Skip to main content

Bioaerosol Detection with Fluorescence Spectroscopy

  • Chapter
  • First Online:
Bioaerosol Detection Technologies

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

A brief introduction to the fundamental theory of fluorescence spectroscopy applied to bioaerosol detection is given and developed systems are described. Bioaerosol detection relies on the fact that many relevant microorganisms contain molecules such as aromatic amino acids and reduced nicotinamide adenine dinucleotide (NADH) with characteristic fluorescence when excited by ultraviolet (UV) radiation. Several bioaerosol detection systems based on fluorescence have been developed and tested during the last two decades. They have proven to be very sensitive with a short response time. The main drawback of fluorescence is the relatively low specificity. There are ways to increase the classification capability by utilizing multiple wavelengths, spectral and temporal detection of the emission. Some of the design considerations are presented, including choices of excitation sources and detectors. This chapter is concluded with an outlook for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schäfer FP (1973) 1. Principles of dye laser operation. In: Schäfer FP (ed) Dye Lasers. Topics in Applied Physics, vol 1. Springer, Berlin, pp 1–89. doi:10.1007/3-540-51558-5_7

    Google Scholar 

  2. Measures RM (1984) Laser Remote Sensing: Fundamentals and Applications. John Wiley & Sons, New York

    Google Scholar 

  3. Lakowicz JR (1999) Principles of fluorescence spectroscopy. 2 edn. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  4. Alimova A, Katz A, Savage HE, Shah M, Minko G, Will DV, Rosen RB, McCormick SA, Alfano RR (2003) Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation. Appl Opt 42 (19):4080–4087. doi:10.1364/AO.42.004080

    Article  CAS  Google Scholar 

  5. Faris GW, Copeland RA, Mortelmans K, Bronk BV (1997) Spectrally resolved absolute fluorescence cross sections for bacillus spores. Appl Opt 36 (4):958–967. doi:10.1364/AO.36.000958

    Article  CAS  Google Scholar 

  6. Seaver M, Roselle DC, Pinto JF, Eversole JD (1998) Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution. Appl Opt 37 (22):5344–5347. doi:10.1364/AO.37.005344

    Article  CAS  Google Scholar 

  7. Cheng YS, Barr EB, Fan BJ, Hargis J, P. J., Rader DJ, O’Hern TJ, Torczynski JR, Tisone GC, Preppernau BL, Young SA, Radloff RJ (1999) Detection of Bioaerosols Using Multiwavelength UV Fluorescence Spectroscopy. Aerosol Sci Technol 30 (2):186–201. doi:10.1080/027868299304778

    Article  CAS  Google Scholar 

  8. Hill SC, Pinnick RG, Niles S, Fell Jr. NF, Pan Y-L, Bottiger J, Bronk BV, Holler S, Chang RK (2001) Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity. Appl Opt 40 (18):3005–3013. doi:10.1364/AO.40.003005

    Article  CAS  Google Scholar 

  9. Weichert R, Klemm W, Legenhausen K, Pawellek C (2002) Determination of fluorescence cross-sections of biological aerosols. Part Part Syst Charact 19 (3):216-222. doi:10.1002/1521-4117(200207)19:3<216::AID-PPSC216>3.0.CO;2-S

    Google Scholar 

  10. Sivaprakasam V, Huston AL, Scotto C, Eversole JD (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt Express 12 (19):4457–4466. doi:10.1364/OPEX.12.004457

    Article  CAS  Google Scholar 

  11. Kunnil J, Sarasanandarajah S, Chacko E, Reinisch L (2005) Fluorescence quantum efficiency of dry Bacillus globigii spores. Opt Express 13 (22):8969–8979. doi:10.1364/OPEX.13.008969

    Article  Google Scholar 

  12. Manninen A, Putkiranta M, Saarela J, Rostedt A, Sorvajarvi T, Toivonen J, Marjamaki M, Keskinen J, Hernberg R (2009) Fluorescence cross sections of bioaerosols and suspended biological agents. Appl Opt 48 (22):4320–4328. doi:10.1364/AO.48.004320

    Article  Google Scholar 

  13. Kopczynski K, Kwasny M, Mierczyk Z, Zawadzki Z (2005) Laser induced fluorescence system for detection of biological agents: European project FABIOLA. Proc SPIE 5954:595405.1–12. doi:10.1117/12.623013

    Google Scholar 

  14. Wlodarski M, Kaliszewski M, Kwasny M, Kopczynski K, Zawadzki Z, Mierczyk Z, Mlynczak J, Trafny E, Szpakowska M (2006) Fluorescence excitation-emission matrices of selected biological materials. Proc SPIE 6398:639806.1–12. doi:10.1117/12.687872

