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1, SUMMARY

Let (2, 4. ) be a given statistical model and let & be the
class of all one-to-one, bimcasurable maps g of (&2, ) onto bsell
such thab ¢ is measure-preserving for each Pef, ie. Pgt=7rF
for all P. Let us suppose that there exists a least (minimal)
sufficient sub-feld 2 Then, for each Led, it 13 true that 7L
Is #-equivalent to L for each geg, l.e., the least sufficient sub-
B[eld is almost G-invarisnd. It is demonstrated that, In many
familiay statistical models, the least sufficiens sub-field and the
Sub-field of all almost &-invariant sebs are indeed #-equivalent.
The problem of data reduction in the presence of nuisance para-
fnebers has been discussed very briefly. It is shown thet in
Hauy situations the principle of invariance is strong emough to
lead us 40 the standard reductions. Fox instance, given » inde-
Pendent ohservations on » normal varisble with unknown mean
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U - Ba.gu
(the nuisance parameter) and unknown variance, it is showy

how the principle of invariance alone can reduce the data to the
sample variance.

2, DEFINITIONS AND PRELIMINARIES

(a) The basic probability model is denoted by (L, A, ),

where & = {z} is the sample space, ¥ = {4} the o-field of events
and 7 == {P} the family of probability measures.

(b) By set we mean a typical member of 4. By function

(usually denoted by f) we mean a measurable mapping of (4, A4)
into the real line.

(¢) Aset 4 is Pnull if P(4) =0 for all Pe#. Two sets
A, and A, are M-equivalent if their symmetric difference is
#-null. Two functions f; and f, are #-equivalent if the set of

points where they differ is #-null. The relation symbol ~ stands
for #-equivalence.

(d) By sub-field we mean a sub-o-field of 4. A statistic is a
measurable mapping of (&, A) into any measurable space. We

identify a statistic with the sub-field it induces (see pp. 36-39
of [6]).

{e) By the jo-completion Jf(; of a sub-field 4, we mean the
least sub-field that contains A, and all #Z-null sets. Observe that

,,/:fo may also be characterized as the class of all sets that are
7-equivalent to some member of 4. Two sub-fields are
#-equivalent if they have identical 7-completions.

() By transformaiion (usually denoted by g) we mean a one-

to-one, bimeasurable mapping ¢ of (L, ¥) onto itself such that
the family

# g = {Pg*| Pe}

of induced probability measures is the same as the family 7.
A transformation g is called model-preserving if

Pg1 =P, for all Pem,
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on Sufficrency and Invariance 63

Qbserve that, if ¢ is any transformation, then so also is ¢# for
gach integral (positive or negative) » and that the identity map
i always model-preserving. Also observe that any transforma-
e carries 72-null sets into 72-null sets.

(g) Givena transformation g, the sub-field _4lg) of g-tnvariant
sots is defined as
vAg) ={4[974 = 4}.

The 7o-completion ﬂ—{;a) of _A(g) is then the class of all essentially
g-invariant sets, i.e., sets that are #-equivalent to some g-in-
variant set.

(h) The set A is almost g-invariant if g=*tA~A. It is easy
to demonstrate that every almost g-invariant setis also essentially
ginvariant and vice versa (see Lemma 1 for 2 sharper result).
Thus, Jéfg) is also the class of all almost g-invariant sets.

(i) Given a class & of transformations g, the three sub-fields of
) G-invariant, B) essentially S-invariant and ) almost G-invariont
sets are defined as follows :

a) AL) = Alg), (L-invariant)

B AE) = P-completion of (L), (essentially G-invariant)
and

v) AL = (N A, (almost G-invariant).

Observe that A(&) C ./%(-9) - ./ﬁg). With some assumptions
on .G, one can prove (see Theorem 4 on p. 225 in [6]) the equality

of A(&) and ﬂg). That (&) can be a very small sub-field

compared to A(L) is shown in example 1.

(j) A function f is a) G-invariant, ) essentially G-invariant,
or vy) almost G-invariant, according as
@) f=/flg), for all ge g,

B) [~ some L-invariant function,
or

v) f~flg), for all ge &.
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84 D. Basu

Observe that f savisfies the defimitions «), f) or ) above if and
only if f is measurable with respect to the corresponding sub-
field defived in ().

(k) When the class & of transformations g happens to be a
group {with respect to the operation of composition of transforma-
tions), the sub-field (&) of &-invariant sets is easily recognized
as follows. For cach ze 2, define the orbit O, as

0, = {" 2’ = gz for some ge L.
The orbits define a partition of &0, and the sub-field (&) is the
class of all {measurable) sets that are vhe wnions of orbits. The
sub-feld of essentially Z-inveriant sets is then the #-completion
of _4&). Our main concern, in this paper, is the sub-Seld

./E{'&} and this is not so easily understood in terms of the orbits—
unless @ has a sitructure simple enough to ensure the equality.

of A2} and J&Q) (see lemma 1 and example 1).

