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ON CENTRAL LIMIT AND ITERATED LOGARITHM SUPPLEMENTS
TO THE MARTINGALE CONVERGENCE THEOREM

C. C. HEYDE, C.S.I.R.O. Division of Mathematics and Statistics, Canberra

Abstract

Let {S,,n =1} be a zero, mean square integrable martingale for which
lim,.. ES><® so that S,—S. as., say, by the martingale convergence
theorem. The paper is principally concerned with obtaining central limit and
iterated logarithm results for B, (S, — S.) where the multipliers B, 1 «© a.s. An
example on the Pdlya urn scheme is given to illustrate the results.

RATES OF CONVERGENCE: MARTINGALE CONVERGENCE THEOREM; CENTRAL LIMIT
THEOREM; ITERATED LOGARITHM LAW; POLYA URN SCHEME

1. Introduction

A serious criticism that can be levelled at probability theory, and with some
justification, is that many of the limit results obtained have their relevance
obscured by lack of information on the sample sizes necessary for their use to be
appropriate. Furthermore, the problem of rates of convergence in general is
exacerbated by the hierarchy of limit theory that now exists.

The most basic results in probability theory seem to be those of the form
Z,~>Z as n—» and the single most powerful tool for establishing results of
this kind would appear to be the martingale convergence theorem. However,
rate results for the martingale convergence theorem are notably absent from the
literature. It is the object of this paper to contribute to the rectification of this
deficiency.

The analogy which we shall principally pursue is with the classical strong law
of large numbers (sLLN) and the associated central limit theorem (cLT) and law of
the iterated logarithm (LiL) which are rate of convergence results about the sLLN.
Indeed, if the X, i =1, 2, 3, - - - are independent and identically distributed with
E|X,|<®, EX,=pu and S, = 2., X,, then thesLLN gives n™'S, ">y as n — x.
If, additionally, Var X, = o> <, then the cLT gives

n'"o(n™'S, — u)—> N(0,1)
and the L1L gives

n'S,—u=¢(n)2n""loglogn)"”
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Supplements to the martingale convergence theorem 759

where ((n) has its set of a.s. limit points confined to [—1,1] with
lim sup,-. {(n)= +1 a.s., liminf,.. {(n) = — 1 a.s. It seems important to write
these limit results in a form which highlights their role as rate results about the
SLLN, rather than in the more familiar way which suppresses this relationship.

In this paper we shall be concerned with {£/_, X;, F,, n=1}, a zero mean,
square integrable martingale. Square integrability is needed for the most widely
applicable rate results so it is assumed at the outset. Now suppose
lim,.. E (-, X;)* = £7_, EX? <. Then, the martingale convergence theorem
gives 27, X, —> 27, X, and in asking for rate results on this convergence we
look for multipliers {B,, n = 1}, possibly random but increasing to infinity (a.s.),
such that B, 27-, X; has behaviour of the type of the cLT or LiL. This will be the
subject of Section 2. Of course these results involve a tail sum of martingale
differences and the ordinary cLT and LiL for martingales do not bear directly on
this context. Section 3 provides an example, involving the Pdlya urn scheme.

2. Central limit and iterated logarithm results

For cases where the X, are not independent, the literature on this problem
amounts to a variety of special results for particular contexts. For example, if
{Zo=1,2Z,,Z,,---} denotes a supercritical Bienaymé-Galton—-Watson process
whose offspring distribution has mean m (> 1) and finite variance o2, then an
application of the martingale convergence theorem gives m "Z, — W, where
W turns out to be a non-degenerate random variable. It is further known that,
conditional on non-extinction,

m"Z.(m " Z, — W) N(0,0%(m*~m)™).

This is a result of the type under discussion. It rests, however, on results for sums
of independent and identically distributed random variables since Z, — m"W
can be represented as a sum of Z, independent random variables, each with the
distribution of 1 — W (which has mean zero and variance o*(m*—m)™"). Full
details can be found in Chapter I of Athreya and Ney (1972).

For the case of independent X; there are some nice duality results in the
literature. Chow and Teicher (1973) have obtained the following LiL’s.