    Article  Google Scholar 

  15. Pan Y-L, Eversole J, Kaye P, Foot V, Pinnick R, Hill S, Mayo M, Bottiger J, Huston A, Sivaprakasam V, Chang R (2007) Bio-Aerosol Fluorescence. In: Hoekstra A, Maltsev V, Videen G (eds) Optics of Biological Particles. NATO Science Series, vol 238. Springer Netherlands, Dordrecht, pp 63–164. doi:10.1007/978-1-4020-5502-7_4

    Chapter  Google Scholar 

  16. Hill SC, Mayo MW, Chang RK (2009) Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra. ARL-TR-4722. U.S. Army Research Laboratory, Adelphi, MD, USA

    Google Scholar 

  17. Kaye PH, Stanley WR, Hirst E, Foot EV, Baxter KL, Barrington SJ (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13 (10):3583–3593. doi:10.1364/OPEX.13.003583

    Article  CAS  Google Scholar 

  18. Huang HC, Pan Y-L, Hill SC, Pinnick RG, Chang RK (2008) Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Opt Express 16 (21):16523–16528. doi:10.1364/OE.16.016523

    Article  CAS  Google Scholar 

  19. Feugnet G, Lallier E, Grisard A, McIntosh L, Hellström JE, Jelger P, Laurell F, Albano C, Kaliszewski M, Wlodarski M, Mlynczak J, Kwasny M, Zawadzki Z, Mierczyk Z, Kopczynski K, Rostedt A, Putkiranta M, Marjamaki M, Keskinen J, Enroth J, Janka K, Reinivaara R, Holma L, Humppi T, Battistelli E, Iliakis E, Gerolimos G (2008) Improved laser-induced fluorescence method for bio-attack early warning detection system. Proc SPIE 7116:71160C.1–11. doi:10.1117/12.799151

    Google Scholar 

  20. Huang HC, Pan Y-L, Hill SC, Pinnick RG (2010) Fluorescence-Based Classification with Selective Collection and Identification of Individual Airborne Bioaerosol Particles. In: Serpengüzel A, Poon AW (eds) Optical Processes In Microparticles And Nanostructures, A Festschrift dedicated to Richard Kounai Chang on his Retirement from Yale University. Advanced Series in Applied Physics, vol 6. World Scientific, Singapore, pp 153–167. doi:10.1142/9789814295789_0009

    Chapter  Google Scholar 

  21. Jonsson P, Kullander F, Vahlberg C, Jelger P, Tiihonen M, Wästerby P, Tjärnhage T, Lindgren M (2006) Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles. Proc SPIE 6398:63980F.1–12. doi:10.1117/12.689666

    Google Scholar 

  22. Simard J-R, Roy G, Mathieu P, Larochelle V, McFee J, Ho J (2004) Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence. IEEE Trans Geosci Remote Sens 42 (4):865–874. doi:10.1109/TGRS.2003.823285

    Article  Google Scholar 

  23. Baxter K, Castle M, Barrington S, Withers P, Foot V, Pickering A, Felton N (2007) UK small scale UVLIF lidar for stand-off BW detection. Proc SPIE 6739:67390Z.1–10. doi:10.1117/12.737730

    Google Scholar 

  24. Jonsson P, Elmqvist M, Gustafsson O, Kullander F, Persson R, Olofsson G, Tjärnhage T, Farsund Ø, Haavardsholm TV, Rustad G (2009) Evaluation of biological aerosol stand-off detection at a field trial. Proc SPIE 7484:74840I.1–14. doi:10.1117/12.830401

    Google Scholar 

  25. Farsund Ø, Rustad G, Kaasen I, Haavardsholm TV (2010) Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements. IEEE Sens J 10 (3):655–661. doi:10.1109/JSEN.2009.2037794

    Article  CAS  Google Scholar 

  26. Hill SC, Pinnick RG, Niles S, Pan Y-L, Holler S, Chang RK, Bottiger J, Chen BT, Orr C-S, Feather G (1999) Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal Chem Technol 3 (4-5):221–239. doi:10.1002/(SICI)1520-6521(1999)3:4/5<221::AID-FACT2>3.0.CO;2-7

    Google Scholar 

  27. Pinnick RG, Hill SC, Pan Y-L, Chang RK (2004) Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon. Atmos Environ 38 (11):1657–1672. doi:10.1016/j.atmosenv.2003.11.017

    Article  CAS  Google Scholar 

  28. Pan Y-L, Pinnick RG, Hill SC, Rosen JM, Chang RK (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res 112 (D24):D24S19.1–15. doi:10.1029/2007jd008741

    Google Scholar 

  29. Jonsson P, Kullander F, Vahlberg C, Wästerby P, Tjärnhage T, Olofsson G, Lindgren M, Tiihonen M, Jelger P (2007) Ultraviolet optical techniques for early-warning detection of biological threats. In: The Proceedings of 9th International Symposium on Protection against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 22–25 May 2007. Umeå, p 6

    Google Scholar 

  30. Farsund Ø, Rustad G, Skogan G (2012) Standoff detection of biological agents using laser induced fluorescence-comparison of 294 nm and 355 nm excitation wavelengths. Biomed Opt Express 3 (11):2964–2975. doi:10.1364/BOE.3.002964

