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This paper is concerned with the estimation of a parameter of a stochastic process on the basis
of a single realization. It is shown, under suitable regularity conditions, that the maximum
likelihood estimator is the best consistent asymptotically normal estimator in the sense of having
minimum asymptotic variance. It also produces the best limiting probability of concentration in
symmetric intervals. An application is given for the problem of estimating the mean of the
offspring distribution in a Galton-Watson branching process.
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Introduction

In the case of estimating a parameter on the basis of observations which are
independent and identically distributed or come from a stationary ergodic Markov
chain, it is known that the maximum likelihood estimator (MLE) enjoys certain
optimality properties. One of the most significant of these is a result of Schmetterer
[13] (extending one of Rao [10]) that, subject to suitable regularity conditions, the
MLE is the best consistent continuously asymptotically normal estimator in the
sense of having minimum asymptotic variance. In this paper we shall obtain an
analogous result for the much more complex case where the sample is from a
general stochastic process. The result is an augmented and corrected version of that
presented in Heyde [6]. We also show that the MLE produces the best asymptotic
probability of concentration in symmetric intervals. The results follow from ideas of
Weiss and Wolfowitz [15].

We consider a sample X, X5, ..., X, of consecutive observations from some
stochastic process whose distribution depends on a single parameter, 6, 0 € 0, ©®
being an open interval. Let L,(8) be the likelihood function associated with
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2 C.C. Heyde | Maximum likelihood estimator

Xi,..., X, and suppose that L,(6) is differentiable with respect to 6 and
Eys(dlog Ln(G)/d0)2<oo for each n. Suppose in addition that if P,(Xy,..., X,)
(=L,(8)) is the joint probability (density) function of Xji,...,X,, then
Y Pu(x1, ..., x2)( Pu(xy, . . ., x,) dx,) can be differentiated twice with respect to 6
under the summation (integration) sign. We shall write F; for the o-field generated
by X1, ..., Xy, k=1, take Fj as the trivial o-field and set Lo = 1. Then, writing

dlogL.(8) =
d0 _igl ui(o),

we have Eqo(u;(6)|Fi-;1)=0 a.s., so that {dlogL,(6)/d6, F,,n=1} is a (square
integrable) martingale. In addition, we set
L(6)= Y Eo(ui(8)]Fi1)
i=1
and note that, under the conditions imposed above, v;(8) = du;(0)/d6 satisfies
Eo(ui (8)| Fim1)= —Eq(vi(8) | Fi_y) aus.

Also, writing
L©®)= X v(6)

we note that {J,,(6)+1,,(8), F,, n =1} is a martingale.

The quantity I,(8) is a form of conditional information which reduces to the
standard Fisher information in the case where the X; are independent random
variables. The rdle of I,,() in the stochastic process estimation context is a vital one
and aspects of this are discussed in Heyde [5], [6], Heyde and Feigin [7]. The
importance of I,(0) is easily seen from the following expansion. We suppose that 6
is the true parameter value. Then, we can use Taylor’s expansion to write for §' € 0,

d n
- 1 n 0, = i !
de’ og L,(0) i;“(f))

=Y wi(0)+(6'-0) ¥ vi(0%)
i=1 i=1
= gﬁl ui(0)—(6'— ), (0)+(6'— 0)(Jn(87)+ 1.(8)) (1)
where 8% = 0+ v(6'— 0) with y = y(n, ) satisfying |y|<1. Further, since

LI T w®) =0

provided I,,(6) 2 oasn >0 (a martingale strong law, e.g. see Heyde and Feigin
[7]), we see that the likelihood equation has a root 6, which is strongly consistent
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C.C. Heyde | Maximum likelihood estimator 3

for 6 if I,() — oo and

lim sup [1,(8)] |1,(8)+ J.(65)<1 as.

for |0} — 8] < & sufficiently small. Suppose that these conditions hold.