Proposition A. Let {X,, n =1} be independent and identically distributed
random variables with EX,, = 0 and EX’ =1 and {a,, n = 1} be real constants.

(a) If 2t aj—o as n— and (aw/=7a?)= C/n,n =1, for some C in (0, ),
then

n

n n -1/2
lim sup (2 > alloglog D af) > aX;, =1as.
j=1 j=1 j=1

(b) If 27 a3<w and (a¥/Z; a3)=C/n,n = 1, for some C in (0, ), then
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760 C. C. HEYDE

—-1/2 =

e L -1
lim sup (2 > a?loglog (Z af) ) > aX; =1as.
j=n j=n j

n—o j=n

The proofs given by Chow and Teicher for these results are entirely classical,
using truncations and exponential inequalities.

Much more important from the point of view of general theory is the paper of
Barbour (1974). Barbour works with independent random variables but sketches
a method which is widely applicable, well beyond this case. The method has its
origins in work of Whitt (1972) in a rather different context. Barbour’s basic
result is the following duality form for the Lindeberg-Feller version of the cLT.

Proposition B. Let {X,, n Z 1} be independent random variables with zero
means and finite variances.

(a) Suppose that s, =Z2;_, EX;—>® as n >, If

(i) s« 'EX;—0 as n—oox,
and
(ii) 522 > E(XZI(| X | > €s.))—0, Ve >0,
k=1
then

sit Y X >N(O, 1).
k=1

(b) Suppose that sz =2;_,EX;—0 as n—>», If

() s"’EXZ—>0 as n—o,
and
(i) 52O E(X2I(| X |>es.))—0, Ve>0,.
k=n
then

s> X, SN, 1).
k=n

Barbour also purports to sketch a proof of a duality result for the Kolmogorov
form of the LiL but this is unfounded as the necessary prerequisite of an ordinary
functional LiL under the Kolmogorov condition has yet to be established.
Nevertheless, useful basic methodology is provided and we shall take this up for
the martingale case.

First a remark about notation. Let J be an interval of the form [0, L] for some
L < or [0,°). Let D(J) be the space of right-continuous real-valued functions
on J with left limits. We shall understand that D(J) is endowed with the
Skorokhod J; topology in the absence of another prescription.
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Supplements to the martingale convergence theorem 761

The basic setting for Barbour’s methodology is T, the subspace of D [0, )
consisting of those functions x which satisfy

(A) limsupt~'|x(¢t)] =0,
®) [utrwldu <o,
(©) flu"lx(u)]du <o,

Let m be the metric on T such that m(x, y) is the infimum of those ¢ >0 for
which there exists some continuous strictly increasing function A : [0, ©)— [0, ®)
with A (0) = 0, such that

(A) sup[x (1) = y(A([Atv1)<e,
B) | Tur@ - yowylau <e,
©) [[urtr@ - yawlan <,
(D) sup 1ogﬂiz:—?@ <e

Let T, and m, be defined similarly but omitting the restrictions C, C'. We shall
use a star to denote the corresponding subspaces of D *[0, «), the space of
left-continuous functions with right limits on [0, ).

We consider the mapping g:T— T or: T*— T, defined by

gx)0)=0; g(x)s)=—sx(s )+ f_, u’x(u)du, 0<s <o,
That is, g(x)(s) is the stochastic integral [7- u 'dx (u) defined by its integration
by parts formula. It is easily checked that the mapping is continuous (e.g. as with
Lemmas 2.1 and 3.7 of Whitt (1972)) and that for x € T U T* with x(0)=0,
g(g(x)) = x. The mapping provides a device for reading results for tail sums off
from those of ordinary sums (and vice versa) and we shall explore its ramifica-
tions for the case of martingale differences.

Recall that {2, X, F,, n=1} is a zero mean, square integrable martingale
with 27, EX?<®. We set S, =2;_, X, and s.= ES.=2{_, EXi We shall
initially be dealing with the case where s,>Zi.., Xi—>n?% 7’ being some
positive and a.s. finite random variable.
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762 C. C. HEYDE

Let {Z, n = 1} be a monotone sequence of positive random variables defined
by Z: = max,=. s« (E(n’|F.-1))"". Then Z, is F,_,-measurable and Z,~ s,’n >
a.s. n— o since E(n’|F,.,)—2*>>n* as n >, Put

(1) Y.(t) = Z.f(n)Sknoy+1, t=0,
where f(n) is a normalization function and

) k(n, t)= max[j|tZ;=Z7].
Then, formally,

k(n,s~1)

€) g(Y.)(s)=Z.'f(n) ; XZzj, s>0,

and we shall apply standard martingale results to g(Y,).