    Article  Google Scholar 

  31. DeFreez R (2009) LIF bio-aerosol threat triggers: then and now. Proc SPIE 7484:74840H.1–15. doi:10.1117/12.835088

    Google Scholar 

  32. Buteau S, Simard J-R, Dery B, Roy G, Lahaie P, Mathieu P, Ho J, McFee J (2006) Bioaerosols laser-induced fluorescence provides specific robust signatures for standoff detection. Proc SPIE 6378:637813/1–12. doi:10.1117/12.686010

    Google Scholar 

  33. Bronk BV, Reinisch L (1993) Variability of Steady-State Bacterial Fluorescence with Respect to Growth Conditions. Appl Spectrosc 47 (4):436–440

    Article  Google Scholar 

  34. Campbell SD, Tremblay DP, Daver F, Cousins D (2005) Wavelength comparison study for bioaerosol detection. Proc SPIE 5778:130–138. doi:10.1117/12.610998

    Article  CAS  Google Scholar 

  35. Heaton HI (2005) Principal-components analysis of fluorescence cross-section spectra from pathogenic and simulant bacteria. Appl Opt 44 (30):6486–6495. doi:10.1364/AO.44.006486

    Article  Google Scholar 

  36. Kunnil J, Sarasanandarajah S, Chacko E, Reinisch L (2006) Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data. Appl Opt 45 (15):3659–3664. doi:10.1364/AO.45.003659

    Article  Google Scholar 

  37. Laflamme C, Simard J-R, Buteau S, Lahaie P, Nadeau D, Déry B, Houle O, Mathieu P, Roy G, Ho J, Duchaine C (2011) Effect of growth media and washing on the spectral signatures of aerosolized biological simulants. Appl Opt 50 (6):788–796. doi:10.1364/AO.50.000788

    Article  Google Scholar 

  38. Sarasanandarajah S, Kunnil J, Chacko E, Bronk BV, Reinisch L (2005) Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying. J Aerosol Sci 36 (5-6):689–699. doi:10.1016/j.jaerosci.2004.11.010

    Article  CAS  Google Scholar 

  39. Santarpia JL, Pan Y-L, Hill SC, Baker N, Cottrell B, McKee L, Ratnesar-Shumate S, Pinnick RG (2012) Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. Opt Express 20 (28):29867–29881. doi:10.1364/OE.20.029867

    Article  CAS  Google Scholar 

  40. Dalterio RA, Nelson WH, Britt D, Sperry J, Psaras D, Tanguay JF, Suib SL (1986) Steady-State and Decay Characteristics of Protein Tryptophan Fluorescence from Bacteria. Appl Spectrosc 40 (1):86–90

    Article  CAS  Google Scholar 

  41. Dalterio RA, Nelson WH, Britt D, Sperry JF, Tanguay JF, Suib SL (1987) The Steady-State and Decay Characteristics of Primary Fluorescence From Live Bacteria. Appl Spectrosc 41 (2):234–241

    Article  CAS  Google Scholar 

  42. Jonsson P, Kullander F, Nordstrand M, Tjärnhage T, Wästerby P, Lindgren M (2004) Development of fluorescence-based point detector for biological sensing. Proc SPIE 5617:60–74. doi:10.1117/12.578231

    Google Scholar 

  43. Katz A, Alimova A, Siddique M, Savage HE, Shah M, Rosen RB, Alfano RR (2004) Time-resolved and steady-state fluorescence spectroscopy from bacteria subjected to bactericidal agents. Proc SPIE 5269:217–220. doi:10.1117/12.518656

    Google Scholar 

  44. Vitta P, Kurilcik N, Jursenas S, Zukauskas A, Bakiene E, Zhang J, Katona T, Bilenko Y, Lunev A, Hu X, Deng J, Gaska R (2005) Fluorescence-lifetime identification of biological agents using deep ultraviolet light-emitting diodes. Proc SPIE 5990:59900X.1–12. doi:10.1117/12.630573

    Google Scholar 

  45. Jeys TH, Herzog WD, Hybl JD, Czerwinski RN, Sanchez A (2007) Advanced Trigger Development. Linc Lab J 17 (1):29–62

    Google Scholar 

  46. Greenwood DP, Jeys TH, Johnson B, Richardson JM, Shatz MP (2009) Optical techniques for detecting and identifying biological-warfare agents. Proc IEEE 97 (6):971–989. doi:10.1109/JProc2009.2013564

    Article  CAS  Google Scholar 

  47. Ho J (2002) Future of biological aerosol detection. Anal Chim Acta 457 (1):125–148. doi:10.1016/S0003-2670(01)01592-6

    Article  CAS  Google Scholar 

  48. APS. http://www.tsi.com/en-1033/models/2204/3321.aspx. Accessed 31 April 2013

  49. Hairston PP, Ho J, Quant FR (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J Aerosol Sci 28 (3):471–482. doi:10.1016/s0021-8502(96)00448-x

