such T that satisfies the
idertity

T(xy+a,xy+a,...x, +a)=T(X;,X5,...X,)

fou all samples xe€ R, and all @& R;—that is, to measurable functions of the maximal
invariant D= (x, —x;, X3 —X,,..., X, —X, ) —runs along the following lines:

Argument. The sample (x,, x5,...,X,) consist of ni.i.d. N(g,0)’s with g(—~ o <u< )
‘unknown’ and witi 6 4s the parameter of interest. If we shift the origin of measurement
to —a. then the saimnple will take on the new look (x; +4, x, +4,...,x,+a). The new
model for the new-look sample will then correspond to n i.i.d. N(u+a, o)’s.

Note that the new mean p + a is ‘equaily unknown’ as yu and that o remains unaltered.
The problem of estimating o (witk x unknown), therefore, remains invariant with any
<hift in the origin of meusurement. Now, an estimator T is a formula for arriving at
an estimate T (xy,x,,...x,) based on the sample x=(x,,x,,...,x,). With the same
sample represented ditferently as (x,; +4a, x, +4,...x,+a), but with the problem (of
estimating o) unaltered, the same formula T will yield the estimate T(x,+a,x,
+d....x,+a).Clearly, theformula T will look rather ridiculousif T (x, +a,x, +a,...x,
+a) is rot equal to T(x,,x,,...x,) for some x anc a.

The above invariance argument of Pitman-Stein--Lehmann has been sold in many
different packages to a vast community of statisticians. However, a close look at the
present package will immediately rcveal the fact that the argument does Lot really add
up to anything that is logicaliy compelling.

Forore thing, the part of the argument that asserts that the problem remains invariant
with any shift of the origin of measureinent is questionable. The argument rests heavily
on the supposition that u+a is ‘equally unknown’ as . Only an improper Bayesian
with uniform prior (over the whole real line) for  can make a case for such a statement.

Secondly, implicit in the argument lies the supposition that the choice of the
estimatcr (estimating formula) T as a function on the sample space may depend on the
statistical model (whica, in this case, does not change with any shift in the origin of
measurement) and the kind of ‘average performance characteristics’ that we find
satisfactory but must not (repeat not) depend on any pre-conceived notions that we
may have on the parameters in the model. This, of course, is not « tenable supposition
{as ail Bayesians will readily agree).
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Partial sufficiency 11

Let T, be a typical Bayes estimator of ¢ that corresponds to the prior distribution g
for (4, o)—for the sake of this argument let us imagine T;(x ) to be the posterior mean of
o for a given sample x and the prior q. In T, we thus have a well-defined formula for
estimating o. Every such formula T, is invariant for every shift in the origin of
measurement. This is because when the origin is shifted to —a, the sample (x,,
X3, ... %,)shifts to (x, +4a,x, +a,...,x, +a), the parameters (4, ¢) move to (¢ +a,6) and
the prior g changes itself to the corresponding prior g, for (u + a, ¢). It is easy to see then
that

Ti(x1,%5... %) =T, (x, +a.x,+a,...x,+a)

for all g, x and a. Thus, no Bayes rule violates the essence of the invariance argument.

However, if for a pa:ticular g, we look upon T, (x) as a function on the sample space,
then we shall find that the function will typically depend on x through both x and s. [As
we have noted in the previous section, for all (improper) priors g of the form
q(u,0)dudo = g(o)dude and also for some curious looking proper priors of the Hajek
kind. the posterior marginal distribution of & will depend on x only through s and so
with such a choice of the prior g, the Bayes estimator T,(x) for ¢ will be G-invariant as a
function on the sample space.]

There is no logical necessity for restricting our attention to only G-invariant
estimators as long as we take care to avoid using estimating procedures that do not
recognize the arbitrariness that is inherent in the choice of the origin of measurement,
etc. As we have noted earlier, all Bayes estimation procedures are invariant in a sense.

6. Final remarks

Sir Ronald was deeply concerned with the notion of information (about a parameter)
in the data, but never directly faced up to such tasic questions as: What is information?
How informative is this data? Have we obtained enough information on the parameter
of interest? etc.