At this stage we need to be specific about the conditions imposed. We shall
establish the following theorem which, for the purposes of the exposition, is
described in terms of a duality result.

Theorem 1. Let {37 X, F,, n=1} be a zero mean square integrable
martingale.

(a) Write Wi =27 X7 and s.= EWZ, Suppose that s, — > and
(i) $2D Xi=5.2Wiog?
1

where 7° is some a.s. finite and non-zero random variable. If, in addition to (i)
we have

(ii) s;ZE(lrEkan Xi)——->0 as n—®,
then
(4) WS X, 5N@O,1) and s.' D X 5>n'N(O,1)
1

1

where 71’ is independent of N(0,1) and distributed as 7.
On the other hand, if the convergence in (a)(i) is strengthened to a.s.
convergence and in addition we have

(iii) s E[X|I(X|>es)]<®,  Ve>0,
1
and
(iv) S ST E[XII(|X;|=8s;)]<> forsome &>0,
1

then, writing ¢(¢) = (2 log log (¢ v 3))'"?,
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Supplements to the martingale convergence theorem 763

(Wb (W) 3 X, = 0.(n)
has for its set of a.s. limit points the closed interval [ — 1, 1] with
limsup 6,(n)= +1a.s., lim iwnf 6,(n)= —1a.s.
(b) Write Wi =27 X7 and s> = EW?, Suppose that s, —0 and
0 52 S X = s WS g

where 1 is some a.s. finite and non-zero random variable. If, in addition to (b) (i)
we have

(i) s;2E<r£1§1xXi)—>O as n—oo,
then
5) W'Y X, 5N(@0,1) and s;'D Xi->n'N(0,1)

where 7'’ is independent of N(0,1) and distributed as 7.
On the other hand, if’ the convergence in (b)(i) is strengthened to a.s.
convergence and in addition we have

(i) S s EIX (X[ >es)]<=, Ve >0,
and
(iv) 25,‘“E[X}‘I(I)ﬂ§8s,)]<oo forsome & >0,
then

(Wad(W2)' 2 X; = 6x(n)
j=n
has for its set of a.s. limit points the closed interval [ —1,1] with

limsup 6:(n)= +1a.s, liminf 6,(n)= —1a.s.

n—x n—sw

The conditions given in the statement of this theorem are frequently not the
most convenient for applications and some useful variants are given in the
following corollaries.

Corollary 1. (a) Sufficient conditions for (a)(i) and (a)(ii) in Theorem 1 are
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764 C. C. HEYDE

(a)(i') 57 X E(XI|Fo) S n?
and
(a)(i) 52 S E(XI(X|>6s.))—0, Ve >0.

(b) Sufficient conditions for (b)(i) and (b)(ii) in Theorem 1 are

(b)) 52 X E(XI|E) S’
and
(b)) 52 S E(CI(X | >es.))—0, Ve >0.

Corollary 2. (a)[(b)]. Put V=2t E(X?|F-))[ = =7 E(X?| Fi-1)]. A sufficient
condition for the replacement of W, by V, in Part (a)[(b)] of Theorem 1 is that
37 s.°(X%— E(X3|F.-1)) converges a.s.

As a preliminary to the proofs of these results we shall establish the following
lemma.

Lemma 1. Let {ax, k = 1} and {bi, k = 1} be sequences of real numbers with
a. =0, Vk.
(1) If 27 ax < and (ax/Zj-k a;)— 1, some 0=1<1, as k =, then

(2@’) il [ak<;aj)-2]_)1 as n—o,

k=
(ii) If a, 1  and the series =7 a,b. converges, then Z;_,.b, = 0(a,') as n —> .