In order to utilize most effectively the MLE from large samples it is necessary for
Yi-1 u;(8) to converge in distribution, when appropriately normalized, to some
proper limit law. Furthermore, it can be arranged in many cases that this limit law is
normal, which is most convenient for confidence interval purposes. The most
effective general norming seems to be provided by IY? () and, indeed,
[1,(6)]"* Y1 u:(9) converges in distribution to normality under quite wide
ranging circumstances (e.g. Hall [2], Scott [14]).

Now suppose that

LI ¥ u(6) > NO. 1),

If, in addition to the above conditions, J,(0%*)=—1I,(8)(1+0(1)) in probability as
n - oo for 0%* = 6 +s(, — 6) with any s satisfying |s| <1, we have from (1) that

1%0)6, - 6) > N(0, 1),

Then, if T,=T,(X,...,X,) is any consistent estimator of 6 for which
I)*0)T,— 0)—d> N (0, B%(6)) where B(8) is bounded and continuous in 6, we
shall show, under suitable additional regularity conditions, that 3?(8)= 1. That is,
the MLE is optimal within this class since 8(8)=1 when T, is the MLE.

Of course it is desirable if comparisons can be made between the MLE and those
other consistent estimators for which 1> (6)(T,, — 6) converges in distribution to a
proper law (not necessarily normal) or perhaps does not even converge. Such
comparisons have been made in the case where the {X;} form a stationary ergodic
Markov chain by using the concept of asymptotic efficiency in the Wolfowitz sense
(see Roussas [12, Chapter 5]). Minor modifications of the standard theory as
presented in [12] leads to comparisons of the kind

lim Py(—c < (Eol,(6)"*(8,— 6)<b)=
= lim sup Po(—c + w(8) < (Esl,(8))"* (T, —6) < W(8)+b)
for arbitrary positive b and ¢ and certain W (6)= w(8). This inequality holds under -
conditions which are quite similar to those of this paper but (at present) require that

L, (0)(Edl,(6))" S 1asn->o. It is, however, the cases where this last condition is

not satisfied that pose the real interest and challenge in the treatment of stochastic
process estimation. Our arguments in this paper are principally concerned with the
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4 C.C. Heyde | Maximum likelihood estimator

commonly occurring circumstances under which I, (8)(Eel,(6)) ™" > n(8) as n >0,
7 being a random variable in general.

These difficulties can be avoided if we restrict consideration to symmetric con-
centration intervals. Then, using results of Weiss and Wolfowitz [15], we shall show
that

lim Py(—c < (Eol,(9))"*(6,—0)<c)=
=1lim sup. Py(—c < (Eel,.(8))/*(T, — 6)<c) for all ¢>0.

Principal result

We suppose that (Xi,...,X,) possesses a density P,(Xi,...,X,)(=L,.(9)),
which is continuous in 6, with respect to a o-finite measure w, and that the
following two assumptions are satisfied.

Assumption 1. (i) 1,(6) = 0, I,,(8)/ Eel, (0)—p> 1n(0)(>0 a.s.) for some r.v. n, and
J.(60)/1.(6) 5-1 as n o0, the convergences in probability being uniform in
compacts of 4.

(i) [I,(8)) "> dlog L,.(8)/d6 et N (0, 1) (mixing), continuously in 6.

Assumption 2. For 8 >0, supose |0, — 6o| < 8/(Es,I,(60))">. Then,
(1) Eo 1.(6,)= E4,I.(80)(1+0(1)) as n » 0, and
(i) I,(6.)=IL,(60)(1+0(1)) a.s. as n >0,
(iii) J,.(0,)=J.(60)+0(I,(8o)) a.s. as n - oo,

These assumptions are not severe and conditions may be imposed directly on the
stochastic process to ensure them. The mixing convergence in Assumption 1 calls
for some comment. Here the mixing convergence means

dlog L,(0
2d log ()}|B)=exp—%t2

lll’g) Eg(exp{ lt(In (0 ))—1/ de

for all real ¢ and all measurable B with P(B)>0. The two parts of Assumption 1
ensure that for g(x, y) any continuous function of two variables,

12d1log L.(0) 1.(6) }
do  ’ E,L(9)

o 1. (6)) 8N (0. 1), 7(6))

where N and 7 are independent (e.g. Eagleson [1]). Further, mixing versions of the
standard martingale central limit results hold without additional conditions
(McLeish [8, p. 628], Scott [14]).