    Article  CAS  Google Scholar 

  50. Ho J, Spence M, Hairston P (1999) Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data. Aerobiol 15 (4):281–291. doi:10.1023/A:1007647522397

    Article  Google Scholar 

  51. UV-APS. http://www.tsi.com/en-1033/models/2200/3314.aspx. Accessed 31 April 2013

  52. FLAPS III. http://www.tsi.com/en-1033/models/2234/3317.aspx. Accessed 31 April 2013

  53. C-FLAPS. http://www.dycor.com/Portals/39/pdf/dycor_cflaps_feb2011.pdf. Accessed 31 April 2013

  54. Lynch EJ, Bogucki MI, Gardner PJ, Hyttinen L (2005) Biological agent warning sensor (BAWS): laser-induced fluorescence as the joint biological point detection system trigger. Proc SPIE 5795:75–78. doi:10.1117/12.609918

    Google Scholar 

  55. Reyes FL, Jeys TH, Newbury NR, Primmerman CA, Rowe GS, Sanchez A (1999) Bio-aerosol fluorescence sensor. Field Anal Chem Technol 3 (4–5):240–248. doi:10.1002/(SICI)1520-6521(1999)3:4/5%3C240::AID-FACT3%3E3.0.CO;2-%23

    Google Scholar 

  56. Primmerman CA (2000) Detection of biological agents. Linc Lab J 12 (1):3–32

    Google Scholar 

  57. Luoma G, Cherrier P, Zheng C, Piccioni M, Wong A (2001) Development of a novel biological agent real time sensor (PS-BARTS) based on fluorescence particle sizing. In: Proceedings of the 7th International Symposium on Protection against Chemical and Biological Warfare Agents, Stockholm, Sweden, 15–19 June 2001. FOI, Umeå, p 12

    Google Scholar 

  58. Luoma G, Cherrier PP, Piccioni M, Tanton C, Herz S, DeFreez RK, Potter M, Girvin KL, Whitney R (2002) A fluorescence particle detector for real time quantification of viable organisms in air. Proc SPIE 4576:32–39. doi:10.1117/12.456967

    Google Scholar 

  59. Retfalvi LA, Newman E, Boryski M, Kacelenga R (2004) The challenges of effective biological agent detection in homeland security applications. In: The proceedings of the 8th International Symposium on Protection against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 2–6 June 2004. FOI, Umeå, p 17

    Google Scholar 

  60. Mudigonda NR, Kacelenga R (2006) Biological agent detection based on principal component analysis. Proc SPIE 6218:62180P.1–9. doi:10.1117/12.669522

    Google Scholar 

  61. Wilson GA, DeFreez RK (2004) Multispectral diode laser induced fluorescence biological particle sensor. Proc SPIE 5617:46–52. doi:10.1117/12.578854

    Google Scholar 

  62. Campbell SD, Jeys TH, Eapen XL (2007) Bioaerosol optical sensor model development and initial validation. Proc SPIE 6538:65380P.1–9. doi:10.1117/12.717075

    Google Scholar 

  63. Cabalo J, DeLucia M, Goad A, Lacis J, Narayanan F, Sickenberger D (2008) Overview of the TAC-BIO detector. Proc SPIE 7116:71160D.1–11. doi:10.1117/12.799843

    Google Scholar 

  64. Hill SC, Pinnick RG, Nachman P, Chen G, Chang RK, Mayo MW, Fernandez GL (1995) Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles. Appl Opt 34 (30):7149–7155. doi:10.1364/AO.34.007149

    Article  CAS  Google Scholar 

  65. Chen G, Nachman P, Pinnick RG, Hill SC, Chang RK (1996) Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation. Opt Lett 21 (16):1307–1309. doi:10.1364/OL.21.001307

    Article  CAS  Google Scholar 

  66. Pan Y-L, Holler S, Chang RK, Hill SC, Pinnick RG, Niles S, Bottiger JR (1999) Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser. Opt Lett 24 (2):116–118. doi:10.1364/OL.24.000116

    Article  CAS  Google Scholar 

  67. Pan YL, Pinnick RG, Hill SC, Niles S, Holler S, Bottiger JR, Wolf JP, Chang RK (2001) Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles. Appl Phys B 72 (4):449–454. doi:10.1007/s003400100532

    Article  CAS  Google Scholar 

  68. Hill SC, Pinnick RG, Niles S, Fell Jr NF, Pan Y-L, Bottiger J, Bronk BV, Holler S, Chang RK (2002) Fluorescence from airborne microparticles: Dependence on size, concentration of fluorophores, and illumination intensity - Erratum. Appl Opt 41 (21):4432. doi:10.1364/AO.41.004432

    Article  CAS  Google Scholar 

  69. Pan Y-L, Hill SC, Wolf JP, Holler S, Chang RK, Bottiger JR (2002) Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan. Appl Opt 41 (15):2994–2999. doi:10.1364/AO.41.002994

