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After initial publication of the book, various errors were identified that needed

correction. All corrections listed below have been updated within the current

version. Note that the correction to Chapter 7 starting p. 422 changes the

pagination of all subsequent material, starting from “Absolute Convergence

and Conditional Convergence”, previously p. 425, now p. 427.

In the following, p. i, +j means the jth line from the top on page i,

whereas p. i, −j means the jth line from the bottom on page i.

Chapter 1
p. 5, +16: Change “least upper bound” to “greatest lower bound”

p. 10, −12: Change “f(x, y) ≥ 0” to “f(x, y) > 0”

p. 34, −6: Change “handled them with” to “handled with”
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Here page i

ith page in the original edition of the book published in 2010. Therefers to the

quotes.
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Chapter 3
p. 88, +5: Change “x0 ∈ [c, d]” to “x0 ∈ [a, b]”

p. 97, −13: Change “u : D → R2 are” to “u : D → R are”

p. 97, −8: Change “f” to “g”

p. 118, −10: Change “f(x, y)” to “f(x1, y1)”

p. 118, −10: Change at two places “k
∂

∂x
” to “k

∂

∂y
”

p. 154, +9: Change “
√
h2 + k2 ” to “|h|+ |k|”

p. 156, −2: Change “(y − b)(z − c)” to “(y − c)(z − p)”

Chapter 4
p. 166, +22: Change “μh(x, y, z)” to “μ∇h(x, y, z)”

Chapter 5
p. 213, +11: Change “R” to “R”

p. 213, −6: Change “5.19” to “5.23”

p. 219, −6: Change “0 ≤ a < b and 0 ≤ c < d” to “0 < a < b and

0 < c < d”

p. 220, −13: Change “Moreover, by Proposition 5.28, we have” to “Moreover,”

p. 224, +3: Change “[a, b)× [c, d)” to “[a, b]× [c, d]”

p. 238, −19: Change “iterated integral” to “integral”

p. 245, +14: Change “and D1 ∩D2 are” to “and D1 ∩D2 is”

p. 268, +18: Change “Exercise 43” to “Exercise 43 of Chapter 3”

p. 272, −10: Change “d(y, z)” to “d(x, y)”

p. 272, −9: Change “f(x, y, z)” to “
∫ φ2(x,y)

φ1(x,y)
f(x, y, z)dz”

Chapter 2
p. 45, +2: Change “If” to “Let an → a. If”

p. 278: Change Figure 5.26 to the revised figure provided below.
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E

p. 275, +16: Change “f” to “f ◦ Φ”



C3

p. 282, −3: Change “x ≤ y” to “y ≤ x”

p. 285, +19: Change “49/192” to “49/576”

Chapter 6
p. 302, −16: Change “D, yz-plane” to “D by the yz-plane”

p. 303, +11: Change “[−π, π]× [f1(x), f2(x)]” to “[f1(x), f2(x)]× [−π, π]”

Chapter 7
p. 422, −6 to p. 425, −11: Change the entire text from the statement of

the Integral Test until the beginning of the next subsection to the revised

Correction to: A course in Multivariable Calculus and Analysis

text provided below.

Proposition 7.57 (Integral Test). Let f : [1,∞)×[1,∞) → R be a nonneg-

ative monotonically decreasing function. If
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is con-

vergent, then the double series
∑∑

(k,�)≥(2,2) f(k, �) is convergent, and

∞∑
k=2

∞∑
�=2

f(k, �) ≤
∫∫

[1,∞)×[1,∞)

f(s, t)d(s, t).

Conversely, if the full double series
∑∑

(k,�)≥(1,1) f(k, �) is convergent, then

the improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is convergent, and

∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) ≤
∞∑
k=1

∞∑
�=1

f(k, �),

and moreover, the improper integrals
∫
[1,∞)

f(s, 1)ds and
∫
[1,∞)

f(1, t)dt are

convergent, and

∞∑
k=1

∞∑
�=1

f(k, �) ≤ f(1, 1)+

∫ ∞

1

f(s, 1)ds+

∫ ∞

1

f(1, t)dt+

∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t).

On the other hand, if the improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t)

diverges to ∞, then the full double series
∑∑

(k,�)≥(1,1) f(k, �) diverges to

∞, whereas if the double series
∑∑

(k,�)≥(2,2) f(k, �) diverges to ∞, then the

improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) diverges to ∞.

Proof. Since f is monotonic, by part (i) of Proposition 5.12, f is integrable

on [1, x] × [1, y] for every (x, y) ≥ (1, 1). Define F : [1,∞) × [1,∞) → R by

F (x, y) :=
∫∫

[1,x]×[1,y]
f(s, t)d(s, t). Since f is nonnegative, by Corollary 5.10,
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the function F is monotonically increasing. Hence Proposition 7.55 implies

that the improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is convergent if

and only if the set {F (m,n) : (m,n) ∈ N 2} is bounded above, and in this case∫ ∫
[1,∞)×[1,∞)

f(s, t)d(s, t) = sup {F (x, y) : (x, y) ∈ [1,∞)× [1,∞)}

= sup
{
F (m,n) : (m,n) ∈ N 2

}
= lim

(m,n)→(∞,∞)
F (m,n).