We are now in a position to establish the following result.
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C.C. Heyde | Maximum likelihood estimator 5

Theorem. Fix C >0, let 8, = 8 +2C(Eql,(8)) > and write P$” for the probability
measure corresponding to the likelihood L,(6). Suppose that T, is any estimator of 6
which satisfies the condition that for any 0 € 0,

lim {P§” ((Eel.(6))"/*(T,—8)>—C)— P35 ((Eols(8))/*(T, — 6,)>—C)} =0.

n->oo

If there is a maximum likelihood estimator (5,, which is consistent for any 6 € O, then
under Assumptions 1 and 2,

lim P (—C < (Eel,(8))"/*(6,— 6)<C)

n-»oo

= lim sup P (—C < (Eol,(0))*(T, — 6)< C).

d
Furthermore, if I.*(6)(T,—8)— N(0, v*(6)) (mixing), continuously in 6, where
v(8) is bounded, then v*(8)=1.

The result of this theorem resolves the question of the best limiting probability of
concentration in symmetric intervals but not in the general case. For the general
case, [.V. Basawa and D.J. Scott in a preprint entitled ‘“Efficient estimation for
stochastic processes’ have obtained the following inequality:

lim P§P (=81 < (Eoel,(0))"/*(T, — )< 8,) < My(82)— Mo(—81),
when the limit exists, where
M,(8,)=P(8:N (0, 1)n'(8)—383n(8)<c>)

and ¢, is the (unique) median of 8N (0, 1)n'/?(8)+385m(6), n and N being
independent, while

M,y(—8,)=P(=8,N(0, 1)n'"*(8)—381n(8)<c1)

where c; is the (unique) median of —8;N (0, 1)n'/?(8)+381n(8). They also show
that the upper bound in the inequality is not attained for the MLE 6, unless
1n(0)=1 a.s. The methods used are similar to those employed in Roussas [12],
Chapter S.

Proof of Theorem. The results follow from a straightforward application of
Theorem 3.1 of Weiss and Wolfowitz [15]. We just need to verify Conditions A and

B involved therein.
From (1) we have

0= 3 w(®)+(6,~0)J,(07), @)
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6 C.C. Heyde | Maximum likelihood estimator

where 6% = 0+ y(n, 6)(8, — 6) with |y(n, 8)]<1, so that Assumptions 1 and 2 give
lim P (Eol,(8))*(6,— 6)<y)= lim P§((Eol,(6))*(6a~0)<y) (3)

=P(n"*(B)N(0, 1)<y)

for any y, —00 <y < o0, where n and N are independent. This verifies Condition A.
To check Condition B we define

An =10g [L(6,)/Ln(6)] on {L(6.)/Ln(6)>0}

and suppose that A, is arbitrarily (but measurably) defined on {L,(6,)L,(8)=0}.
Then we may use Taylor’s expansion to write

An=(0,~0) ¥ ui(6)+3(6, —6)"1,(67*)

for %* €[6, 6,], and using (2),

An==2C(Eol,(8)) (6, = 0)J(87)+2C*(Eol(8)) ' Ja(67).
Thus, employing Assumptions 1 and 2 again,

{4, <0} ={6, <0+ C(EsL,(6)) "*(1+0,(1))}

(the 0,(1) denoting a term which tends in probability to zero as n - o) while

lim Py’ (A, =0)= lim P§’(A,=0)=0,
so that Condition B is satisfied. The first part of the result of the theorem then
follows from Theorem 3.1 of [15].
To establish the second part of the theorem we note that the mixing form of
convergence results prescribed for T, together with Assumption 1, ensures that
lim PG (~C <(Eoln(8))"*(T, — )< C)=

n—»>oco

=P(-C <y(@)n'?(0)N(0,1)<C),

where n and N are independent and the required result follows in view of (3).