    Article  CAS  Google Scholar 

  70. Pan Y-L, Hartings J, Pinnick RG, Hill SC, Halverson J, Chang RK (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37 (8):628–639. doi:10.1080/02786820390195433

    Article  CAS  Google Scholar 

  71. Pan Y-L, Pinnick RG, Hill SC, Huang H, Chang RK (2008) Dual-wavelength-excitation single-particle fluorescence spectrometer/particle sorter for real-time measurement of organic carbon and biological aerosols. Proc SPIE 7116:71160J.1–8. doi:10.1117/12.801774

    Google Scholar 

  72. Pan YL, Cobler P, Rhodes S, Potter A, Chou T, Holler S, Chang RK, Pinnick RG, Wolf JP (2001) High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector. Rev Sci Instrum 72 (3):1831–1836. doi:10.1063/1.1344179

    Article  CAS  Google Scholar 

  73. Pan Y-L, Hill SC, Pinnick RG, Huang H, Bottiger JR, Chang RK (2010) Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Opt Express 18 (12):12436–12457. doi:10.1364/OE.18.012436

    Article  CAS  Google Scholar 

  74. Pan Y-L, Hill SC, Pinnick RG, House JM, Flagan RC, Chang RK (2011) Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos Environ 45 (8):1555–1563. doi:10.1016/j.atmosenv.2010.12.042

    Article  CAS  Google Scholar 

  75. Pan Y-L, Pinnick RG, Hill SC, Chang RK (2009) Particle-Fluorescence Spectrometer for Real-Time Single-Particle Measurements of Atmospheric Organic Carbon and Biological Aerosol. Environ Sci Technol 43 (2):429–434. doi:10.1021/es801544y

    Article  CAS  Google Scholar 

  76. Pan Y-L, Boutou V, Chang RK, Ozden I, Davitt K, Nurmikko AV (2003) Application of light-emitting diodes for aerosol fluorescence detection. Opt Lett 28 (18):1707–1709. doi:10.1364/OL.28.001707

    Article  CAS  Google Scholar 

  77. Davitt K, Song YK, Nurmikko AV, Jeon SR, Gherasimova M, Han J, Pan YL, Chang RK (2005) UV LED arrays for spectroscopic fingerprinting of airborne biological particles. Phys Status Solidi C 2 (7):2878–2881. doi:10.1002/pssc.200461591

    Google Scholar 

  78. Davitt K, Yoon-Kyu S, Patterson WR, III, Nurmikko AV, Gherasimova M, Jung H, Pan Y-L, Chang RK (2005) 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express 13 (23):9548–9555. doi:10.1364/OPEX.13.009548

    Article  CAS  Google Scholar 

  79. Pan Y-L, Boutou V, Bottiger JR, Zhang SS, Wolf J-P, Chang RK (2004) A puff of air sorts bioaerosols for pathogen identification. Aerosol Sci Technol 38 (6):598–602. doi:10.1080/02786820490465450

    Article  CAS  Google Scholar 

  80. Holler S (1999) Real-time Airborne Microparticle Characterization: Two-dimensional Angular Optical Scattering (TAOS) and UV Fluorescence Spectroscopy. Ph.D., Yale University, New Haven, CT, USA

    Google Scholar 

  81. Holler S, Auger JC, Stout B, Pan Y, Bottiger JR, Chang RK, Videen G (2000) Observations and calculations of light scattering from clusters of spheres. Appl Opt 39 (36):6873–6887. doi:10.1364/AO.39.006873

    Article  CAS  Google Scholar 

  82. Pan Y-L, Aptowicz KB, Chang RK, Hart M, Eversole JD (2003) Characterizing and monitoring respiratory aerosols by light scattering. Opt Lett 28 (8):589–591. doi:10.1364/OL.28.000589

    Article  Google Scholar 

  83. Holler S, Zomer S, Crosta GF, Pan Y-L, Chang RK, Bottiger JR (2004) Multivariate analysis and classification of two-dimensional angular optical scattering patterns from aggregates. Appl Opt 43 (33):6198–6206. doi:10.1364/AO.43.006198

    Article  Google Scholar 

  84. Fernandes GE, Pan YL, Chang RK, Aptowicz K, Pinnick RG (2006) Simultaneous forward- and backward-hemisphere elastic-light-scattering patterns of respirable-size aerosols. Opt Lett 31 (20):3034–3036. doi:10.1364/OL.31.003034

    Article  Google Scholar 

  85. Sindoni OI, Saija R, Iati MA, Borghese F, Denti P, Fernandes GE, Pan Y-L, Chang RK (2006) Optical scattering by biological aerosols: experimental and computational results on spore simulants. Opt Express 14 (15):6942–6950. doi:10.1364/OE.14.006942

    Article  Google Scholar 

  86. Seaver M, Eversole JD, Hardgrove JJ, Cary WK, Roselle DC (1999) Size and Fluorescence Measurements for Field Detection of Biological Aerosols. Aerosol Sci Technol 30 (2):174–185. doi:10.1080/027868299304769

