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1. INTRODUCTION

This paper is concerned with recent progress towards a general unification of two of
the principal themes in statistical estimation theory, those of least squares, which is
founded on finite sample considerations, and maximum likelihood, whose justification is
primarily asymptotic. The gestation period for this progress has been long and very many

authors have contributed. Many key references are given in Godambe and Heyde (1987).

The methods underlying the abovementioned unification are based on extensions of
the concept of Fisher information and it is especially appropriate to remember Fisher at
the 47th Session of the ISI, the one which is closest to the centenary of his birth
(February 17, 1890 in London). His introduction of maximum likelihood (although not
yet under that name) in Fisher (1912) and his seminal papers Fisher (1920), (1922),
(1925) introducing information, consistency, sufficiency, ancillarity, etc., provided a basis

on which all current discussions are built.
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It is through the use of estimating functions (functions of both the data and the
parameter) rather than the estimators themselves that it is possible to incorporate the
principal advantages of the methods of least squares and of maximum likelihood. The
virtue of this indirect approach of estimating an unknown function which has the true
value of the parameter as a root rather than estimating the parameter directly may be less
than transparent at first sight. This is despite the long history of the subject, which dates
back at least to K. Pearson's (1894) introduction of the method of moments, and the fact
that the standard methods of estimation: maximum likelihood, least-squares, conditional
least-squares, minimum chi-squared, M-estimation, etc., are included under minor
regularity conditions. Also, Fisher's information is an estimating function property,
namely of the score function (the derivative of the log-likelihood with respect to the
parameter) rather than of the maximum likelihood estimator. Indeed, the rationale lies in
the more fundamental character of the estimating function than that of an estimator
derived therefrom. For example, under minor regularity conditions, the score function
provides a minimal sufficient partitioning of the sample space. However, there is often
no single sufficient statistic. Also, the asymptotic properties of an estimator are almost
invariably obtained, as in the case of maximum likelihood, via the asymptotics of the
estimating function and then transferred to the parameter space via local linearity. For
details concerning the derivation of the asymptotic properties of the MLE from those of
the score function together with a further justification for use of estimating functions in
terms of marginalization for incomplete data problems, see Chapter 1 of McLeish and
Small (1988). To these considerations we shall add another, namely the ready capacity to
combine separate estimating function, each with information to offer about the unknown

parameter (Heyde (1987), (1989)).

Within broad classes of unbiased estimating functions it is possible to develop a
theory of optimality, founded on information based ideas, which encapsulates the virtues
of least squares and maximum likelihood. This carries with it, as simple corollaries, such

diverse results as the Gauss-Markov Theorem, the Cramér-Rao Inequality and the
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minimum size asymptotic confidence zones property possessed by the maximum
likelihood estimator (subject to the usual regularity conditions). The estimating functions
so produced can be interpreted as quasi-score estimating functions and the estimators

derived therefrom as quasi-likelihood estimators.

2. THE SETTING

Let {X(, 0<t<T} be a sample in discrete or continuous time drawn from a
process taking values in r-dimensional Euclidean space whose distribution involves a
"parameter” © taking values in an open subset 6 of p-dimensional Euclidean space.
The setting may be parametric or nonparametric; 6 could be, for example, the mean of

station rocess. The true value of the "parameter” is 6, and this is to be estimated.
ary p Y o

Suppose that the possible probability measures for { X‘} are {Pe} and that each

(Q,T,Pe} is a complete probability space.

We shall confine attention to the class § of zero mean square integrable estimating
functions GT = G’I‘((Xt’ 0<t<T}, 0) for which EGT((-)) =0 for each Pe . Here GT
is a vector of dimension p . Estimators 6 are found by solving the estimating equation
GT(G) =0.

We consider a class of %€ § of estimating functions G.. which are as.

differentiable with respect to the components of 6 and such that
EG, = (EaGT’i/aeR

and EGTG,} are nonsingular, the prime denoting transpose.

Recent studies on the performance of estimating functions G, involve focusing on

the quantity

~ ’ =1 ~
EGp) = (BGp' EGG ™ (EGy

which may be thought of as an information matrix (and is indeed the Fisher information

matrix when GT = UT , the score function). Our object is to maximize this estimating
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function information within specified classes of useful estimating functions and to this
end we adopt the following definition whose origins date back to Godambe (1960) and
Durbin (1960).

Definition 1. Suppose that G;‘. € "lll c¥. If
E(G?lt) - E(GT)

is nonnegative definite for all GT € 7[1 , we say that G;. is OF—optimal within ’ll .

