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Summary

This note pertains to a generalized model for random fluctuation of allele frequency, where the
population size is permitted to fluctuate randomly from generation to generation. Martingale methods
are applied to discuss in two propositions, respectively, necessary and sufficient conditions for
P(Y(1-Y)>0)>0, where Y is the (almost sure) limiting frequency of one allele. Under an
additional restriction a necessary and sufficient condition results. Some simple remarks are made on
further description of the distribution of Y.

1. Introduction

We concern ourselves with the standard problem of a single diploid diallelic
autosomal locus (genotypes A A, A a, aa) and non-overlapping generations, in the
absence of external pressures, in a random-mating population whose size remains
finite, and is denoted by N, (> 1) at the n-th generation, n>0. In an extension of
a classical fixed size model of S. Wright, one of the authors (Seneta 1974) assumed
that the population size may vary, even randomly.

Specifically, the model states:

(a) the process {X,, N,},n>0, is bivariate Markov, X, denoting the number of
a alleles in the n-th generation; and

(b) the distribution of X, ,, given N, ,, N,, X, is binomial, and given by

2N . .
( j"“> Yi(l=Y,)* M+ 7 0<j<2N,,, (1)

where Y,= X,/(2 N,) is the a-allele proportion of alleles in the n-th generation.

Write %, for the o-field generated by {(X,, No), (X, Ny), ..., (X, N}, n=0. It
was observed in the cited paper that {Y,, #,, n>0} is a martingale, and so Y,—» Y
a.s. as n— oo for some random variable Y with0<Y<1,and EY=EY,, n>0.

One of the main issues of interest is, then: when is the limit distribution
trivial i.e. P({Y=0} u {Y=1})=1, or equivalently P(Y (1— Y)=0)=1, so fixa-
tion is certain; and when not, so that a situation of balanced polymorphism
occurs with positive probability.

Inthecase where {N,} is purely deterministically varying, it was noted (Seneta, 1974)

that a necessary and sufficient condition for non-triviality is » 1/N,,;<o0;
n=0
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providing as always the process does not begin in a state of fixation. The more
general situation where the sequence {N,} is permitted to be random, in relation
to the same question, is the subject of the present note; which is also, again, an
illustration of the applicability of martingale methods to the present model.
One direct deduction from the result on the deterministic case to a stochastic
one in relation to {N,} may be worth mentioning at this point; if )’ 1/N,,, <oo
a.s. on a set A of histories of positive probability, and for almost every given
sequence {N,} in the set A, the sequence {X,} is still Markovian, then the limit
distribution is not trivial. (This may most easily be seen by postulating the con-
trary i.e. triviality). Results related to this one are given in Theorem 2 below,
which gives other sufficient conditions for non-triviality.

The starting point of our deductions is the relation
E(Y,( (=Y, )| #)=(1-E{2 N, ) ' | #}) Y, (1-Y,). 2

This follows from the above basic assumptions (a) and (b), since these imply via
(1) that

E(Y,i1 INyu 1, F)=Y,, Var (Y, 1 1 | Npy o, &)= 2N, 'Y, (1=-Y,)
whence
E(Yn+l(1 n+l)‘Nn+l7 ) (1_(2Nn+l) I)Y(I—Y)
From (2) we note immedlately that E(Y,(1-7, ) | as n increases (and, indeed,
that {Y, (1—Y,), %,, n>0} is a supermartingale).
2. Main Results

Theorem 1: If z E(N; ) | #,)=00 a.s. on some set A of histories of the process

n=

<0r equivalently » N, }! =00 a.s. on A)thenfxatlonoccurson A(i.e. Y(1-Y)=0

O

a.s. on A).

Proof: Define the martingale {U,, #,,n>1} by

U,= Z [Ye(1— Yo—E(Y,(1-Y)| Fr))n=1.

k=1

Using (2), we have
n n—1
U,= Z Y,(1-Y)— Z [I—E((ZNk+l)~l | g'—k)] Y,(1-Y))
k=1 k=0

n—1

=Y, (1-Y)=Yo (1= Yo)+ ¥ E(2N,s)™ ' | ) Yi(1-Y).
k=0

{U,, #,,n>1} is a zero-mean martingale with bounded increments and so, using
Proposmon IV-6-3 (of Neveu, 1965) lim inf U,= — 0 a.s,, hm 1 sup U,=+o0 a.s.