Proof. (i) Write ¢, = (£-.q;)”', so that what we have to show is
(6) c,‘.'zlci(c;‘—c;i,)el.
However, (6) can be rewritten as
cn' 21 acirri(Gri—a)—1=c,' :2: (cks1i—C)+cnlc

or equivalently
n—1
(7) (1—cacd)+cn' X (cciti— 1) (e — c)—0.
k=1
The result (7) follows via the Toeplitz lemma since 1—ccci’i—1 as k — .
(i) Let K, = supnz=m=n|ZkL, acb |, so that K, —0 as n— o,
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Supplements to the martingale convergence theorem 765
From Abel’s lemma,
=K./a.

2 b
k=n

and the required result follows upon letting N — .

Proof of Theorem 1. The results of Part (a) of the theorem are known and are
just stated for the purpose of exhibiting the duality. The central limit result
follows, for example, from Corollaries 2.1.1 and 2.2.1 of Hall (1977). The
iterated logarithm result is essentially that of Hall and Heyde (1976). We shall
thus confine our attention to the proof of Part (b) of the theorem.

We begin by using invariance principle versions of Part (a) and the methodol-
ogy proposed by Barbour. For this purpose we assume a.s. convergence in (b)(i).
This restriction will later be removed for the central limit case via other methods.

The first thing we need to check is that g(Y,) as given by (3) belongs to T
under the conditions of (b). As a prelude to this we observe that s>., s,>—1 as
n—o. This is easily deduced from (b)(ii) for the central limit case. For the
iterated logarithm case, on the other hand, we have for any £ >0,

s Xn|S e+ 52 X | T( X | > e50)—>

using (b)(iii) so that s,”> X>—>*>0 and the desired result follows readily using

(b)().

Next, note that

2 2 2 -2 2 2
Xn _ Wn,_ n+l __ 1- Sn+1 W,..H Sh+1 as
W w. s Wi s

0
and hence, using (b)(i), Lemma 1(i) and Z2~ W;? ass.,
(8) VA ¢V Ay

1

With the aid of (8) and recalling that Z%.,-:)~ sZ% as s = we can deduce
that

) sg(Y)(s)—>0 as s— .
Indeed, in view of (8) the result (9) holds if
k(n,s~1) k(n,s~1) 3/4 as.
(10) S xz2 ( S x,?z;‘) 2,0 as s>
j=1 j=1
However, (10) follows, using the Kronecker lemma, if

o n 3/4
> [X,.Zf,/( > XfZ;‘) ] converges a.s.
1 1
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766 C. C. HEYDE
and hence if, using (8) again,
(11) i X,s.'”  convergesa.s.
Then, the martingale convergence theorem gives (11) provided that
2 s EXS <o
as is easily checked since s, = s,., and

D st (2= 5200 = D Sn (Sut Sns1)(Sn = Sas1) =2 D, (Sn = Sus1)
1 1 1

=25, <™
and the proof of (9) is complete.

The prerequisite conditions for g(Y,) to belong to T are now easily verified.
The relation (9) ensures that (A) and (B) hold, while (C) is satisfied as the
defining integral reduces to a finite sum.

We now take f(n) =1 and focus attention on the central limit part of (b). We
begin by applying a minor modification of Corollary 2.1.1 of Hall (1977) to the
martingale array {s, 2/-, X;Z;, Fi,, 1=k =n,n = 1}. For z =0 let

k(nz™?1
&(z)=2Z," (21 )X,Zf.
=
This formulation is not quite that of Hall but the modifications to the summation
can be simply effected as in the proof of his Theorem 3.1. We take, in the
notation of Hall’s result, F,;=F,. In view of (8), we need only check that
samax,=;=,X:Z;->0 and hence that simax,=;=,X;s;*>0. Furthermore, since
s» 4 0 and s,..5,'—1 we can, given £ >0, choose a sequence {j(n)} such that
$%/Simy—> &' =€ as n— . Then,

0 = limsup siE( max st,-‘“)