The terminology OF—optimal refers to finite sample optimality. There is also a
closely related concept of O A—optimality (asymptotic optimality) (see Godambe and
Heyde (1987), Heyde (1988)) and both hold under broad conditions. We shall confine

attention to Op-optimality in this paper for clarity of exposition.

Note that the definition of OF—optimality does not require the existence of the score
function, and indeed the setting may be nonparametric. Nevertheless, to motivate the
definition it is useful to suppose that the score function UT exists and is a.s.
differentiable with respect to the components of 6, and that differentiation and

integration can be interchanged in EGTU{. and EUTG.'r for all G under consideration.

Now, as noted above, the score function typically provides a minimal sufficient
partitioning of the sample space so we should use this estimating function as a basis for
inference if it is known. However, if the true underlying parametric family and hence the
score function is unknown we can seek an estimating function GT which has minimum
dispersion distance from UT’ This is precisely what an OF—optimal solution provides.

That is, for some fixed matrix a dependingon 6 and T,

E(a U - Gy (aUp G)” - E(aq Uy - G) (U - G
is nonnegative definite for all GT € ”Il . (Of course an optimal estimating function is

defined only up to a constant (matrix) multiplier.) Furthermore, if the dimension of
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0, p=1, another equivalent formulation is that G; has maximum squared correlation
with UT . These are, of course, least squares principles built into the formulation. For

details of the equivalences see Godambe and Heyde (1987).
Additionally, under a fairly broad range of conditions the covariance matrix of the
estimator éT given by GT(éT) =0 is asymptotically (:‘,‘(GT(GO)))'1 and, indeed,

’ —1/2 ~ 2 d
(EG1(8p) G1®) ™" €G(6)) 61-0) <= N (O1). (1)

where "d" denotes convergence in distribution to Np(O,Ip) , the standard p-variate
normal. Hence, asymptotic confidence zones of minimum size are associated with an
O-optimal estimator for which (£(G;(8)))”" is minimized in the partial order of
nonnegative definite matrices. This is of course, the characteristic property of maximum
likelihood but here there is a restricted class of competitors. Nevertheless, the prime

advantage of maximum likelihood is built into the formulation.

The heuristics are as follows. By Taylor expansion
0= GT(GT) = GT(GO) + GT(el.T) (6T - 60)

where |6, - <16, - 6| and under certain conditions,

6, 7l
. . -1
G1®, P EG O B 1,
’ -172 d
(EG1(8y) G10) 7 G(6) = N (0.1 )
as T — e from which (1) readily follows.

The criterion of Definition 1 is often not of direct practical value but an equivalent
from is given in the following theorem of Heyde (1988) which is easier to use and is

preferabe to other equivalent terms such as those mentioned above.

Theorem 1. Suppose that ’ll c ¥ is a convex set. Then, G;: € 7(1' is OF—opn‘mal within
X, if and only if
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(EG‘T)“ EG, G}’ = (EG;)“ EGXGX’
for all GT € ’ll .

3. SOME RAMIFICATIONS

An estimating function which is OF-optima.l can be regarded as a quasi-score
estimating function and an estimator derived therefrom as a quasi-likelihood estimator.
We shall henceforth employ this terminology which was introduced by Wedderbum
(1974) and has been widely used in the context of the general linear model (e.g.
McCullagh and Nelder (198%, Ch.8)) as it is a helpful description and underlines its useful
properties. A quasi-score estimating function will indeed be a true score in a wide variety
of situations, such as in an exponential family environment; for some general discussion

of this issue see Sorensen (1989).

The classical quasi-likelihood setting concerns estimation of 6 where the sample is

of independent random vectors Yl , 1<t<T, with means p.t(e) and dispersions
E(Y, - 1(8)) (Y, - 1, ©®)" = v,®).
The quasi-score estimating function is defined as

T
o+ < rxrt
Qr = TRV -m) = VY-
where

B Gy iy Y=Y YD), VY = diag(v) s v)

and for a matrix A, A" denotes its Moore-Penrose pseudoinverse, the unique matrix
possessing the properties AA*A=A, A*AA*=A%, A'A=AAY. That Qp is
OF—optimal within the relevant class of weighted sums of (Y[ - p.[)'s follows

immediately from Theorem 1.

As another application of Theorem 1 we note that under the regularity conditions
which are imposed,

EGT = "EGTUT
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and if UT € ¥, then

l ’
(EGT)_ EGTUT = —Ip.