Somie remarks on applications

Various structural requirements need to be imposed on the process {X;} in order
to allow the various assumptions to be checked. The imposition of stationarity, for
example, leads to useful simplification in the requirements. However, we shall here
restrict attention to the case where the stochastic process {X;} is a time-homo-
geneous Markov process whose distribution belongs to a conditional exponential
family.
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C.C. Heyde | Maximum likelihood estimator 7

The concept of a conditional exponential family, which is discussed in some detail
in Heyde and Feigin [7], is a generalization of that of the exponential family for the
case of independent X;. For {X;} belonging to a conditional exponential family,

dlog L,.(8)

a9 I (6)(60, —6) 4)

and 1,(0)=¢ () Y., H(X; ) where ¢ does not involve the X; and H does not
involve 6. Furthermore, (Heyde and Feigin [7]), the result (4) holds if and only if
the conditional probability (density) function of X given Xy, f(Xi | Xk-1, 6)
satisfies

d
d0 log f(x [ y, 8)= ¢ (8)H (y)[m(x, y)— 0]

where

Eg[m(X,', X,'_l) | F‘,‘fl] =6 a.s.

For the case of the conditional exponential family we easily see that Assumption 2
holds if ¢(8) is continuous and differentiable.

As a particular example we shall consider the estimation of the mean 6 of the
offspring distribution of a supercritical Galton-Watson branching process. Here we
have 1< 6 = E4(X, | Xo=1) and we shall suppose that o” = var,(X; | Xo=1)< .
In this case it is known (Heyde and Feigin [7]) that the conditional exponential
family consists of the family of power series distributions. These are the dis-
tributions for which

Pi=P(X,=j| Xo=1=aA'[fA)]", j=0,1,2,...,A>0,
where @;=0 and f(A)=Y;2, aA’. Then,

o=AMIfM],  o’=[(d/d8)logA] "’

and
L log f(x | y,6) = o 2(x — y6)
d0 Og X | yo)=0 X yo),
so that
dlog L,(6 _ “
——%;L)=02Y;dm—0)

where Y, = Z,';o Xj and b, = (Y, —Yo)Y, L. For this family, § = #(A) is known to
be a non-negative monotone increasing function of A (Patil [9]) so that the
parametrization can be equally well expressed in terms of 6.

Suppose Xo=1 and P(X,;=0)=0 for definiteness and convenience. The latter
gives X, T, 0 as n >0, If P(X,=0)>0, it is well known that X, 2%, % on the
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8 C.C. Heyde | Maximum likelihood estimator

non-extinction set and the results which we shall describe hold conditionally on
non-extinction.

It follows from Theorem 3 of Heyde [4] that Y,,(E(,Y,,)_lis—ﬁn(e) with 7
non-degenerate and a.s. positive. Further,

In(e) = U_Z(O)Yn—l,
Jn(8)=(do*(8)/dO)(Yn—1—0Y,—1)— 0 (8)Yn_1,

and Assumption 1(i) is satisfied since convergence in probability holds uniformly
for §=1+¢, any £ >0, via calculation of E¢(Y,(EsY,) '—n)" (e.g. Harris [3],
Lemma 7.1). That

12dlog L, (6) 4

(Eol.(0)) 7 — N(0,1) (mixing)

follows from Corollary 2 of Scott [14] and uniformity of convergence for B =1+¢,
any € >0, can be gleaned from a detailed examination of the proofs of Theorem 1
and Corollary 2 of the same paper. Assumption 1(ii) is therefore satisfied. Also,
o*(8) is continuous in @ and differentiable so that Assumption 2 holds, as noted
previously.

The application of our theorem in this context substantially clarifies Heyde’s [5]

investigation of the class of estimators which are called asymptotically efficient for
6.
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