"o 1=j=n

= limsupsﬁE< max X,?s,“‘>+ lim sup s?,E( max stf“)

n—oo 1=j<j(n) n—o j(n)=j=n

i1
= limsup s2 D, (s?—s%,)s;*+ limsup s;2E< max Xf) =g’
n—soo j=1 n—c jZj(n)

in view of (b)(ii) and

J(

n)—1
> (s3-si)s* =

(-1 j<§1
2 2 2. -2 _ I N
1 (s7—s7+1)8;°sih = < (si51—87) =574
=

-
-
-
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Supplements to the martingale convergence theorem 767
The corollary in question then gives
d
(£ s2Z0)—= (W, (n)7)

where W is standard Brownian motion and n' has the same distribution as n and
is independent of W. The basic setting is D [0,1] and, defining n.(z)=
s»'Z,'&.(z), we have

(12) &SW and n.on'W

in this setting. However, the extension of the results (12) to D [0, T],0< T <o,
and indeed to D [0, %) is entirely routine (e.g. see McLeish (1974), pp. 625-626).
Of course &, = g(Y,) and 7, is also an element of T so it remains to check that
the results (12) continue to apply in (7, m). This however follows from the
argument of Miiller ((1968), p. 176, 177; see also Whitt (1972)) since the
Kolmogorov inequality continues to hold for martingales. Then, using the
continuous mapping theorem (e.g. Billingsley (1968), Theorem 5.1),

g(6) = g(8(Y) = Yaog(W) = W

while

- - - - d ' N '
gn)=5."Z.'88(Y)=5."Z. Y. g(n'W)=n'W

and the results (5) follow immediately.

It should be noted that the functional limit results just obtained offer scope for
a variety of other important results via the continuous mapping theorem. From
the convergence Y,*> W in T% we can extract Y, W in (D *[0,1], do) and
hence in (D*[0,1],d), and d, being the metrics discussed by Billingsley
((1968), pp. 111-113) which generate the Skorokhod topology. Then, for
example, the mapping h:D*[0,1]— R defined by h(x)(t) = supo=.=: | x(¢)] is
continuous and the continuous mapping theorem gives h(Y,)->h(W), or
equivalently,

%

Next we take f(n)= (2 log log (s»' v3))""*in (1) and focus attention on the
iterated logarithm part of (b). It is our object to show that {g(Y.), n =1} has
compact closure a.s. with set of limit points K, K being the set of absolutely
continuous real functions on [0, ©) for which x(0)=0 and [5[x(¢1)]’dt =1, x
denoting the derivative of x determined almost everywhere with respect to
Lebesgue measure. The iterated logarithm part of (b) is then easily extracted

S sup l W(t)'.

0=r=1

''sup

k=n
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768 C. C. HEYDE

from the result that {Y,.=g(g(Y.)), n = 1} has compact closure a.s. with set of
limit points g(K) = K, while Z,W,(W,)[#(Z,")]'—> 1. That K belongs to

T and T* follows readily from
t t t 172
f X(u)du|= {j duf [x )] du} =t'2.
0 0 0

We shall apply Theorem 1 of Hall and Heyde (1976) which deals with the
setting C [0, 1] but whose scope can be extended to cover the problem in hand.
The martingale to which the theorem is applied is {£-, X; Z}, F,, n=1} and for
the Z; and W, of the theorem we use 8s,Z7 and Z; respectively. The checking of
the conditions is routine and will not be exhibited. It follows quite closely upon
the proof of Corollary 2 of Hall and Heyde (1976) and makes repeated use of (8)
and the F;_,-measurability of Z, Furthermore, the extension of this setting from
C|[0, 1] to C [0, ») is a standard exercise. For example, the argument provided in
the proof of Theorem 1.5.15 of Vervaat (1972) can be employed. The topology
for C[0, ) is that of uniform convergence on compacta. Then, writing for
0=u<w, k =k(nu") as given by (2) and

[x()] =

s () = [Za b (Z)]! [ > X, 25+ (w23 21 (Zho - 2 X ]

we have that {u., n = 1} is relatively compact in C[0, ) and the set of its a.s.
limit points coincides with K.

Next, we move to D [0, «) and note that the Skorokhod J; topology relativized
to C|[0,) coincides there with the topology of uniform convergence on
compacta. We can use the metric

¥(xy)= J; min {1, pio.y (X [0, Y lio.ite ™" dt

for x,y € D [0, ®) where pp, is a metric on D [0, t] which generates the J,
topology on D [0, t] and z |, denotes the restriction of z to [0, t] (Vervaat
(1972), p. 23).