    Article  CAS  Google Scholar 

  87. Eversole JD, Roselle D, Seaver ME (1999) Monitoring biological aerosols using UV fluorescence. Proc SPIE 3533:34–42. doi:10.1117/12.336868

    Google Scholar 

  88. Eversole JD, Hardgrove JJ, Cary WK, Choulas DP, Seaver M (1999) Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results. Field Anal Chem Technol 3 (4–5):249–259. doi:10.1002/(SICI)1520-6521(1999)3:4/5<249::AID-FACT4>3.0.CO;2-O

    Google Scholar 

  89. Eversole JD, Cary Jr. WK, Scotto CS, Pierson R, Spence M, Campillo AJ (2001) Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results. Field Anal Chem Technol 5 (4):205–212. doi:10.1002/fact.1022

    Google Scholar 

  90. Eversole JD, Scotto CS, Spence M, Campillo AJ (2003) Continuous bioaerosol monitoring using UV excitation fluorescence. Proc SPIE 4829:532–533. doi:10.1117/12.525515

    Google Scholar 

  91. Birenzvige A, Eversole J, Seaver M, Francesconi S, Valdes E, Kulaga H (2003) Aerosol characteristics in a subway environment. Aerosol Sci Technol 37 (3):210–220. doi:10.1080/02786820300941

    Article  CAS  Google Scholar 

  92. Sivaprakasam V, Huston AL, Scotto C, Eversole JD (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Proc SPIE 5585:71–78. doi:10.1117/12.571296

    Google Scholar 

  93. Eversole JD, Sivaprakasam V, Pletcher TA, Keller D (2008) Single aerosol particle selection and capture using laser scattering and fluorescence. Proc SPIE 7116:71160F.1–11. doi:10.1117/12.799890

    Google Scholar 

  94. Sivaprakasam V, Pletcher T, Tucker JE, Huston AL, McGinn J, Keller D, Eversole JD (2009) Classification and selective collection of individual aerosol particles using laser-induced fluorescence. Appl Opt 48 (4):B126–B136. doi:10.1364/AO.48.00B126

    Article  CAS  Google Scholar 

  95. Sivaprakasam V, Lin H-B, Huston AL, Eversole JD (2011) Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Opt Express 19 (7):6191–6208. doi:10.1364/OE.19.006191

    Article  CAS  Google Scholar 

  96. Sivaprakasam V, Lou JW, Currie M, Eversole JD (2011) Two-photon excited fluorescence from biological aerosol particles. J Quant Spectrosc Radiat Transf 112 (10):1511–1517. doi:10.1016/j.jqsrt.2011.02.010

    Article  CAS  Google Scholar 

  97. Hybl JD, Tysk SM, Berry SR, Jordan MP (2006) Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl Opt 45 (34):8806–8814. doi:10.1364/AO.45.008806

    Article  CAS  Google Scholar 

  98. Barton JE, Hirst E, Kaye PH, Clark JM (2000) Simultaneous light scattering and intrinsic fluorescence measurement for bioaerosol detection. J Aerosol Sci 31 (SUPPL 1):S967–S968. doi:10.1016/S0021-8502(00)90977-7

    Google Scholar 

  99. Kaye PH, Barton JE, Hirst E, Clark JM (2000) Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl Opt 39 (21):3738–3745. doi:10.1364/AO.39.003738

    Google Scholar 

  100. Hirst E, Kaye PH, Foot V, Clark JM, Withers PB (2004) An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles. Proc SPIE 5617:416–423. doi:10.1117/12.578269

    Google Scholar 

  101. Foot VJ, Clark JM, Baxter KL, Close N (2004) Characterising single airborne particles by fluorescence emission and spatial analysis of elastic scattered light. Proc SPIE 5617:292–299. doi:10.1117/12.578198

    Google Scholar 

  102. Kaye PH, Hirst E, Foot V, Clark JM, Baxter K (2004) A low-cost multi-channel aerosol fluorescence sensor for networked deployment. Proc SPIE 5617:388–398. doi:10.1117/12.578283

    Google Scholar 

  103. Kaye PH, Stanley WR, Foot V, Baxter K, Barrington SJ (2005) A dual-wavelength single particle aerosol fluorescence monitor. Proc SPIE 5990:59900N.1–12. doi:10.1117/12.629868

    Google Scholar 

  104. Foot VE, Kaye PH, Stanley WR, Barrington SJ, Gallagher M, Gabey A (2008) Low-cost real-time multi-parameter bio-aerosol sensors. Proc SPIE 7116:711601.1–12. doi:10.1117/12.800226

    Google Scholar 

  105. Stanley WR, Kaye PH, Foot VE, Barrington SJ, Gallagher M, Gabey A (2011) Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle spectrometer. Atmos Sci Lett 12 (2):195–199. doi:10.1002/asl.310