The mathematical definition of information that we got from Fisher is a most curious
one. The definiticn does not relate to the concept of information in the data but is
supposed to bring out the notion of information in (the statistical model ot) an
experiment and the associated family of marginal experimen:s. Even then, the Fisher
information I(w) can hardly be interpreted in terms of the average {or expected)
amount cf knowledge gained (or uncertainties rernoved) about the universal parameter
o when the experiment is performed. And we get 1o prescription from 5:r Ronaid about
how to ‘marginalize’ his information function (or matrix) to a sub-parameter. We must
reject the notion of Fisher information on the ground of irrelevance in the present
context.

The Fisher criterion of sufficiency—that the statistic chosen should summarize the
whole of the relevant information supplied by the data—should bz looked upon only as
a principle of data reduction relative to a particular statistical model of the experiment.
The earliest thoughts of Fisher on the subject of sufficiency crystalized around the
following two propositions that are stated here relative to a fixed experiment & that is
already endowed with an assumed statistical model.
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Proposition 1. To reduct (or marginalize) the Jata x to the statistic T = T (x) will entail
a total loss of all wvailable information on the (universal) parameter  if the marginal
distribution of T is the same for all possible values of :v. Any such statistic T may
be regarded as ‘marginally uninformative’ about (.

Proposition 2. To reduce the data x to the statistic T will entail no loss of available
information on w if the cond’tional distribution of every other statistic T, given T 1s the
same for all possible values of . Such a statistic T may be called sufficient, fully
informative, or exhaustive of all available information on w.

Is it not remarkable that we now have the notions of ‘no information’ and ‘full
information’ (meaning, exhaustive of all available information) without ever
mentioning what we mean by information ?! If by information we mean the state of our
knowledge abo::t the parameter w, then should we not speculate about it in terms of the
parameter space Q rather than in terms of the sample space Z'?!

It so happens that Fisher’s ‘sample space’ definition of sull :ient (information-full,
that is) statistic agrees with the following Bayesian definition of sufficiency due to A. N.
Kolmogorov (1942):

Definition. The statistic 7 is sufficient if, for everv prior g(-) on €, the posterior
distribution g( -|x) on Q depends on x only through T(x).

It is to the lasting credit of Sir Ronald that, having discovered the ‘sample space’
definition of sufficiency, he was able to put the notion in the correct perspective by
characterizing a sufficient statistic as that characteristic of the sample knowing which
we can determine the likelihood function up to a multiplicative factor. Fisher
recognized that, relative to a given model, the whole of the relevant information in tne
data is summarized in the corresponding likelihood function. This is only a short step
away from the Bayesian insight on the knowledge business.

The ‘sample space’ definition of sufficiency for the universal parameter w is all right.
But the weakness and inadequacy of this approach becomes apparent when we try the
sample space way to ‘isolate’ all the ‘available’ relevant information c¢n a sub-
parameter. Note that we now have tu deal with the new term ‘isolate’ and that the term
‘available’ suddenly springs to life with a new meaning. Fraser, Hajek and Barnard all
seem to havc tacitly assumed that 7' can isolate information on 8 only if it is #-oriented.
This sample space requirement of 6-oricntedness for the partially sufficient T has beena
major source of our trouble with the notic a of partial sufficiency. The statistical insight
that leads to #-orientedness as a prime rcquirement for partial sufficiency, cannot be
reconciled with any Bayesian insight on the subject. What if there are no non-trivial 8-
oriented statistic? Can’t we then isolate the information on #? What is information on
0? How can we isclate something that vie have not even cared to define?

Barnard (1963)said “.. ., the notion of ignorance on u can be represented in terms of
group invariance properties.” What is igncrance? Lack of prior information? How can
we talk about lack of information when we have not even attempted to define what we
mean by information? In ary case, how can we possibly characterize ignorance on p in
terms of group invariance preperties of the model? Who is ignora  ? The scientist or
the model?!

In September 1967 the author had asked the late Professor Renyi the question: “Why
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are you a Bayesian?” Promptly came back the answer: “Because I am interested ir the
notion of information. I can make sense of the notion in no other way’.
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