3, A MATHEMATICAL INTRODUCTION

Let (&0, A, #) be a given probability model and let g be a fixed
model-preserving transformation {definition 2(f)]. We remark
that the identity map is trivially model-preserving. In many
instances of statistical interest therc exist fairly wide classes of
such transformations. However, it is not difficult to construct
examples where no non-trivial transformation is model-preserving:
See for instance example 5.

For each bounded function f [definition 2(b)], define the
associated segquence {f,} of (uniformly bounded) functions a5
follows :

Fle) =Tf@+flgn) 4. Afga)lfin1), 2=123 .~
Since g is measura-preserving for each Pep, the pointwise ergodi®
theorem tells us that the set N, where {f,(x)} fails to converg®
Is #-null [definition 2(c}].

If we define f* as

{ Lm f. ()  when ¢y,
1) =<
L

otherwise

146



On Sufficiency and Invariance 65
then, 1t 1s easily seen that
i) f*is 4()-measurable [definition 2(g)], i.e., it is g-invariant
[definition 2(i)], and that
i) for all Be Alg) and Pe#

[ fdP = [ F*aP.
B B

This is another way of saying thab f* is the conditional expecta-
tion of f, given the sub-field &g} of g-invariant sets. Since the
definition of f* does not involve P, we have the following theorem
(lemma 2 in [4]).

Theorem 1, Jf the transformation ¢ preserves the model
(&8, A, 77, then the sub-field Alg) i sufficient.

[Bemark : Nobe that in the proof of theorem 1 we have not
used the assurmphions that g is & one-to-one map and that it is
bimeasurable. The proof remains valid for any measurable
mapping of (&3 ) into itself that is measurs-preserving for each
Pe#. A similar remark will hold truc for & number of other
results t0 be stated later. However, in a study of the statistical
theory of invariance (see [6]) it seems appropriate to restrict our
atfention to one-to-one, bimeasurahle maps of (2, _2) onto ibself
that prescrve the model either wholly or partially.]

Now, given a class 2 of model-preserving transformations g,
What can we say about the sufficiency of the sub-field

AL) = Ay

of Ginvariant [definition 2(i)] sebs ¢ The intersection of two
sufficient sub-ficlds is not recessarily sufficient. However, it is
kwown (see Theorem 4 and Corollary 2 of [3]) that the inter-
fection of the #-completions [definftion 2(e)] of 2 countable
Mber of sufficient sub-fields is sufficient. Using +his result,
We beve the following theorem (thcorem 2 in [4]).

X Theorem 2, I f the class & of model-praserving transformations
% countable, then the sub-field

ALE) = N Ag)
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56 D. Basy
of almost Q-invariant sets [definition 2(1)(y)] is swficient.

Given a countable class @ of transformasions, consider ths
larger class &% of transformations of the type a8, ... 2, Where
each oy is such that sither «; or «7* belongs to &, and » is an
arbitrary positive integer. The following propervies of &% are
easy to check :

a) & is a group (the group operation being composition

of transformations),

b) &* is countable,

o) AG) = AL and AG) = AL).

Now, let 4 be an arbitrary almost G -invariant sct, i.¢., ¢ td~4
(equivalently, gd~A4) for al ¢ge&®. Consider the set

B=\g4

where the intersection is taken over al geg* Since &* is 2
group, the set B must be .G*invariant. Again, since G ¥
counvable, and each ¢4 is P-eguivalent to A, we have B~4
We have thns established the following lemma.

- " g ]

Lemma 1, For any countndic class & of lransformaings

.y = o - - - - T . i)
[definition 2(f}], enary almost S-invariant st is essentially G-inware-

arid, ie., ML) = AL).

Theoremn 2, together with lexma 1 and the chservation .bh&!i:v
& sub-field that is M-equivaient to a sufficient sub-field is itself
sufficiens, leads to the following theorem.

Theorem 3, If & is a countable class of mdd-presewiﬁ.?
trensformations, then the sub-fidd _A(G) of G-invariant e
sufficient.

[Remark : Note thar in Theorera 3 we have used the o0é

bo-oneness and bimeasurability of our transformations.]