Here the penultimate equality follows since F is monotonically increasing, and

the last equality follows from part (i) of Proposition 7.4. Similarly,∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) diverges to ∞ ⇐⇒ F (m,n) → ∞ as m,n → ∞.

Now let us define

ak,� :=

∫∫
[k,k+1]×[�,�+1]

f(s, t)d(s, t) for (k, �) ∈ N 2

and

Am,n :=

m∑
k=1

n∑
�=1

ak,� for (m,n) ∈ N 2.

By the Domain Additivity of Double Integrals on Rectangles (Proposition 5.9),

Am,n = F (m+ 1, n+ 1) for all (m,n) ∈ N 2.

Further, since ak,� ≥ 0 for all (k, �) ∈ N 2, it follows from Proposition 7.14

that the double series
∑∑

(k,�)≥(1,1) ak,� is convergent if and only if the dou-

ble sequence (F (m,n)) is bounded above, that is, the improper double integral∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) is convergent, and in this case, the sum of the dou-

ble series is equal to the value of the improper double integral. Similarly, the

double series
∑∑

(k,�)≥(1,1) ak,� diverges to ∞ if and only if the double se-

quence (F (m,n)) is not bounded above, that is, the improper double integral∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) diverges to ∞.

To relate the convergence of the double series
∑∑

(k,�)≥(1,1) ak,� to that

of
∑∑

(k,�)≥(1,1) f(k, �), observe that since f is monotonically decreasing,

f(k + 1, �+ 1) ≤ ak,� ≤ f(k, �) for all (k, �) ∈ N 2.

The first inequality above together with what is shown earlier and the Compar-

ison Test for Double Series (Proposition 7.25) implies that if the improper dou-
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ble integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is convergent, then

∑∑
(k,�)≥(2,2) f(k, �)

is convergent, and

∞∑
k=2

∞∑
�=2

f(k, �)=

∞∑
k=1

∞∑
�=1

f(k+1, �+1) ≤
∞∑
k=1

∞∑
�=1

ak,� =

∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t).

Similarly, if the full double series
∑∑

(k,�)≥(1,1) f(k, �) is convergent, then the

improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is convergent, and

∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) =

∞∑
k=1

∞∑
�=1

ak,� ≤
∞∑
k=1

∞∑
�=1

f(k, �),

and moreover, since f is nonnegative, the series
∑

k≥1 f(k, 1) and
∑

�≥1 f(1, �)

are convergent as well. Since f is also monotonically decreasing, by the Integral

Test for functions of one variable (Proposition 9.39 of ACICARA), the improper

integrals
∫
[1,∞)

f(s, 1)ds and
∫
[1,∞)

f(1, t)dt are convergent, and

∞∑
k=1

∞∑
�=1

f(k, �) = f(1, 1) +

∞∑
k=2

f(k, 1) +

∞∑
�=2

f(1, �) +

∞∑
k=2

∞∑
�=2

f(k, �)

≤ f(1, 1) +

∫ ∞

1

f(s, 1)ds+

∫ ∞

1

f(1, t)dt

+

∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t).

Finally, if the improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) diverges

to ∞, then as seen above, the double series
∑∑

(k,�)≥(1,1) ak,� diverges to

∞, and so by the Comparison Test for Double Series (Proposition 7.25), the

full double series
∑∑

(k,�)≥(1,1) f(k, �) diverges to ∞. Similarly, if the double

series
∑∑

(k,�)≥(2,2) f(k, �) diverges to ∞, then the improper double integral∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) diverges to ∞. 
�
The above result is not completely analogous to the Integral Test for func-

tions of one variable, which says that if f : [1,∞) → R is a nonnegative

monotonically decreasing function, then the improper integral
∫
[1,∞)

f(t)dt is

convergent if and only if the series
∑

k≥1 f(k) is convergent. (See, for example,

[22, Proposition 9.39]. In fact, if we define f, g : [1,∞)× [1,∞) → R by

f(s, t) :=

⎧⎨⎩1 if s = 1,

0 otherwise
and g(s, t) :=

⎧⎨⎩1 if s ∈ [1, 2),

0 otherwise,

then we easily see that the double improper integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t)

is convergent, but the double series
∑∑

(k,�)≥(1,1) f(k, �) diverges to ∞, while
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the double series
∑∑

(k,�)≥(2,2) g(k, �) is convergent, but the double improper

integral
∫∫

[1,∞)×[1,∞)
g(s, t)d(s, t) diverges to ∞.

Let now f : [1,∞)×[1,∞) → R be a nonnegative monotonically decreasing

function. Since
∫ n

1
f(s, 1)ds ≤ ∑n

k=1 f(k, 1) and
∫ n

1
f(1, t)dt ≤ ∑n

�=1 f(1, �)

for all n ∈ N, Proposition 7.57 yields the following characterization.