    Article  Google Scholar 

  106. Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10 (10):4453–4466. doi:10.5194/acp-10-4453-2010

    Article  CAS  Google Scholar 

  107. Gabey AM, Stanley WR, Gallagher MW, Kaye PH (2011) The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations. Atmos Chem Phys 11 (11):5491–5504. doi:10.5194/acp-11-5491-2011

    Article  CAS  Google Scholar 

  108. Tjärnhage T, Strömqvist M, Olofsson G, Squirrell D, Burke J, Ho J, Spence M (2001) Multivariate data analysis of fluorescence signals from biological aerosols. Field Anal Chem Technol 5 (4):171–176. doi:10.1002/fact.1018

    Google Scholar 

  109. Jonsson P, Kullander F, Wästerby P, Tiihonen M, Lindgren M (2005) Detection of fluorescence spectra of individual bioaerosol particles. Proc SPIE 5990:59900M.1–15. doi:10.1117/12.630141

    Google Scholar 

  110. Jonsson P, Kullander F, Tiihonen M, Nordstrand M, Tjærnhage T, Wæsterby P, Olofsson G, Lindgren M (2005) Development of fluorescence-based LIDAR technology for biological sensing. Mater Res Soc Symp Proc 883:51–62. doi:10.1557/PROC-883-FF1.6

    CAS  Google Scholar 

  111. Jonsson P, Kullander F, Vahlberg C, Gustavsson O, Tiihonen M, Jelger P, Wästerby P, Tjärnhage T, Lindgren M (2006) Spectral Detection of Ultraviolet Laser Induced Fluorescence from Dry Biological Particles. In: Proceedings of the 7th Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, VA, USA, 23–27 October 2006. Williamsburg. p 10

    Google Scholar 

  112. Tiihonen M, Pasiskevicius V, Laurell F, Jonsson P, Lindgren M (2004) A compact OPO/SFG laser for ultraviolet biological sensing. Proc SPIE 5332:134–142. doi:10.1117/12.530292

    Google Scholar 

  113. Tiihonen M, Pasiskevicius V, Laurell F, Hammarström P, Lindgren M (2004) A UV laser source for biological and chemical sensing. Proc SPIE 5240:127–136. doi:10.1117/12.509641

    Google Scholar 

  114. Tiihonen M, Pasiskevicius V, Laurell F, Lindgren M (2004) A novel UV-laser source for fluorescence excitation of proteins. Proc SPIE 5617:261–268. doi:10.1117/12.568436

    Google Scholar 

  115. Tiihonen M, Pasiskevicius V, Laurell F (2007) Tailored UV-laser source for fluorescence spectroscopy of biomolecules. Opt Laser Eng 45 (4):444–449. doi:10.1016/j.optlaseng.2005.03.016

    Article  Google Scholar 

  116. Feugnet G, Grisard A, Lallier E, McIntosh L, Hellström J (2008) Advanced double-pulse UV source for laser-induced fluorescence of bioaerosols. Proc SPIE 7116:71160O.1–7. doi:10.1117/12.799143

    Google Scholar 

  117. Rostedt A, Putkiranta M, Marjamaki M, Keskinen J, Janka K, Reinivaara R, Holma L (2006) Optical chamber design for aerosol particle fluorescent measurement. Proc SPIE 6398:63980G.1–10. doi:10.1117/12.689803

    Google Scholar 

  118. Battistelli E, Paolinetti R, Pompei C, Puccini S (2008) The optical detection system of FABIOLA. Proc SPIE 7116:71160G.1–9. doi:10.1117/12.800131

    Google Scholar 

  119. Manninen A, Putkiranta M, Rostedt A, Saarela J, Laurila T, Marjamaki M, Keskinen J, Hernberg R (2008) Instrumentation for measuring fluorescence cross sections from airborne microsized particles. Appl Opt 47 (2):110–115. doi:10.1364/AO.47.000110

    Article  CAS  Google Scholar 

  120. Putkiranta M, Manninen A, Rostedt A, Saarela J, Sorvajärvi T, Marjamäki M, Hernberg R, Keskinen J (2010) Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions. Appl Phys B 99 (4):841–851. doi:10.1007/s00340-010-4073-z

    Article  CAS  Google Scholar 

  121. Grun J, Manka CK, Nikitin S, Zabetakis D, Comanescu G, Gillis D, Bowles J (2007) Identification of bacteria from two-dimensional resonant-Raman spectra. Anal Chem 79 (14):5489–5493. doi:10.1021/ac070681h

    Article  CAS  Google Scholar 

  122. Bhartia R, Hug WF, Salas BC, Sijapati K, Lane AL, Reid RD, Conrad PG (2006) Biochemical detection and identification false alarm rate dependence on wavelength using laser induced native fluorescence. Proc SPIE 6218:62180J.1–9. doi:10.1117/12.674404