Before proceeding further, let us consider an example Whjlc}‘h
. , . . itiGh.
shows that Theorem 3 is no longer {rue if we drop the conditie®
that & is countable.
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i Sufficiency and Invariance 67

Example 1, Let # be a family of continuous distributions
on the reel line &2 where 4 is the o-field of Borel-sets. Let
G= g} be the class of all one-bo-ons maps of 22 onto & such that
filge -+ 2} is finite.  Clearly, &is a group and cvery member of
i ¢ model-preserving. Ir is 2asy to check that the sub-field
&) of G-invarfant sebs consists of ¢ and & only, and hence
wnot suficiont, The sub-fAeld MTE} of almost G-invariant sebs
i the same as 7 and is suffclent.

Consider another example.

Example 2. Tet 22 be the n-dimensional Euclidean space
and 7 the class of all probability measures (on the ¢-deld X of all
Borel-sels) that are symmetric {in the co-ordinates). If @ = {5}
% the group of all permutations (of the co-ordinstos) then (&)
18 the sub-field of all sebs that are symmetric (in the co-ordinates)
and Is sufficient. Since the empty sot is the only -null set, the

o sub-felds (&) and 4.} are the same here.

. Given & probability model (@2, A4, #) we ask ourselves the
“llowing guostions.

1 How wide is the groap . of all model-preserving ‘rams-
formations ¢
2

2. Tathe sub-fiald .,ffﬁ{i‘i) of almost G-invariant sets sufficient?

3 If a least (minimal) sufficient sub-ficld £ exists, then is
it true tha of'mJ%f_g‘ ¥y

& W’h&t is #(8), when & is the olass of all transformabions

bhat partialiy pressrve the model i a given manner ?

4, STATISTICAL MOTIVATION

o aiuiPDse we have vwo different systems of measurement co-
® for the outeome of a statistical experiment, so that, if

’al) e

r.ug_f'pl.n‘ N 'y - - .
Same ;"‘1 outeome is recorded as « under the first systern, the
- m.“n“ogmﬁ 15 recorded as gx under the second system. Let

thor that the two statistical variables ¢ and gz
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68 D. Busu

have the same domain (sample space) &7, the same family ¢ of
svents, and the same class of probability measure #. Further-
more, if Pe# holds for x, then the same probability measure P
also holds for gz.  The second system of measurement co-ordinatbes
may vhen be represenied mathematically as & model-preserving
transformation ¢ of the shatistical model (&2, 4, 7). The principle
of invarisnce then stipulates that the decision rule should be
invariant with respect to the transformation g—and this irres-
pective of the actual decision problem. Tf the cholce of a new
gostern of measurement co-ordinates leaves the problem {what-
ever it is) entirely unaffected, then so also should be every
reazonable- infersnce procodure.

Thus, if ¢ is model-proserving, the prineiple of invariancs leads
to the invariance reduction of the model (L2, _#. #) to the simpler
model (&8, Alg), #), where _4(g} is the sub-feld of g-invariant sets.
To put it differently. the principle of invariance requires every
decision function to be g-invariant or _4(g)-measureable. Con-
sider now the olass & of all model-preserving {ransformations ¢.
Must we, following the principle of invariance, insist that every
decision rule be Z-invariant {i.e. g-invariant for every geg)
We have already noted in example 1 that, when # consists of &
family of non-atomic measures, the class &is large emough 0
reduce the sub-feld Q) of G-invariant sets to the trivial ope
(consisting of only the empty set and the whole space). Obviously,
we cannot {must not) reduce 7 all the way down to A(&) ¢
even to _4(&)—bthe sub-field of essentially G-invariant sefs.
A logical compromise (with the principle) would be o reduce A
to the sub-feld (&) of all almost G-invariant sets—that is 10
insist upon the decision function to he almost C-invariant.

The principle of saffieioncy is another reduction principle of
the omnibus type. If.8 be a sufficient sub-field, then this prin
ciple tells us not to use a decision function that is not §-measws
able. Suppose there cxists a least (minimal) sufficient sub-
Geld £ Following the principle of sufficiency, we reduce the
model (2, 7, #) to the model (&5, L, 7).
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On Sufficiency and Invariance 69

Which of the two reductions (invariance or sufficiency} is
more extensive ¢ In other words, what is the relation between
A(g) and L2

Theorem 1 tells us that _Ag) is sufficient (for each ¢ in &).
Since o£ 13 vhe least sufficient sub-field we have (from the defini-
tion of &)

aZSC ﬁg) for all ge 8.

Theorem 4 follows at once.

Theorem 4. LN Ag) = ,,/(?(:g}

[Remark : Theorem 4 does not establish the sufficieney of
AL). [See example 1 in [3].]

