
This overview of Heyde’s research on inference in stochastic processes is based on a subjective sampling 
of his extensive publications in this area.

The question of asymptotic efficiency of the maximum likelihood (ML) estimator was first addressed 
by R.A. Fisher (1925). Fisher’s criterion of efficiency was further explored by C.R. Rao (1962). The 
Fisher-Rao approach seeks to establish the asymptotic optimality of the maximum likelihood estimator 
in the class of consistent and asymptotically normal estimators by showing that the ML estimator has 
the minimum asymptotic variance, under some broad regularity conditions. LeCam (1960) provided a 
general framework for asymptotics via the local asymptotic normal (LAN) family which formalizes the 
theoretical basis needed for the Fisher-Rao approach. Even though most of the early work on asymptotic 
inference was developed for independent and identically distributed (i.i.d.) observations, the theory has 
since been extended to stochastic processes. The extension to dependent observations mainly involves 
replacing the classical law of large numbers and central limit theorem for the likelihood score function 
by their analogues for martingales (Hall and Heyde (1980)).

In [M62], Heyde’s early work on asymptotic efficiency in estimation for branching processes led 
to some unexpected foundational questions about the classical Fisher-Rao-LeCam approach. Suppose 
Ln(q) is the likelihood function based on n dependent observations (X1, X2, …, Xn), and 
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The Fisher information matrix is denoted by In(q) = E(xn(q)). For a large class of processes (includ-
ing the classical i.i.d. model), typically one can verify that 1( ) ( )n nI − q x q  converges in probability to a 
non-random matrix (usually, the identity matrix). When this happens, the classical Fisher-Rao-LeCam 
asymptotics usually can be extended to dependent observations. However, for branching processes 
(and many other stochastic processes) the normalized information 1( ) ( )n nI − q x q  has a non-degenerate 
limit. For such processes, the Fisher-Rao-LeCam asymptotic optimality criterion no longer applies. In 
particular, the ML estimator is not asymptotically normal, and the LAN property fails. In [M62], Heyde 
provided a remarkably simple modification of Rao’s (1962) asymptotic efficiency criterion by replac-
ing In(q) in Rao’s criterion by xn(q). In [M62], an estimator Tn is defined to be asymptotically efficient 
if it satisfies: 
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for some positive number sT. [M76] shows that the ML estimator Ÿ
qML

satisfies (H) with sT equal to 1, 
and it maximizes the limiting probability of concentration 
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for all a > 0 (see also, Wolfowitz (1965)). Note that the criterion (W) does not require the asymptotic 
normality of Tn, nor does it need the LAN framework. Moreover, in [M137], Heyde demonstrates the 
advantages of using the random norm xn(q) in constructing asymptotically optimal confidence intervals.

Heyde and Johnstone in [M81] established the asymptotic normality of the posterior density for stochas-
tic processes. Interestingly, this result is applicable for branching processes, thus avoiding the problem 
of a threshold parameter (the offspring mean of a branching process) drastically affecting the asymptotic 
inference. Bayesian asymptotic inference can then be based on the asymptotic posterior normality.

In the context of stochastic processes, it is often the case that complete specification of the likeli-
hood function may not be available. It is then not possible to use the ML estimation or Bayesian 
approach. [B3] gives a comprehensive review of the theory of quasi-likelihood estimation. Let 

1( ) ( | )t t tE X −= Fm q  and 1( ) Var ( | )t t tV X −= Fq  denote the conditional mean and variance respec-
tively. A typical quasi-likelihood (QL) estimating equation is defined by
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This method of estimation requires specification only of the conditional mean and variance. In [M118] 
Godambe and Heyde, and in [M127], Heyde, discussed both finite sample and asymptotic optimality 
properties of the QL estimating functions. See also [M151] for quasi-likelihood estimation for diffu-
sion processes.

Stochastic processes with long-range dependence are becoming increasingly important tools for mod-
eling financial, meteorological and diverse other time series data. Heyde’s joint work with Anh, Gao, et al. 
in [M171] and [M184], provides an excellent example of path-breaking research in this important area.

In [M171] estimation for a zero-mean stationary Gaussian process {Y (t)} with spectral density 
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process has long range dependence (LRD) and is known as the fractional Riesz-Bessel motion (fRBm). 
A continuous version of the Gauss-Whittle contrast function is defined as 
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is the periodogram of f (w, q), N being the upper bound of the interval [0, N] on which Y (t) is observed. 
The minimum contrast estimator of q is defined by 

arg min ( ).
Ÿ
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Consistency and asymptotic normality of the estimator 
Ÿ
qN  are established in [M171].

[M184] considers the nonstationary Gaussian process {Y (t)} with spectral density given by 
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where p (w) is a positive continuous function satisfying a regularity condition, and 
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 is the unknown parameter. Under regularity conditions, the consistency and 

asymptotic normality of the minimum contrast estimator 
Ÿ
qN

of q are established.
The two papers [M171] and [M184] solve the problem of parameter estimation for both stationary 

and nonstationary Gaussian processes with long range dependence. The method of estimation used in 
both the papers is based on a natural Gauss-Whittle contrast function. These models are illustrated 
with an application to real data sets on time series of maximum daily wind speed [M171], and data 
on air pollution [M184].
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