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A RISKY ASSET MODEL WITH STRONG DEPENDENCE
THROUGH FRACTAL ACTIVITY TIME

C. C.HEYDE,* Australian National University and Columbia University

Abstract

The geometric Brownian motion (Black—Scholes) model for the price of a risky asset
stipulates that the log returns are i.i.d. Gaussian. However, typical log returns data shows
a leptokurtic distribution (much higher peak and heavier tails than the Gaussian) as well
as evidence of strong dependence. In this paper a subordinator model based on fractal
activity time is proposed which simply explains these observed features in the data, and
whose scaling properties check out well on various data sets.
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1. Introduction: the basic evidence

Over the past thirty years many risky asset models have been proposed, but these are
generally deficient in not adequately explaining key features from the statistical evidence
related to the issues of heavy tails and long-range dependence in financial time series. In
the case of the latter, there have been problems even with understanding the nature of the
characteristic, let alone its assessment.

In this note we provide a simple model which incorporates the statistical features as they
are now understood. We outline the statistical evidence in Section 1. The model is given in
Section 2 and its relation to the considerable previous literature is outlined in Section 3.

The paradigm model in mathematical finance is the geometric Brownian motion and this is
a natural point of reference. Under this model the price P; at time ¢ of a risky asset is

P = Pyexplut + o W(t)],

where 1, 0% > 0 are fixed constants and W(¢) is a standard Brownian motion. Then the
corresponding log returns,

X, =log P —log P_| = u+0o(W(t) — W — 1)),

are i.i.d. Gaussian with mean w and variance o2
In contrast, the typical log returns data shows:

e a pronounced leptokurtic distribution (much higher peaks and heavier tails than Gaus-
sian),
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e a time series with high volatility and intermittency quite unlike white noise,
e strong dependence.

It is now widely appreciated that heavier tails than the normal are a necessary model feature
for marginal distributions of returns. However, models with finite moments of all orders are
still commonly advocated. Detailed comparisons using market index data have been given in
Hurst et al. (1997) and Hurst and Platen (1997) and they favour a z-distribution with degrees
of freedom v typically in the range 3-5. This, of course, implies an infinite kth moment for
k> v.

Most approaches to the marginal distribution of returns have involved the use of parametric
families and the choice of a best fit within a family. Few authors have investigated general
questions, such as whether particular moments are finite. Part of the difficulty has been a
general supposition that tail behaviour would be a power function, at least asymptotically, and
that estimating the power index is problematical. Indeed, the usual method, based on the Hill
estimator, is founded on order statistic theory for i.i.d. samples and it can suffer from major
shortcomings outside that context. See, for example, the ‘Hill Horror Plot’ in Resnick (1997)
and the attendant discussion.

Itis, however, quite possible to test for finiteness of moments based on asymptotics obtained
via the use of the ergodic theorem if the assumption of stationarity of the returns is retained.
In particular, if Y7, | X;|”/n converges as n — oo then E|X|? < oo. If, on the other hand,
maxi<j<n | Xi|P/ Y ;_; 1Xi|P stays away from zero as n — oo then E|X|P = co. Plots as n
increases for large data sets should give a clear picture. For example, multiple tests on daily
data from the well-known S&P 500 index lead to the conclusion that the 4th moment is infinite
(e.g. Mikosch (1997); Yang (1998)).

The next issue for modelling is that of strong dependence in the data. Log returns always
display a clustering of extremes (intermittency). Sample autocorrelations of the log returns
die away quickly but this is not the case for their absolute values or squares, which have
non-negligible values for large lags. This is convincingly illustrated in Ding and Granger
(1996) and Granger and Ding (1996) with daily returns data from the S&P 500 index, the
Nikkei index, the foreign exchange rate DM/US$, and Chevron stock. In the case of the
absolute values from the S&P series, for example, the lagged autocorrelations are significantly
different from zero for lags up to 2700, which is more than 10 years. The absolute values and
squares of the returns exhibit long-range dependence (LRD), classically defined (for stationary
finite variance processes) as holding if Yy, v« diverges, yx being the autocorrelation at lag
k. For a discussion of the definition and its extensions see Heyde and Yang (1997). For a
comprehensive overview of the subject of LRD see Beran (1994).