Thus, UT is OF@ptimal within ”Il via Theorem 1. This means that for GT € 11 s
- —1 ’ ~ —1 7 ’ —1
(EG)™ €G,G) (BGD™)’ - (BULUD @)

is nonnegative definite which encapsulates the multivariate Cramer—Rao Inequality. This
is usually presented in the case where GT is of the form GT = ST -8 when ST is a

statistic with EST =0, and then (2) gives the nonnegative definiteness of
’ ’ _1
E(ST -6) (ST -0) - (EUUD .
For random sampling EUTU,} =n I, say, where X is the Fisher information contained
in a single observation.

A final application of Theorem 1 treats the Gauss—-Markov Theorem. This has
traditionally been set in the context of a multiparameter linear regression model, for
example

Y = X0+¢

where Y = (yl,...,yn)' , X is an nxp design matrix of rankp, 6= (61""’9;)), is a
parameter vector and € is a zero mean error vector with independent components and

covariance matrix V .

Unbiased linear estimates of 8 are of the foorm AY where A is a pxn matrix
such that AX = Ip , and we may think of these as coming from a corresponding linear

unbiased estimating function A(Y - X68) which, when set to zero, yields the estimator

AY.

The standard approach via least squares is to minimize the covariance matrix
E(AY-0) (AY-6)" = AVA',

subjectto AX = Ip , in the partial order of nonnegative definite matrices. This leads to

406



the solution

A* = xX'VIxT XV 3)
and estimator A*Y for 6, provided V is nonsingular.

Now an alternative approach is to seek the OF—optimal estimating function within

the family of estimating functions

¥ = {A(Y -X6), AX=Ip} .
Then, writing

G = A(Y-X6), G* = A*(Y -X6)
with A* asin (3), we have, via Theorem 1, that G* provides the desired solution if
(EG)! EGG**

is a constant matrix. This is, furthermore, easily checked since

EG = I
and

EGG*’ = AE(ee’)A*’ = AVA*' = (X'Vx).

This theory can be put in a more general setting of best linear unbiased estimators
(BLUE's) for stochastic processes, as in Grenander (1981, Ch.4) with minimal change to
the mathematical details. Here it is assumed that Y(t) has mean m(t) where m(t) is

expressible in the form

m@) = 2 av\yv(t) = a'¥
v=1

where the coefficients (al,...,ap)' =a are real or complex unknown constants and the
(\yl,...,\yp)' =¥ are given functions. Similar considerations to the above lead to
Theorem 2, Chapter 4 of Grenander (1981) and we can interpret the BLUE as coming

from the OP@ptimal estimating function within the class

"P=1}.
{cY,c p]
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4. FURTHER CONSIDERATIONS AND EXTENSIONS
In this concluding section we mention a number of related issues of importance.

Many estimation problems are based in a natural way on a semimartingale model
which thereby leads to consideration of martingale estimating functions. For such
models, O A—optimality, which is briefly mentioned above and is very closely related to
OF-optimality, is generally a more pertinent concept. For the beginnings of a comparison

of the different criteria see Heyde (1988).

OF and O A—optimality are exact properties and in some applications optimality
holds only in an asymptotic sense. For a treatment of asymptotic quasi-likelihood see

Heyde and Gay (1989).

Quasi-score estimating functions based on different classes of estimating functions
can be derived in many contexts and it is important to be able to compare them and to
combine them if this should be advantageous. Furthermore, various problems present a
collection of conditional or marginal processes leading to separate quasi-score or score
functions which can potentially be combined. This may occur, for example, when
likelihood methods are very difficult to use or when it is only part of the model that can
be treated satisfactorily. In either case, one has to consider a set of quasi-score functions
Qi,T’ 1<i<k, and the maximizing of information over the class of estimating
functions {2‘1.‘.__1 W, i,'r} . New results on this problem are given in Heyde (1989)
building upon discussions of the case k =2 in Heyde (1987) and of the combinations of

true score functions in Lindsay (1988).

Much more remains to be said on the subject of optimal inference in problems where
there are nuisance parameters. For some discussion and references see McLeish and
small (1988). Their approach to optimal inference is via concepts of E-ancillarity and
E-sufficiency which permit inferential reduction analogous to the usual sufficiency and

ancillarity reductions but within the class of unbiased estimating functions.

Finally, rather little theory has yet been developed for extensions of optimal
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estimation beyond the case of finite dimensional parameters. Contributions include the
thesis of Thavaneswaran (1986) and treatment of the special case of linear inference
(Grenander (1981)). Many important applications involving estimating of functions await

this theory and ad hoc methods abound.
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SUMMARY

This paper outlines the recent development of a general theory of quasi-likelihood
which embraces the principal features of the methods of least squares and maximum

likelihood.

RESUME

Cet article expose le developpement nouveau de une théorie générale de quasi-
vraisemblance. par ol on embrasse les méthodes de moindre carrés et de maximum de

vraisemblance.
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