The double series
∑∑

(k,�)≥(1,1) f(k, �) is convergent if and only if

the improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) as well as the

improper integrals
∫∞
1

f(s, 1)ds and
∫∞
1

f(1, t)dt are convergent.

The above results are useful in determining whether a double series or an im-

proper double integral is convergent, and in that case, to obtain lower bounds

and upper bounds for them. This is illustrated in the example below.

Example 7.58. Let f(s, t) := 1/(s + t)p for (s, t) ∈ [1,∞) × [1,∞), where

p ∈ R with p > 0. Then f is a nonnegative monotonically decreasing func-

tion. If p > 2, then the double series
∑∑

(k,l)≥(1,1) f(k, �) is convergent

as we have seen in Example 7.17 (i), and so the improper double integral∫∫
[1,∞)×[1,∞)

f(s, t)d(s, t) is convergent by Proposition 7.57. Conversely, sup-

pose the improper double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is convergent.

Then the double series
∑∑

(k,l)≥(2,2) f(k, �) is convergent by Proposition 7.57.

Hence proceeding as in Example 7.17 (i) and considering the diagonal series∑
j≥2 cj , where cj := (j − 1)/(j + 2)p, we obtain p > 2. Thus the improper

double integral
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is convergent if and only if p > 2.

Alternatively, we can directly show that
∫∫

[1,∞)×[1,∞)
f(s, t)d(s, t) is con-

vergent if and only if p > 2 as follows. Indeed, let (x, y) ≥ (1, 1), and let

F (x, y) :=
∫∫

[1,x]×[1,y]
d(s, t)/(s+ t)p. Suppose p ≤ 2. Then

F (x, y) ≥
∫∫

[1,x]×[1,y]

d(s, t)

(s+ t)2
=

∫ x

1

( ∫ y

1

dt

(s+ t)2

)
ds

=

∫ x

1

( 1

s+ 1
− 1

s+ y

)
ds = ln(x+ 1)− ln 2− ln(x+ y) + ln(1 + y)

= ln
(x+ 1)(y + 1)

x+ y
− ln 2 ≥ − ln

( 1

x+ 1
+

1

y + 1

)
− ln 2.

Hence
∫∫

[1,∞)×[1,∞)
d(s, t)/(s+ t)p diverges to ∞. Next, suppose p > 2. Then

F (x, y) =
1

p− 1

∫ x

1

[
1

(s+ 1)p−1
− 1

(s+ y)p−1

]
ds

=
1

(p− 1)(p− 2)

[
1

2p−2
− 1

(x+ 1)p−2
− 1

(1 + y)p−2
+

1

(x+ y)p−2

]
.
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Hence ∫∫
[1,∞)×[1,∞)

1

(s+ t)p
d(s, t) =

1

(p− 1)(p− 2)2p−2
if p > 2.

Now we can obtain an alternative proof of the fact that the double series∑∑
(k,l)≥(1,1) f(k, �) is convergent if and only if p > 2 by invoking Proposi-

tion 7.57 and by observing that the improper integrals
∫∞
1

ds/(s + 1)p and∫∞
1

dt/(1 + t)p are convergent when p > 2.

When p > 2, Proposition 7.57 allows us to estimate the double sum∑∑
(k,�)≥(1,1) 1/(k + �)p. First we note that if p > 1, then∫ x

1

1

(s+ 1)p
ds =

1

p− 1

(
1

2p−1
− 1

(x+ 1)p−1

)
≤ 1

(p− 1)2p−1
for all x ≥ 1.

Now

1

(p− 1)(p− 2)2p−2
≤

∑ ∑
(k,�)≥(1,1)

1

(k + �)p

≤ 1

2p
+

1

(p− 1)2p−1
+

1

(p− 1)2p−1
+

1

(p− 1)(p− 2)2p−2

=
p2 + p− 2

2p(p− 1)(p− 2)
.

For example,

1

4
≤

∑ ∑
(k,�)≥(1,1)

1

(k + �)3
≤ 5

8
and

1

24
≤

∑ ∑
(k,�)≥(1,1)

1

(k + �)4
≤ 3

16
.

by letting p = 3 and p = 4. Finally, we remark that if we denote by ζ(s) the

sum of the convergent series
∑

n≥1 1/n
s, where s ∈ R with s > 1, then for

p > 2, the sum
∑∞

k=1

∑∞
�=1 1/(k + �)p can be expressed as ζ(p − 1) − ζ(p).

Indeed,

∞∑
k=1

∞∑
�=1

1

(k + �)p
=

∞∑
n=2

∑
k+�=n

(k,�)≥(1,1)

1

np
=

∞∑
n=2

(n− 1)

np
=

(
ζ(p−1)−1

)−(
ζ(p)−1

)
.

This indicates that it is not easy to find an exact value of the sum of the above

double series for p > 2, even if p is an integer. Indeed, while values of ζ(n)

are known when n is an even positive integer (Theorem 5.6.3 of Hijab’s book

[30]), values of ζ(n) when n is an odd integer > 1 remain mostly a mystery.

For instance, it is not known whether or not ζ(5) is irrational. �

p. 438, +10: Change “if and only if” to “if and only if there is”
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