Claims of long-range dependence in the log returns themselves have sometimes been made
(e.g. Peters (1991, 1994) for the S&P index) but this has generally been done on the basis of
R/S analysis, which is known to be highly sensitive to departures from stationarity (see for
example Heyde and Dai (1996)). However, the use of other methods which are robust against
departures from stationarity does not support this conclusion (Heyde and Yang (1997)). But
the debate still continues. Lo (1991) developed a modified R/S statistic and on the basis of
its use rejected the hypothesis of LRD in the log returns, but weaknesses in his procedure
have been pointed out by Willinger er al. (1999), who dispute his assessment, albeit without
compelling evidence. Nevertheless, it remains an inescapable fact that the strong dependence
in the data is principally reflected in the absolute values and squares of the log returns and not
in the log returns themselves.

None of the existing models capture all these features satisfactorily and we now proceed to
outline how this can be done straightforwardly.
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2. Modelling to retain the essential features of the
geometric Brownian motion (GBM) model

2.1. Subordinator model (Stage 1)

The {log P;} process should have stationary differences and the absolute values and squares
of the differences should exhibit LRD. We suppose that

Py = Pyexplut + o W(Tp)l,

where {T;} is a positive increasing random process with stationary differences which is inde-
pendent of the Brownian motion {W (¢)} and the differences of the {7;} process are LRD and
have heavy tails.

The random time changed version of GBM has all the features suggested by the data. Clock
time just does not correspond to activity time (also called trading time or intrinsic market time).

Without loss of generality, choose T; ~ t almost surely as t — oo.

Then

X; =log P, —log P,
=pu+oW(T) — W(Ti-1)

Lo — T ) PW(Q).

The heavy tails of the X; come from those of 7, = T; — T; 1.
Also, fork =1, 2, ... and centred variables,

cov(Xy, Xi4x) =0,

2 12 _1/2
cov(IX;l, 1 Xexl) = o2 cov(,”?, 7!,

cov(Xz, X,2+k) =30* cov(Ts, Tr+k),

the last if E7,2 < o0o. Thus, LRD of {|X;|} and {X,2} follows from that of {r,’*} and {r;}
respectively.
Other features of the model are conditional heteroscedasity,

var(X; | Fi-1) = 0?E(%; | Fi-1),

and leptokurtosis
kurtosis(X;) = 3(1 + vart;) > 3

(if finite).
The model provides a coherent formulation for all time scales, in contrast to ARCH, GARCH-
type models which focus on a single time scale.

2.2. Subordinator model (Stage 2)

Now we consider the activity time process in more detail, noting that it should exhibit LRD,
and that LRD is often suggestive of self-similar or multifractal behaviour.
Fortunately, the activity time process {T;} can be empirically constructed. Note that the use
of Itd’s formula gives
ar, | 5
leg Pt - "F‘ = §O' th,

t
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from which the increments of the {7; } process may be obtained in a discretized approximation.
This allows the process to be checked for self-similar or multifractal behaviour.
The kind of multifractal behaviour which might be expected is a relationship of the form

T, —ct £ M(c)(T; — 1)

for positive ¢, where M and T are independent random functions and £ denotes equality
of finite dimensional distributions. Self-similar behaviour occurs if M(c) is of the form c¥X,
0<K<1.

Approximate self-similarity can easily be checked via crude estimation of K. Suppose that
the price P, is observed over a fixed time interval [0, 7] and let

N
S48 =Y |Tis — Ta-ns — 817/ N,

i=1
where 7 = Né and 0 < g < p with ETIP < oo. If {T; — t} is self-similar, then
log ES;(8) = Kqlogé +1log E|Ty — 1|7

for 0 < g < p. Now the ergodic theorem ensures that S, (8) NE Sq(8) as N — 00, so one
checks whether log S, (8) scales linearly with both log and g. Linearity with respect to just
log § and not g signifies multifractal behaviour.