    Google Scholar 

  123. Bhartia R, Hug WF, Salas EC, Reid RD, Sijapati KK, Tsapin A, Abbey W, Nealson KH, Lane AL, Conrad PG (2008) Classification of Organic and Biological Materials with Deep Ultraviolet Excitation. Appl Spectrosc 62 (10):1070–1077. doi:10.1366/000370208786049123

    Article  CAS  Google Scholar 

  124. Bhartia R, Salas EC, Hug WF, Reid RD, Lane AL, Edwards KJ, Nealson KH (2010) Label-Free Bacterial Imaging with Deep-UV-Laser-Induced Native Fluorescence. Appl Environ Microbiol 76 (21):7231–7237. doi:10.1128/aem.00943-10

    Article  CAS  Google Scholar 

  125. Hug WF, Bhartia R, Taspin A, Lane A, Conrad P, Sijapati K, Reid RD (2005) Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents. Proc SPIE 5994:59940J.1–12. doi:10.1117/12.628923

    Google Scholar 

  126. Hug WF, Reid RD, Bhartia R, Lane AL (2009) Performance status of a small robot-mounted or hand-held, solar-blind, standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 7304:73040Z.1–8. doi:10.1117/12.817881

    Google Scholar 

  127. Grun J, Bowles J, Gillis D, Kunapareddy P, Lunsford R, Manka CK, Nikitin S, Wang Z (2010) Tunable multi-wavelength resonance-Raman detection of bacteria and chemicals in complex environments. Proc SPIE 7687:768706.1–12. doi:10.1117/12.863209

    Google Scholar 

  128. Kunapareddy N, Grun J, Lunsford R, Gillis D, Nikitin S, Wang Z (2012) Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition. Proc SPIE 8358:83580B.1–7. doi:10.1117/12.918652

    Google Scholar 

  129. Comanescu G, Manka CK, Grun J, Nikitin S, Zabetakis D (2008) Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy. Appl Spectrosc 62 (8):833–839

    Article  CAS  Google Scholar 

  130. VeroTect. http://www.biral.com/content/Biral_and_biodetection. Accessed 28 June 2013

  131. Shelton MJ, Evans SP, Smith PD, Simpson IA, Kaye PH, Clarke JM (2004) Real-time biological agent detection using particle size, shape and fluorescence characterisation. Proc SPIE 5617:284–291. doi:10.1117/12.573636

    Google Scholar 

  132. Clark JM, Shelton MJ, Evans SP, Smith PD, Simpson IA, Kaye PH (2005) A new real-time biological agent characterisation system. Proc SPIE 5990:59900Z.1–8. doi:10.1117/12.634065

    Google Scholar 

  133. ENVI BioScout. http://www.environics.fi/index.php/biological-detection/envi-bioscout. Accessed 28 June 2013

  134. IMD. http://www.biovigilant.com/products/. Accessed 28 June 2013

  135. IBAC. http://gs.flir.com/products/icx-detection/biological/ibac/. Accessed 28 June 2013

  136. Carrano JC, Jeys T, Cousins D, Eversole J, Gillespie J, Healy D, Licata N, Loerop W, O’Keefe M, Samuels A, Schultz J, Walter M, Wong N, Billotte W, Munley M, Reich E, Roos J (2004) Chemical and biological sensor standards study. Defense Advanced Research Projects Agency, Arlington VA. Available from: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA458370

  137. Carrano J, Jeys T, Eversole J, Gillespie J, Licata N, Loerop W, Munley M, O’Keefe M, Roos J, Samuels A, Schultz J, Shatz M, Wong N, D’Amico F, Casale AM, Holster SE, McGrath JF, Metrovich A, Murphy C, Nelson-Patel K, Reich E, Riisager T (2010) Chemical and Biological Sensor Standards Study II. Advanced Research Projects Agency and Defense Threat Reduction Agency, Arlington VA. Available from: http://www.dtra.mil/docs/system-documents/Chem_Bio_Sensor_Standards_Study_Vol_2_Oct_2010.pdf

  138. Kunnil J, Sarasanandarajah S, Chacko E, Swartz B, Reinisch L (2005) Identification of Bacillus spores using clustering of principal components of fluorescence data. Aerosol Sci Technol 39 (9):842–848

    Article  CAS  Google Scholar 

  139. Van Wuijckhuijse AL, Stowers MA, Kleefsman WA, Van Baar BLM, Kientz CE, Marijnissen JCM (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: Development of a fast detector for airborne biological pathogens. J Aerosol Sci 36 (5–6):677–687

    Article  CAS  Google Scholar 

  140. Huffman JA, Treutlein B, Pöschl U (2010) Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos Chem Phys 10 (7):3215–3233. doi:10.5194/acp-10-3215-2010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Jonsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Jonsson, P., Kullander, F. (2014). Bioaerosol Detection with Fluorescence Spectroscopy. In: Jonsson, P., Olofsson, G., Tjärnhage, T. (eds) Bioaerosol Detection Technologies. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5582-1_7

Download citation

Publish with us

Policies and ethics