In D [0, ») we set

V() = [Za b (Z,)] 2 X,Z:, 0=u<o.

Then, (v, un)——>0 as n— o provided that

}e"dta;s&O as n—o,

(13) J min{l, sup
0

0 O=u=t

va () = pn (1)

by choosing a version of pjo,; which is dominated by the uniform metric. Further,
(13) holds if
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Supplements to the martingale convergence theorem 769

X

Ziﬂ}e“ dt =50 as n—oo

Lw min {1,[Z,.d> (Z)]" sup

O=u=t

which is easily verified since, using (8),

k(nt NH+1
[Z:6 (2] sup XiaZta=0(2 S’ Xiz1) = ott)as
O=u=t j=1

as t — . It then follows that {v,, n = 1} is relatively compact in (D [0, «), ) and
the set of its a.s. limit points coincides with K.

Finally, we move to (T, m). The Borel o-field associated with (7, m ) coincides
with the o-field on T generated by the coordinate projections. This can be
verified using obvious modifications of the arguments on pp. 121-122 of
Billingsley (1968) (see also Lemma 3.5 of Whitt (1972)). Further, similar
arguments show that the Borel o-field associated with D [0,®) for the
Skorokhod topology is that generated by the coordinate projections. Thus,
relative compactness of {v,, n = 1} in {D [0, »), ¢} implies the same property in
(T, m).Since K CT and f(n)~ [¢ (Z.)] ' a.s. as n >, the proof of the iterated
logarithm part of (b) is complete.

In the previous work we have dealt with the case of a.s. convergence in (b)(i);
we now weaken this to convergence in probability for the purposes of proving
the relevant central limit results.

We choose a monotone sequence {k,, n = 1} of positive integers increasing so
fast that s,’sa.i,.1—0 as n—o. Further, we introduce the array of random
variables {X,;, j =1, n = 1} defined by X,; = s..' X...;. Then, from (b)(i),

n+k,_

kn
(14) 2 Xy=s. 2 X750’
j= j=n

since $,° 27 r,+1 X250 in view of the choice of {k.}. Also, using (b)(ii),

nsj=n+k, j=Zn

(15) E(r_nsa’l(x Xf.,-) =sle< max Xf)ést( max Xf>->(),

The o-fields F,,=F,.; satisfy the nesting condition F,;CF,.; so the conditions
of Corollaries 2.1.1 and 2.2.1 of Hall (1977) are satisfied and

n+k
n

kn
> X, =52 X, 5n'N(©0,1)
j=1 j=n

n+k

kn ~172 kn _1p ntk, )
{ZX} ;Xn,:{ > X?} 3 X5NO).

J=n

The desired results (4) are then immediate since s,” 2.k, 1 X;->0. This
completes the proof of the theorem.

It is interesting to note that a minor reformulation of results of Hall (1977)
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provides a convenient general result from which the central limit results of both
Parts (a) and (b) of Theorem 1 can be derived. This is given in the following
theorem.

Theorem 2. Let {X,, F., j=1} denote a martingale difference sequence for
each n = 1 which is subject to the condition

(16) > E(X3)<e, Vn.

If F,,CF,.,, for all j =1 and in addition

(17) 5:: X25n? (>0as.)

and

(18) E< max Xﬁ,>—>0

as n—o, then

(19) > X, Sa'NO1) and ( > X?.,)_m > X, SN ©,D),

1’ being independent of N (0, 1) and distributed as 7.

These results follow from Corollaries 2.1.1 and 2.2.1 of Hall (1977) in similar
fashion to those just discussed in the last part of the proof of Theorem 1. The
virtue of this formulation was pointed out to the author by P. G. Hall. The
central limit results of Part (a) of Theorem 1 can then be extracted by taking
Xy =@Eio EXY) " X,1=j=n; X, =0,j>n, and F,,=F,. Those of Part (b)
follow by taking X, =(2¢-. EX%)"* X,.j, Fy=F..;,j =1, n = 1, as in the above
proof.