‘We thus obssrve thst the Invariance reduction (in terms of
the group & of all model-preserving trarsformations) of a model
can never be more extensive than its maximal sufficiency reduc-
tion (if one such reduction is available). The prineipal question
raised in this paper is, “When is &) equal to £ 2° We shall
show later that in many familiar situstions he sub-fields J‘E{Q}
and o£ are essentially equal. This raises the guestion aboub the
nature of jz?’ &), where & is the class of all translormations
that preserve the model partially in some well-defined manner.
This question is disvmssed in a later ssction. In the mexb two
sections we give two slternative approaches to Theorem 4,

5. WHEN A BOUNDEDLY COMPLETE SUFFICIENT
SUB-FIELD EXISTS

Let us suppose that 4he sub-field o« is suficient and boundedly
“omplete. We nced the following lemma.

lemima 2, If 2 is a bounded _A-measurable funciion such that

Bz P)=0 for all Pei,

TR Jor ail bownded L-mensureble funclions f, i s true thai

Fizf|PY =10 for all Pe#.
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The prooi of this well-known result Is omitted. Now, let §
be an arbifrary member of &, and let ¢ be an arbitrary model-
preserving tremsformation. Let 8, = g~18. Sincc g is model-
preserving we have

P(8) = Pg18 = P(8,) for all Pgm.

Writing I for the indicator of 8, and noting that lg—T; and
I satisfy the conditions for z and f in Temma 2, we at once
have
Blls—I Mg\ P]l=0, for all Pe®,
0

or P(8) = P(S5,), for all Per.
Heno, P(SAS,) = P(S)—Pi3,)—2P(88,)
= 2[P(8)—P(S&)]
=0, for all Pem.

That is, for all Se.& the two sets S and g § are #-equivalent.
In other words,

L A,
and sinec ¢ is an arbitrary element ol & {lhe class of all model-
preserving transformations) we have the following theorem.
Theorem 4 (a). Jf £ is g boundedly complzie euficient sub-field

. —
then. o O _ALG).

[Remark : Since bounded completeness of & implies thab
L 18 the least sullicient sub-fisld, Theorem 4{s) is nothing bub
& special case of Theorem 4. The proof of Theorem 4(a) Is

simple und amerable to a generalization to be discussed later.]
6. THE DOMINATED CASE

We make a slight digression to state a useful lemma. Let
T be 2 measurable map of (&, ) into (&, &). Let Paxd @ be
w0 probability measures on _¢ and let PT-1 and @7* be the
corresponding messures on 42.  Suppose that § dominates P and

152



On Sufficiency and Invariance 71
let f = dP/dQ be the Radon-Nikodym derivative defined on g2
It is thon clear thet @7 dominates P71 Let i = dPT-)/
(@@4"-*). The function AT on & (defined zs 27Tz} = A{(T'z)) is
T~ Z)-measurable and satisfics the following relation.

Lemma 3. BT = E(f|T-Y3), @),
8., BT 15 the conditional expeciation of f, given T(4A) end Q.
" The prool of this well-known lemma consists of checking

the identity
[/dQ = [ ATdQ, for all BeT-Y{43).
B

B
Corollary. If T-4&) is Q-equivalent v A, then [ and BT are
Q-cquivalent.

Now, returning to our problem, let & be the class of all ﬁm-
formations g that preserves the model (22 ¥, 7). Let us suppose
that # is dominated by some o-finite measure. It foliows
that there exists & countable collection Py, Py, ..., of elements in
# such that the convex combination

@=Z¢P;, >0 Zgg=1,

dominates the family #. Tei fp— dP/dQ be a fixed version
of the Radon-Nikodym derivative of P wilth respect to @ The
factorization theorem for sufficient statistics asserts theb a sub-
field _«, is sufficient if and only if fp is _,,%; -meagurable for every
Pe2, where vzé; is the #-completion of 4;,. We now prove that
fpis LA(&)-measurable for every P. (The #-completion of A8
18 igself.) :

Bince Pg1 — P for all Pe, it follows that Q¢ = @, From
Lemma & we have '

Jrg = E{fr| g4 A), @)

The assumpiion that g is one-to-one and bimeasurable implies
that g€} = 4. Honce fpy = fp a.e.w. [Q]. Since § domina-

tes 2, it follows that fp is almost g-invariant, ie., is _Aly) mea-
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surable. Since, in the above argurment, g is an arbitrary element
of &, we have the following theorem. (See problem 19 on
p- 253 in [6].)
Theorem 4(b}. If 7 is dominated, then _4Q) is sufficient.
[Remairk :  Since, in the dominated set-up, the least sufficient
sub-field £ always exists and since, in this set-up, any sub-field
containing £ is necsssarily sufficient, it is clear that Theorem
4(b) i3 nothing but an immediate corollary to Theorem 4. Also
note that in the present proof (of Theorem 4(b) ) we had to draw
upon our supposition that g is one-to-one and bimeasurable., This
sccbion has been written only with the object of drawing afention
to some aspects of the problem.]

