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ON BEST ASYMPTOTIC CONFIDENCE INTERVALS
FOR PARAMETERS OF STOCHASTIC PROCESSES

By C. C. HEYDE

Australian National University

This paper is concerned with the size of confidence intervals for
parameters of stochastic processes based on limit laws with two competing
normalizations, one producing asymptotic normality and the other asymp-
totic mixed normality. It is shown that, in a certain sense, the interval
based on asymptotic normality is preferable on average. Applications to
estimation of parameters in nonergodic stochastic processes and to estima-
tion of steady-state parameters in a simulation are given to illustrate the
theory.

1. Introduction and results. Much asymptotic inference for stochastic
processes is based on use of some obvious consistent estimator but involves a
choice between competing normalizations, one being of constants and the
other of random variables. In this paper we study the common situation where
either asymptotic normality or asymptotic mixed normality is achievable
through suitable normalization. It is shown that there is a certain sense in
which, on average, confidence intervals based on the asymptotic normality
result are preferable to those based on asymptotic mixed normality.

THEOREM. Let {én} be a sequence of estimators which is consistent for 6
and {c,},{d,} be norming sequences, possibly random, such that

(1) cn(én - 0) —d W,
@ d(f, — 0) =g 1 =W

as n — o, where W is standard normal and n > 0 a.s. is random, indepen-
dent of W and such that

-1
cndn _)d n

as n — ». Suppose that L8), i = 1,2, is the minimum length of an
100(1 — 8)% confidence interval for 6 based on an exact, approximate or
assumed distribution of the pivot in (1) and (2), respectively, for which the
specified convergence result holds. Then

lim inf E( L2(8) /LY(5)) = 1.
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ReEMARK 1. The theorem gives a sense in which, on average, confidence
intervals based on the pivot in (1) are to be preferred to those based on the
pivot in (2) whether or not a random norming is required.

REMARK 2. A principal application of the theorem is in the context of
inference for the nonergodic models that are common in stochastic process
estimation [e.g., Basawa and Scott (1983), Hall and Heyde (1980), Chapter 6].
In this context we have {c,} as random and {d,} as constants so that L{(§) is
a random variable and L*X(5) is a constant.

One of the most important special cases is that of locally asymptotic mixed
normal (LAMN) families. This is the situation in which the log-likelihood ratio
has asymptotically a mixed normal distribution and results of type (2) hold
with {d,} as constants and (1) with {c,} as random variables, while Ec, = d,
for each n. For LAMN families one has, under modest regularity conditions, a
striking result known as Hajék’s convolution theorem [e.g., Theorem 2, page
47, of Basawa and Scott (1983)] to the effect that if {7} is any other sequence
of consistent estimators of 6 such that

(3) dn(Tn - 0) —d U
for some nondegenerate U, then
U=,V+n W,

where V is independent of n and W.

It is readily shown that confidence intervals based on the pivot in (3) are
wider than those for the corresponding result (2). That is, using (1) is better on
average than (2), which is better than (3). If ® is the standard normal
distribution function, we have for any real a, 8, a with 8 > «,

(4) ®((B-a)y) —P((a —a)y) <P(3(B—a)y) - P(—3(B —a)y)
and hence, integrating with respect to dP(n < y),

(5) Pla<n 'W+a<B)<P(-z(B—a)<n 'W<3(B-a)),
so that

Pla <n 'W+V<B) :fm Pla<n 'W+v <B)dP(V <v)
<P(—3(B—a) <n 'W< (B —a)).

REMARK 3. A particular case of the result of the theorem has been obtained
by Glynn and Iglehart (1990) who studied the problem of finding minimum
size asymptotic confidence intervals for steady state parameters of the simula-
tion output process from a single simulation run. They contrasted the ap-
proach of consistently estimating the variance constant in the relevant central
limit theorem with the standardized time series approach which avoids estima-
tion of the variance in a manner reminiscent of the ¢-statistic and suggested
that the former approach is preferable on average.
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2. Proof of theorem. Suppose that ®, and V¥, are exact, approximate or
assumed distribution functions of the pivots ¢,(8, — 0) and d,(6, — 6), respec-
tively. We are given the complete convergence results

®Yl _)C¢’ ‘\I,Yl —>C‘\P
as n — o, where
®(x) =P(W=z) and ¥(x)=P(n 'W=z)=[ ®(ay)dG(y)
0
with G(x) = P(n < x).
Now let a,, b, be any numbers for which
This gives a confidence interval for 6 of length
10(8) = (b, —a,)/c,.