Proof of Corollary 1. Here we shall confine attention to the proof of Part (b).
That for Part (a) is entirely analogous.
Take arbitrary 6 > 0. Then,

s;2E<r}(1§x Xi)é s;zE(rlx}gx XiI (| X l§6sn))+ s;2E<r£1§1x XiI(IXk]>Ssn)>

=8+s5.2 D E(XiI(|Xi|>8s.))—8% as n—w
k=n
which gives (b)(ii). To obtain (b)(i) we first note that (b)(ii’) ensures
(20) s > [XAI( X |>es.)— E(X2I (| X | > es.)| Fe )] =30,
k=n

while
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Supplements to the martingale convergence theorem 771

1) 527 Y (XU (X0| = e5.)— E (XU ( X, S es,)| B )] 50
provided that
syt 2 E[XiI(| X, |=es.)]—0.

That this last result holds, however, is easily verified since for arbitrary §,
e>6>0,

o

sit D E[XiI( X |=es,)]=sn 2 E[X3I(| X | = 8s0))

k=n

+5.0 D E[X1I (85, <|Xi| = es,)]
k=n

=8%+e%s,’ D E[XH (X |> 85.)]—> 8>
k=n

as n —x. The result (b)(i) then follows from (20) and (21) together with (b)(i’).
It can be further shown, and is worth noting, that the pair of conditions (a)(i’),

(a)@it") [(b)(i), (b)(ii")] is equivalent to the pair (a)(i), (a)(ii) [(b)(1), (b)(ii)] if
En?=1. We omit the details.

Proof of Corollary 2. Part (a) is an immediate consequence of the Kronecker
lemma and Part (b) of Lemma 1 (ii).

Next we show that Propositions A and B follow as a consequence of
Theorem 1.

Proof of Proposition A. We use the martingale {£/_, a,X;, n = 1}.

First take the assumptions of Part (a) of Proposition A. To check the a.s.
convergence form of (a)(i) of Theorem 1 we observe that it suffices to show
(Erai) 'Etaj(X;—1)-=0, and this follows readily from Theorem 2 of Heyde
(1968) since (a?/2fa’)=C/n,n=1.

To check (a)(iii), we note that

>(Sat) CE{laxii(x1>e(Sa1)")]
=C ’Z n ' E{ X,/ I1(|X,|>eC ™ n'?)

= Cl/zE{!Xl' E n-? I('Xl’ >cC 12 nl/z)}

[Ce?x3)

3]
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where [x] denotes the integer part of x

CE_2X1;
éC”zE{!XII f x dx}.
0
=2Ce 'EXi< >,

Finally, to check (a)(iv) we write u, = =} ai/a~ so that the required result
holds if =7 u.* E{X1I(n'” <|X,| = 6u;”)} < and 27 u* E{XI(| X,|= n")} <
«, However, the former holds since

D ulE{X{I(n"<|X,|=8ul?)}=8*D P(X\|>n")
1 1

=8'E > I(|X,|>n"?)=8*EXi <,
1
and the latter since
> ulE{XI( X, = n")
1

=C* S n2E{XI(X,] = n'?)

lIA

C? 2 n? 2:: KE{XZI((k —1)2<|X,|=k"™)}

=C* 3 KE(XI((k - )" <| XS k™) 3 0

= C’EXi<m,

This completes the proof of Part (a) of Proposition A, the random norming being
replaced by constants in view of (a)(i).

To prove Part (b) of Proposition A we begin by checking the a.s. convergence
form of (b)(i) or equivalently, =5 a’(X3—1)/2; a}—=>0 as n —>». Write u, =
S a3la’ and set

W=X:-1 if |Xi-1|=y
=0 otherwise.