7. EXAMPLES

Example 3: Let y be areal random variable kaving a uniform
distribution over the unit interval. TFor each ¢ in [0, 1) define
the iranslormation g, as

gey = y-te¢ (mod 1)

In this example, # consists of a single meagure and each g, Is
model preserving (moasure-preserving). If & = {g,[0 < ¢ < 1},
then the only & -invariant sets are the empty sl and the whole
of the unit interval. Here, (&) is sufficient.

[Romark : In this case, there are a very large number of
measure-preserving wransformations that ars not one-to-one maps
of [0, 1] onto itselfl. For cxample, let a,(y) be the nth digit in
the decimal representation of ¥ and let

o @, )
.
= ¥ [
gy Pt 10":

wrere {ny} Iz a fixed increasing sequence of natural numbers.]

Again, if x has o fixed continuous distribution on the resl
line with cumulative distribution function F, then the class &,
of transformations g, defined as

gex = F-UF(zx)to (mod 1)], 0 <Ce <1
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On Buficiency and Invariance 73

axe all model-preserving for #. [In case F is not a strictly increas-
ing function of %, we define F-(y) =inf {x| Flz) = y}.]

Thus, for any fixed contbinucus distribution on the real line,

there always exists & large class of measurs-pressrving trans-
formations.

Example 4, Let @ = [0, o) and let  bave o uniform distribu-
flon over the interval [0, ), where # is ax uwoknown positive
integer. Here # consists of a counfable infinity of probability
measures. For each ¢ in [0, 1), define the fransformstion g, as

gex == [a]-~{z—[2] 3¢ (mod 1}},
where [#] is the integer-part of .

Here, each g is model-preserving. The minimal (least)
sufficient statisvic [x] is also the maximal-invariant with respect
to the group g, = {g;} of model-preserving transformations
defined above. Thus, if ,£is the sub-field (least sufficient)

gencrated by [z] and ¢(g,) is the sub-field of &,-invariant sets,
we have

£ = AG,)- ()

Now, i & is the class of all model-preservicg transformations,
then {ag we have seen in Example 1) the sub-field _#lg) will
reduce to the Jevel of triviality. (It will consist of only the

empty seb and the whole set @) However, from Theorem 4 we
have

LS AL). (b)

Since the group &, has a decent structure, we can apply Stein's
theorem (theorem 4 on p. 225 in [6]) to prove that

AGy) ~ ALy (c)

Since &, C &, we at once have

AL T A4y ()
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sting the relations (a), (¢), and (d) together we have

AL T L (e)
Futting (b) and {(e¢) together we finally have

£ = Al9),
le., the least-sufficient sub-field (rather, the -completion of
any version of the least sufficient sub-field) and the sub-field of
almost @-invariant sets are identical.

The chain of arguments, detailed as above, is of a general
nature and will be used repeavedly in the sequel.

Example 5. Let x be a normal variable with unit variance and
mean equal to eibther g, or x,. Does there exist a non-wivial
transformaition of g7 (the real line) into itself that preserves each
of the two measures ¥ That the answer is “no” iz seen as follows.
Les 2 be the class of all modcl-preserving transformations. In

view of theorem 4, JE('Q') conbains the least sufficient sub-fleld 2.
But, in 1his example, the likelihood ratio (which is the least
sufficient statistic) is

oxp | (sl — %{,w%—ﬁ%)}

and this is a one-to-one measurable funetion of z. Thus, every
set is almost G-invariant. And {his implies that every g in
£ must be equivalent to the identity mayp.

Example 6. Lot =, 2, ..., 2, be % independent cbservations
on a normal variable with Imown mear and unknown standard
deviation . Without loss of generality we may assume the
mean to be zero. Let &) be the group of all linear orthogonal
transformations of the n-dimentional Buclidean space onto it-
self. Clearly, every member of @, is model-preserving. That
the class & of all model-preserving transformations is much wider
than &, is seen as follows. Let <

v = Siw)iml, i = 1,2 0,
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On Sufficiency and Invariance 75

where ¢y, Dy, ..., ¢, are arbitrary skew-symmetric (le., &(z)
= —g¢(—=) for all z) functions on the real line that take only the
two values —1 and -+1. I} is easily checked that, whatever
the value of o, the two vectors (g, Za, ... 2,) a0d (¥g, Yos .-, Yy)
are identically distributed, i.e., the above transformation (though
non-linear) is model-preserving. However, the sub-group &, is
large enongh to lead us to Zaz?—which Is the least sufficient
statisiic~—as the maximal invariant. In view of the decentb
structure of the sub-group &,. the arguments given for exarple

4 are again available o prove the equality of £ and ALG).