By passing to a subsequence, we may suppose that a,, — a and b, — b, where
—o < a < b < » Then, by complete convergence,

®,(a,) — ®,(0,) > (b)) — P(a),

and, in view of (4), b — a > 2z;, where 2®(z;) = 2 — §. Therefore, noting that
¢, 1'P(8) is not random, we have

(6) liminfc, L{P(8) > 2z;.

n—o oo

Next, let z, be the smallest z for which
P (z) —P,(—-2)=>1-35.
As above, we may suppose that z, — z, and, because ® is continuous,
,(2,) ~ D(~2,) =1 -5 +0(1)
as n — «. By complete convergence and using the result ®(—x) = 1 — ®(x),

x > 0, it follows that 2d(z,) = 2 — § and hence that z, = z;. Then, L{"(5) <
2z,/c,, so that

(7) liminfec, L{P(8) < 2z;,

n— o

and (6) and (7) imply
(8) lim ¢, LP(8) = 2z;.

n-—o

Similar reasoning to that which led to (8) also applies to show that
(9) lim d, L®(8) = 25,

where 2W¥({;) = 2 — 6. We merely replace (4) by (5) to show that the symmet-
ric confidence interval is best, while V(—x) = 1 — ¥(x), x > 0, is evident from
the definition and the corresponding result for ®.
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From (6) and (9), it then follows that, as n — o,
d,LP(8)/c,LY(8) = {5/25.
Since ¢, /d, —4 n, Slutsky’s theorem gives
LY(8)/LY(8) =4 mls/25
and then, using Billingsley [(1968), Theorem 5.3, page 32],
lim inf E(L$?(8) /L(8)) = (En){s/25-

Thus, in order to complete the proof, it remains to show that
(10) (En)s = z;.
Now note that {5 = {(n; 8) solves the equation
V({(n;8)) =P(n 'W<{(n;8))=1-5/2.
Then, taking b > 0, we have

1) 1
1- 5= P(W<{(n;8)n) =P|W< E{(n;&)bn =P(W<{(bn;8)bn)
so that continuity and strict monotonicity of ¥ imply that

1
£(bn;8) = 4(m;9)
and hence, if

¥(m) = (En){(n;9),

we have
(11) W(bn) = d(n).
Now we see from (10) that it is required to show
¥(n) =2 ®7Y(1-5/2)

and using (11) we may, without loss of generality, scale n so that
(12) {(m;8) = 1.
But (12) implies

V(1) =1-35/2,
or equivalently,

f:@(y)G(y) —Ed(n) =1-58/2.

Thus, we have to show that

Y(n) =En=® Y(1-5/2)
subject to
E®(n) =1-46/2,
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and since @ is monotone, this holds if
(13) P(En) = EQ(n).

However, since 1 — ®(x) is convex for x > 0, as is easily checked by
differentiation, we have from Jensen’s inequality that

1 - ®(En) <E(1-®(n))
and (13) follows. This completes the proof.

FINAL REMARKS. It is worth noting that (10), which relates the average
confidence intervals when (1) and (2) hold exactly rather than as limits, is a
paraphrase of the fact that, on average, extraneous randomization does not
improve confidence intervals for a normal mean. That is, if X is distributed as
N(6, 1), the usual symmetric confidence interval for 6 based on X — 0 is not
improved, on average, if one instead uses the pivot (x — 6)/7n, where 7 is
independent of 6. In particular, when X, s? are the mean and variance of a
random sample from the N(6, o?) distribution where o is known, using the
t-intervals for 6 based on (X, — 0)/s, produces confidence intervals which are
longer on average than z-intervals.
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