Then, P(W,#X.—1 i.0.) =0 since
> P(W.#X2-1)= > P(Xi-1|>u,)= D P(C|Xi-1|>n)
1 1 1

<ES I(C|X3=1|>n)

=CE|X}-1|<w
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and hence X} a7 (X7 - 1)/ a}20 if =5 a’ W/; a?—250. Also, EW,—0 as
n—o and hence I ajEW/E;ai—0 so it remains to prove
=nai(W,—EW)/Z% a?—>>0 which holds, by virtue of Part (ii) of Lemma 1, if
2T u,' (W,—EW,) converges a.s. However, the Kolmogorov convergence criter-
ion glves the a.s. convergence of Z7u.'(W,—EW,) provided that
27 u,? EW,’<w and this last result holds since

S

DuEW2I= D u 2 E{(Xi-1PI( X3 - 1S u,)} <o
1 1

using the same argument as for the checking of (a)(iv) above. The remainder of
the proof of Part (b) involving checking of the series Conditions (b)(iii) and
(b)(iv) of Theorem 1 completely parallels the corresponding work for (a)(iii) and
(a)(iv) above and is omitted.

Proof of Proposition B. The results are immediate from Corollary 1 and
Theorem 1. In this case we also have n =1 a.s.

3. An example

In order to give some idea of the scope of the results of the paper and the
relevance of the conditions therein we shall give an example dealing with the
well-known Pélya urn scheme.

Suppose we have an urn initially containing b black and r red balls. At each
draw we remove a ball at random and then replace it, together with ¢ balls of the
colour drawn. Let b,, r. denote, respectively, the numbers of black and red balls
in the urn after the nth drawing and write Y,=b,/(b. + ), n =0, the propor-
tion of black balls. Note also that b, +r, = b +r + nc.

Now it is well known that {Y,, n=0} is a martingale with respect to the past
history o-fields, that the martingale convergence theorem is applicable since
0<Y,<1, and indeed that the limit random variable Y, say, has a beta
distribution with parameters b/c and r/c (e.g. Feller (1966), pp. 211, 226). Here
we shall be concerned with the rate of convergence of Y, to Y.

Write K, =c/(b+r+(n+1)c) and let F, denote the o-field generated by
Y;,,0=j = n. It is easy to see that, conditional on Y,, the distribution of the
increment X,.; = Y,.,,— Y, is given by

X.«1=(1-Y,)K, withprobability Y,
= - Y,K, with probability 1-Y,.
Then,
(22) EXmu|F)=Y.(1-Y)Ki~Y(1-Y)K. as. as n—x,
while
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(23) EX:..=K.EY.(1-Y.)~K.EY(1-Y)=Kibr(b+r)'(b+r+c)’
as n — using dominated convergence since Y,(1— Y,)= ;. Furthermore,
(24) E(X.alF)=Y.(1- Y)K{(1-Y,)’ + Y} =:K".

Next, using (23),

(25) si= 2 EXj= 2 KiEY(1-Y)~n"'EY(1-Y) as n—o.
j=n

j=n-1

Also, =7 s’ {X%— E (X.|F.-\)} converges a.s. if, using the Kolmogorov con-
vergence criterion,

(26) D stEX i< oo
1

(Proposition IV-6-2 of Neveu (1970)), and (26) holds by virtue of (24) and (25).
Thus, the provisions of Corollary 2 [(b)] hold and we shall state the results in
terms of normalization using

(27) Vi= > E(X!|F.)~n'Y(1-Y)as.
j=n
Then, using (25) and (27), s.°Vi—> Y(1 - Y)/EY (1 - Y), while for k = n,
EXZI(X,|> es,) = f X2 dP < g'zs;zj X% dP
(X5 l>esn) (X >es0)
<3e’s,’Ki
using (24), so that
52 > E(XEI( X |>es.))<3e?s.* > Ki=O(n') as n—ow
k=n k=n

and the results of Corollary 1(b) are applicable.
To utilize the iterated logarithm results in Theorem 1 it remains to check
Conditions (b)(iii) and (b)(iv). That (b)(iii) holds follows from (24) and (25) since

E| X, |I(X.|>ées.)= f |X,|dP < & s EX%= O (n~*)

{IXn!>esn}
while (b)(iv) also follows from (24) and (25). Theorem 1 thus yields, for example
n"(Y,-Y)>[Y'(1- Y)]>N(0,1)

where Y'(1— Y’) is distributed as Y(1— Y) and is independent of the N(0,1)
random variable, while
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limsupn”?(2loglog n) "*(Y,—Y)=Y"(1-Y)"”as.

n—0

liminf n'?(2loglog n) "*(Y,—Y)= — Y"1 - Y)"as.
g 10g

n—s00
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