8. TRANSFORMATIONS OF A SET OF NORMAL
VARIABLES

This seetion is devoted to a study of the special case {model)
of » independent normal variables a,, @, ..., ¥, with equal
nnkpown means x# and egual unknown standard deviations o
Hence Zx; and Zo? jointly constitute the least sufficient statistic.

If Z is the F-completion of the sub-field o induced by (Za,,
Yf), then we know from Theorem 4, that

£C AL
Wwhere £ is the class of all the model-preserving ransformations
of @ == (2}, %3, ..., Tn) 1O Y == Yy, Yo, ---, ¥u). For any model-pre-
serving transformation from @ to y, we, therefore, have

Zip; ~ Zyz
and

o ~ Ty}
‘Le., the statistic (S, S«?) is almost G-invariant. If we can
derqonstrate the existence of a ‘decent’ sub-group &, of & for
‘which the statistic (Sas, Te?) is the maximal invariant, then
(foliowing the method of proof indicated in examples 4 and 6)
-We can show that £ is indeed equal to _g(&).

¢ Let & e the sub-group of 21l linear model-preserving trans-
Aormations. Do there exist non-trivisl linear model-preserving
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transformations (i.e., inear transformations that are not a per-
mutation of the co-ordinates) ? That the answer is “yes” i
seen as follows. Let .# = {M} be the family of ail orthogonal
w¥Xn mairices with the initial row as

(‘_1 1 1 ')
SRR R

Now, if @ = (#, 2., ..., z,) are independent N(g, ¢)’s and we
define

yl i er

(where 2’ iz the corresponding colamn vector), then the #,’s are
independent normal variables with equal sbandard deviation ¢
and with means as follows :

Bl = vy, Ey) =0, t=2,3 ...,n

Thus, for an arbitrary pair of members M, and M, in %, we note
that Mx’ and Myx" are identically distributed (whatever the
values of w and o). Therefore, the two vectors 2" and MMz
are identically distributed for each g and ¢. In other words
the linear transformation defined by the matrix

MU M, (=M,

since M, is orthogonal) is model-preserving for each pair My, Mz
of members from 4.

[Remark : Later on we shall have some use for this way of
generating members of & ]

For example, the 4 X4 matrix
vz o 1/e 12 —ij2
/2 1j2 —1/2 172
/2 —1/2  1/2  1/2
-2 12 12 12

deflnes a member of &, for n =4,
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Tet H be a bypical # x n matrix that defines & model-preserv-
ing linear transformation. We are going to make a brief digres-
sion about the naturs of . From the requirement thab each
co-ordinate of
y = Ha'

has mean g and standard deviation o, we st once have that the
elements in each row of H must add up to anity and that theix
squares alse must add up bo unity. From the mutual indepen-
dence of the yy’s, it follows that tho zow vectors of H must be
mutually orthogoral. Thus, H must be an orthogonal matrix
with unit row sums. Now, for each model-preserving H. its
Jnverse
B (= H', since H is orthogonal)

s necessarily also model-preserving and, thus, the columus of
A must slso add up to unity, ete.

1t s easily checked thab the sub-group &, = {H} of linear
model-preserving transformations of the n-space onto itself
may slso be characterized as the class of all lincar transforma-
008 that preserve both the sum and the sum of squares of the
to-crdingles. The anthor came to learn that G. W. Haggastrom
of the University of Chicage had come npon these matrices from
this point of view and had 2 brief discussion on them i an
upublished work of his. We call such matrices by the nawe
Vagestrom-matrix.]

Going back to our problem, we have (o demonstrate that the
$tafistic T = (Tz,, Tu?) i3 a maximal inveriant with respect to
tfhﬁ sub-group &, = {H} of model-preserving linear transforma-
bons.  For this we have only to prove that if & = (o, @, -.., a,,)
d b = (0, Bp. ..., B} are any two points In %-space such that
tad = T'(b) then there exists a Hapgstrom-matrix ¥ such that

b == Ha'.

"&b M, and M, be two arbitrary memhers of _ff—the class of all
Tthogonal nxn matrices with the leading row es (L/4/%, ...,
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V7). If = Ma and B = M,b", then we have, from T{a)
= T(b), that «; = f#; that and that

—

EF.

v e
B3

w2 s

It follows thai there exists an (n—1)X(a—1} orthogonal
matrix that will transform (o, ot ..o %) $0 (By: Fay oves Bl
And this, in turn, implies that there exists an % Xn orbhogonal
matrix K, with the first row ag (1, 0, 0, ..., 0), such that

g = Ke'.

Thus, the transformsation M3TK M, takes ¢ into b. Now, note
that, since X is an orthogonal matrix with the initial row as
(1,0,0, ..., 0), the matrix K3, is orthogonal with its initial row as
(1%, 1A/ %y ooy 1/, ie. KM, e . Tn other words, thers
existe a matrix of the form Mz (with M, and M belonging o
#) which transforms g into . We have alrendy noted that all
such matrices bolong to &, and this completes our proof that
(Bx;, Tof) 1s & mazximal invariant with respect to Q.