Preliminary examination of various examples suggests that a self-similar model is usually
satisfactory. For the S&P daily returns, for example, we find K ~ 0.8. A comprehensive study
is being undertaken.

It should be noted that the increments of the process {7; — t} can easily be shown to be
LRD (SAV) for K > 1/pif E|T} — 1|? < oo for some 0 < p < 2 (Heyde and Yang (1997)).
This nicely explains the empirically observed strong dependence. The LRD (SAV) refers to
a sample Allen variance based definition of LRD which copes with processes having possible
infinite variance, such as is the case here, but essentially reduces to the classical definition in
the finite variance case.

For some economic discussion, based on ideas of complexity and self-organized criticality,
which suggest why the activity time process (standardized to have zero mean) could have a
self-similar scaling, see Arthur (1995) and Bak (1996) (particularly Chapter 11).

The principle of Occam’s razor is being used here. We have sought the simplest model
which reasonably represents the data, while retaining the essential features of the original
GBM model.

3. History

A subordinated process (mixture) model formulation dates back to Mandelbrot and Taylor
(1967). They used a (one-sided) stable law of index «/2 (where a < 2) for the distribution
of t;, which gives a symmetric stable distribution of index « for W(7;). This is theoretically
attractive but does not match the data. It has infinite second moment and no LRD. Mandelbrot
and Taylor conceived of the {T;} process as reflecting transaction time.

Perhaps the next was Clark (1973), who used the lognormal. This does not get the moments
right and again there is no LRD. Clark related the {7;} process to trading volume.
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Many others have subsequently tried other marginal distributions. A detailed assessment
of these is given in Hurst and Platen (1997). They favour the 7-distribution with degrees of
freedom in the range 3—5 on the basis of an empirical analysis of market indices for the USA,
Japan, Germany, Switzerland and Australia.

Various other interpretations of the {7;} process have also been given. For example, Ander-
sen (1996) took for his 7, what he called the ‘intensity of information arrivals’, an unobserved
process, but one which also drives the volume process.

Even though an entirely satisfactory economic model for the {7;} process may not yet
be available, the characteristics of the process are fairly clear from the available statistical
information.

Recent contributions containing subordinator models along similar lines to those of the
present paper are Hurst e al. (1997) and Mandelbrot ef al. (1997), which also contain many
references to earlier literature. In the former paper the activity time process {7;} is assumed
to have (stationary) independent increments. This, however, results in independent returns and
does not reflect the strong dependence in observed series.

In Mandelbrot ef al. (1997) it is assumed that

P, = Pyexp[By (6(1))],

where By (t) is a fractional Brownian motion process with Hurst index H and the activity
time O(¢) is a multifractal process with non-decreasing paths and stationary increments. This
is required to satisfy a local scaling rule of the form

0(t +cAt) —0() 4 M(c)@@ + At) —60()),

for all positive ¢, where M (c) is a random variable. Now if H = % By (t) = W(¢), standard
Brownian motion, as used in this paper, but if H # % the process is not a semimartingale, the
standard stochastic calculus is lost, and arbitrage opportunities exist (e.g. Rogers (1997)). This
makes the model unattractive for finance applications. Furthermore, if H > % the returns
process itself will exhibit LRD, which does not appear to be the case in practice. Also, since
the increments of the positive process {6(¢)} are stationary, it is necessary, if the returns are
to have finite first moment, that 6(¢) ~ ot almost surely as ¢t — oo for some @ > 0. Hence
O(t) itself can only have a trivial scaling. Finally, in fitting the model to DM/US$ exchange
rates, Fisher ef al. (1997) estimate the H in their fractional Brownian motion to be 0.53, which
is close enough to 0.5 to confirm the adequacy of ordinary Brownian motion as the carrier
process. They also seek multifractal behaviour for {X,}, while it appears to this author that
this is a property of the activity time process and not the log returns process itself.

The simple model of the present paper, which could be designated FATGBM (geometric
Brownian motion with fractal activity time) captures enough of the reality of the actual pro-
cesses to warrant detailed examination without obscuring the picture with additional sources
of possible LRD.
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