on the set where U, does not converge a. s. It follows that U,l must converge a.s.
as n—oo since U,>—-Y,(1-Y, for all n. Since Y,—»Ya.s, we have
Y,(1-Y,)— Y(1—-Y)a.s. and it follows that
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Z EN, )| Z)Y,(1-Y,)<o0 a.s. (3)

n=

It is clear from (3) that if z E(N;} | #,)=00 a.s. on A then Y,(1—Y,)—0

on A, i.e. fixation occurs on A. That Z N} =00 as. on A if and only if
n=0

Z E(N,, | #,)=00 a.s. on A follows from another application of Proposition
IV-6-3 of Neveu. This completes the proof.

It is worth noting that in complementary form the result of Theorem 1 says

that we must have Z E(N,} | #,)<oo a.s. on the set {Y(1—Y)>0} (and

n=0

equivalently ) N_!; <ocoa.s.on{Y(1—Y)>0})

n=0
It has not been possible to obtain a converse to Theorem 1. The following partial
result does however, cover many cases of interest.

Theorem 2: If E(N, .}, | #,)<a, a.s. for all n where {a,} is a sequence of positive
constants with ) a,<oc0, or if N,>pB, a.s. for all n where {f,} is a sequence of
positive constants with ) B, ' <o, then P (Y (1—Y)>0)>0.

Proof : We use the martingale {U,, #,, n> 1} introduced in the proof of Theorem 1.
First note that, under the conditions of the theorem,

E Y E(2Nu) ' F) V(1 =Y <.
k=0
Then, for any fixed n>0 and N >n we have from (2) that

N
E z Yk(l“Yk)E((sz+1)_l|ﬁk)

k=n
=E[Uy;1—U,—Yys 1 (1=Yyi )+ Y, (1-1,)]
=—EYy, (1-Yy,)+EY,(1-7)
—>—EY(1-YV+EY,(1-7)
as N— oo by dominated convergence since Yy,,(1—Yy,{)=>Y(1=Y) a.s. as

N —00. The monotone convergence theorem then gives

EY Y (1-Y)E(@2Ny,) ' #)=—EY(1-Y)+EY,(1-Y,) (4)
k=n
and hence

i (1—=Y)E(@RNys) ' I FY)<EY,(1-7)

with equality if and only if EY (1— Y)=0 (i.e. P(Y (1— Y)>0)=0).
Now suppose that E(2 N, )~ ' | #)<o, a.s. for all k where {a,} is a sequence

0
of constants with ) a, < oo. We can choose n so large that ) o, <1 and then

k=n

303



320 C. C. Heyde and E. Seneta: Sampling and Random Population Size

EY Y(-Y)E@N.) | %)

k=n

<Y E(r(1-Y)g
k=n

<E(Y,(1=Y,) ¥ w<EY,(1-Y,)
k=n

since we have noted E(Y,(1—Y})) | as k increases. This assures, via (4), that

E(Y(1-Y)>0, i.e. P(Y(1—Y)>0)>0. Similar reasoning applies if N,>p,

a.s. for all n where {8,} is a sequence of positive constants with ) f, ' <co. This

completes the proof.

Two corollaries of Theorems 1 and 2 may be worth mentioning. First, if
E(N; | #)=E(N,}), then P(Y(1—Y)>0)>0if and only if ). E(N,.";)< o,
a direct extension of the purely deterministic situation of {N,}, which can also
be deduced directly from (2). Secondly, if N,,, is totally independent of %,
n>0, i.e. of the past history of the bivariate process, which covers the situation
of so-called “randomly fluctuating environments”, then clearly this same neces-
sary and sufficient condition applies.

3. The Limit Distribution

By noting that for >0, and y fixed at O or 1,
{Y"——-y} = {Yn+l=y} = {Y:y}

we obtain
P(Y,=y) T a(n<P(Y=y), (5)

soforany givenn, P (Y, = y)may serve as alower bound for P (Y = y). Consequently,
also 1 —a(0)—a (1)>P (0< Y<1). That strict inequality will sometimes apply in
(5) may be expected from other contexts. One also has available the inequalities
valid for any, random variable Y on [0, 1], whose mean is c: P(Y=1)<c,
P(| Y—c|>t)<t 2 max {c? (1 —c)?}, these being basically Markov’s and Che-
byshev’s inequalities, respectively. In our case, c=E Y=EY, is generally known.
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