In example 6 of the previous seetion, we considered the
particular case of the foregeing problem where x is known.
Consider now the other particular case where ¢ is known and ¥
is the only unknown parameter. In this case Iy is the least
sufficient statistic. Now, it iz no longer possible to produce 2
sub-group &, of linear model-preserving transformations such
that Xz, is the maximal invexinant with respecs to .§, This is
because every linear model-preserving fransformation raush
necessarily be orthogonal and would thus preserve Xof also.
We proceed as follows.

Suppose (without loss of genmerality) that o= 1. Let ¥
= Mz' where M is a ixed member of the class Ly of orthogonal
7 X % matrices with the initial row as (1/4/7, ..., 1/4/%). Observe
that the s are woutually independent and that ¥, ¥y -..: ¥s
are standard normal variables. ILet F stand for the cumulative
distribution function of s standard normal wvariable. Let ¢a
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Ogy --+s € D@ arbilrary comsbants in [0,1). If we define 2; =1

and
& = U Fy)+ce, (mod 1], 1 =2,3,..., %,

then 2 = (%1, %s, -..» #,) Las the same distribution as that of y and
go it follows that &’ and M1’ are identically distributed.
(Observe that we have deseribed above a model-preserving trans-
formation correspording to each (n—1}-vector {Ca, Cyy +vvy 6,) With
the ¢s in [0, 1}. It is easly checked that Zz; is & maximal in-
variant with respect to the above class of model-preserving
transformations.

9. PARAMETER-PRESERVING TRANSFORMATIONS

Tet y = y(P) be the parameter of interest. That is, the
experimenter is interested only in the characteristic 4(F) of the
measwre P (that actually holds) and considers all obher details
about P o be irrvelevent (nuisance paramebers). We define a
Y-preserving transformation as follows.

Definition. The transformation [see Definition 2(f)] ¢ is y-pre-
serving if ¢(Py=1} == (P}, for &1l Pe 72

If g i yy-preserving then so also is ¢~ The composition of
any two yp-preserving transformations is also v-preserving. et
&+ be the group of all v-preserving transformations.

In the particular case where y(P} = P, the y-preserving
wransformations are what wo have so far been calling model-
Preserving.  If &g is the class of all model-preserving transforma-
tions, then note that g (.G, for every .

If v is the parameser of interest, then the prineiple of invari-
anoe leads to the reduction of _4 to the sub-field ,f%fﬁ.,}. This
Section is devoted to a sbudy of the sub-field ,/%’?.97)

Since ¢ (C @, we have

AEy) T AL).

Let us suppose thas the least sufficient sub-field o exists.

We have discussed a number of examples where ALE) and 2 are
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identical. (The author believes that the above identification is

true under very general conditions.] In all such sibuations we
therefore have

A& C L.

That is, when the interest of the experimenter is concentrated
on some particular characteristic y(P) or P, the principle of
invariance will usually reduce the data more extensively than the
principle of sufficieney.

Thecrems 4, 4{a) and 4(b) tell us that

L£C A

The following thoorem gives us a similar lower bound for
AL,

A set 4 is called y-oriented if, for cvery pair Py, Pyei? such thab
VIPy) = y(Py), it is true that Py(d) = Py(4). In other worcs,
@ y-orierted set Is one whose probability depends on P through
¥YP). A sub-field is y-oriented if every member of the sub-field
is. The following theorem* is a direct generalization of Theo-
rem 4(a).

Theorem 5. Lrt @, be the class of all y-preserving tronsformi-
woms and let &3 be a sub-field that is

1) y-orviented and

) contained in the boundedly complele sufficient sub-field

L (which exists).

Then,

BC AL,
Proof: Let gegy and Be® and let B, =g 3B
Then

P(B)=PlgB) (. B,=gB)
= PgYB).

* The author wishss to thank Professor W. J. Hall of the Cniversity of Nost
Carckna for certain comments that eventuelly Jed to this theorem:.
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Since g is y-preserving, wo have y(Pg) = y(P). And since B
is y-orienbed we have

Pg*(B) = P(B).
Therefore,

The rest of the proof is the same as In Theorem. 4(a).
In the next section we repesatedly use the above thecrem.

10. SOME TYPICAL INVARIANCE REDUCTIONS

Let 2z, %, ..., », be n independent and identical normal
variables with unknown z and o. Suppose the parameter of
interest is o.  Lat &, bo the class of all o-preserving transforma-
tions. If & iz the rmean and s, the standard deviation of the »
observations, then the pair (z, s) is & complete sufficient statistic.
Also ¢ is o-oriented. From Theorem 5, we then have {hat s is
almost @,-invariant. Thus, the principle of invariance cannob
refiuee the data beyond s. That s is indeed the exact (upto #-
squivalcnce) attaineble limit of invariance reduction is shown
23 follows.

Lot {H} be the class of all nxn Haggstrom matrices (see
%etion §), i.e., each H is an orthogonal matrix with unit row
and column sums. Let ¢ be an arbitrary real number and let ¢
sband for the s-vector (1, 1,...,1). Consider all linear trans-
Formations of the bype

y' = Hx'4-(ci).
If &r I8 this class of transformations, then it is easily verified
that & i5 g sub-group of &.. That Z{x;—z)? is a maxirnal

ovariant with raspeet to the sub-group &% of o-preserving trans-
formations i seen as follows.

‘I"E‘tﬁ = (&y, &g, ..., @,) 204 & = (B, by, ..., b} be two arbitrary
Bvectors such that

Tla—a)® = E(b—b ).

Lsfc = h—gF. Then the lwo vectors g-Fci and b have equal sums
¥ sums of squares (of co-ordinates). Hemoe there exists a
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Haggstrom matrix I that transforms a--¢¢ into b. In othey
words, the transformation

yz — Hmf_i_(oijr
maps € into .
¥f 4(s} is the sub-field goncrated by s, then we have fush
proved that &2(s) = A(&;). The proof of the #-equivalence of

ABls) and _Ag.)

will follow the familiar pattern set up earlier for example 41

T

section 7.

Now, suppose that our parameter of interest is v = ufo:
The statistic /s is y-oriented and hence (Theorem 5) is almost
Lo-invariant, where &, is the group of all y-preserving trans
formations.

Consider now the sub-group &5 of all linear transformations
of the type

y' = cHx'
where ¢ > 0 and A is a Haggstrom masrix.

It is easily chocked that the raaximal invariany with Tespect
to the snb-group &} is the statistic Z/s and hence, the sub«.ﬁxslf
A(@/s) generated by /s is M-equivalent to she sub-feld (G
of all almost &,-invariant sebs.

The case where our parameter of interest is | | o s verr¥
similar. Ones again we observe that the statistie [Z]/sis oriented
towards | p|/o. Hence, making use of Thoorem 5 and obsexvin
that [z[/s is the maximal invariant with respect to the Sﬂb‘
group of linear parameter-preserving transformasions of e
form

"=cHaz' (¢ 4 0, H a Haggsirom matrix),

L
we are able to show that the invariance reducsion of the date
18 to the statistic |z]/s.
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11. SOME FINAL REMARXS

a) In statistical literabure, the principle of invariance has
been wsed in a rather half-hearted manmer (see, for example,
[5] snd [6]). We do not find any consideration gtven to the
present project of reducing the dats with the help of the whole
class G, of y-preserving transformations. In fact, the question
of how extensive the class &, can be has escaped general atten-
tion. One usmally works in the framework of a relatively small
and simple sub-group of &, and invokes simultaneously the
two different principles of sufficiency aund invariance for the
purpose of arriving ab a safisfaciory data reduction. The main
objoct of the present axticle is to investigate how far the principle
of mvariance by ibself can take us.

b) The main limitation of the principle of sumciency i that
W% does not recognize nuisance parameters. Several abbempis
have been made to generalize the idea of sufficiency so that one
gels an effective data reduction in the presence of nuisance
Parameters. Not much success has, however, been achieved in
this direction.

¢) On the other hand, the invariance principle usually falls
B pieces when faced with a discrete model. The Bernoulli
fxfpenmenta,l set-up is one of the rare discrete models that the
mvananoe Drinciple can tackle. Tfz, 2, ..., %, are # independent
#ero-one variables with probsbilities 6 and 1-—§, then all permu-
i&’cmns_ (of co-ordinates) are model-preserving. And they reduce
*he data directly to the least suffcient shakishic r = & 4.4 %,
E{ake however, the following simple example. ILet z and ¥ be
ndependent zero-one variables, where

and Pe=0)=0 0<0 <1,
Ply=0)=1/3.

N . .
t:’w the identity-map is the only available roodel-preserving
ansformation. The principle of sufficiency reduces the data

o

mediately to 2.
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d) The object of this article was not to make a critical evalua-
tion of the twin principles of data reduction. Yet, the author
finds it hard to refrain from observing that both the principles
of sufficiency and invariance are extremely sensitive to changes
in the model. For example, the spectacular data reductions we
have achieved in the many examples considered here become
totally unavailable if the basic normality assumption is changed
ever so slightly.
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