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Abstract In the present work we investigate the performance of a number of tradi-

tional and recent speech enhancement algorithms in the adverse non-stationary 

conditions, which are distinctive for motorcycle on the move. The performance of 

these algorithms is ranked in terms of the improvement they contribute to the 

speech recognition rate, when compared to the baseline result, i.e. without speech 

enhancement. The experimentations on the MoveOn motorcycle speech and noise 

database suggested that there is no equivalence between the ranking of algorithms 

based on the human perception of speech quality and the speech recognition per-

formance. The Multi-band spectral subtraction method was observed to lead to the 

highest speech recognition performance. 

1 Introduction 

Spoken language dialogue systems considerably improve driver’s safety and user-

friendliness of human-machine interfaces, due to their similarity to the conversa-

tional activity with another human, a parallel activity to which the driver is used to 

and it allows him concentrate on the main activity, the driving itself. Driving qual-

ity, stress and strain situations and user acceptance when using speech and manual 

commands to acquire certain information on the route has previously been studied 

[1], and the results have shown that, with speech input, the feeling of being dis-

tracted from driving is smaller, and road safety is improved, especially in the case 

of complex tasks. Moreover, assessment of user requirements from multimodal in-

terfaces in a car environment has shown that when the car is moving the system 

should switch to the “speech-only” interaction mode, as any other safety risks (i.e. 

driver distraction from the driving task by gesture input or graphical output) must 

be avoided [2]. 

The performance of speech-based interfaces, although reliable enough in con-

trolled environments to support speaker and device independence, degrades sub-
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stantially in a mobile environment, when used on the road. There are various types 

and sources of noise interfering with the speech signal, starting with the acoustic 

environment (vibrations, road/fan/wind noise, engine noise, traffic, etc.) to 

changes in the speaker’s voice due to task stress, distributed attention, etc. In the 

integration of speech-based interfaces within vehicle environments the research is 

conducted in two directions: (i) addition of front-end speech enhancement systems 

to improve the quality of the recorded signal, and (ii) training the speech models 

of the recognizer engine on noisy, real-life, speech databases. 

In this study, the front-end speech enhancement system for a motorcycle on the 

move environment is investigated. The speech-based interface, as presented in this 

study, is part of a multi-modal and multi-sensor interface developed in the context 

of the MoveOn project. The performance of various speech enhancement algo-

rithms in the non-stationary conditions of motorcycle on the move is assessed. 

Performance of assessed algorithms is ranked in terms of the improvement they 

contribute to the speech recognition rate, when compared to the baseline results 

(i.e. without speech enhancement). Following, a short overview of the MoveOn 

system, the enhancement methods evaluated, and the experimental setup and re-

sults are presented. 

2 System Description 

The MoveOn project aims at the creation of a multi-modal and multi-sensor, zero-

distraction interface for motorcyclists. This interface provides the means for 

hands-free operation of a command and control system that enables for informa-

tion support of police officers on the move. The MoveOn information support sys-

tem is a wearable solution, which constitutes of a purposely designed helmet, 

waist and gloves. The helmet incorporates microphones, headphones, visual feed-

back, a miniature camera and some supporting local-processing electronics. It has 

a USB connection to the waist that provides the power supply and the data and 

control interfaces. The waist incorporates the main processing power, storage re-

pository, TETRA communication equipment and power capacity of the wearable 

system, but also a number of sensors, an LCD display, and some vibration feed-

back actuators. Among the sensors deployed on the waist are acceleration and in-

clination sensors, and a GPS device, which provide the means for the context 

awareness of the system. Auxiliary microphone and headphone are integrated in 

the upper part of the waist, at the front side near the collar, for guaranteeing the 

spoken interaction and communication capabilities when the helmet is off. 

The multimodal user interface developed for the MoveOn application consists 

of audio and haptic inputs, and audio, visual and vibration feedbacks to the user. 

Due to the specifics of the MoveOn application, involving hands-busy and eyes-

busy motorcyclists, speech is the dominating interaction modality.  

The spoken interface consists of multi-sensor speech acquisition equipment, 

speech pre-processing, speech enhancement, speech recognition, and text-to-
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speech synthesis components, which are integrated into the multimodal dialogue 

interaction framework based on Olympus/RavenClaw [3, 4], but extended for the 

needs of multimodal interaction. Each component in the system is a server on it-

self, i.e. ASR, TTS, speech preprocessing, speech enhancement, etc are servers, 

communicating either directly with each other or through a central hub, which 

provides synchronization.  

Since the noisy motorcycle environment constitutes a great challenge to the 

spoken dialogue interaction, a special effort is required to guarantee high speech 

recognition performance, as it proved to be the most crucial element for the over-

all success of interaction.  

3 Speech Enhancement Methods 

We consider eight speech enhancement techniques, which will be examined in the 

non-stationary motorcycle environment conditions: 

•  The spectral subtraction (SPECSUB) algorithm [5], which is a well-known 

technique will serve as a reference point. It relies on the fact that the power 

spectra of additive independent signals are also additive. Thus, in the case of 

stationary noise,  to obtain a least squares estimate of the speech power spec-

trum, it suffices to subtract the mean noise power. Due to its low complexity 

and good efficiency, the spectral subtraction method is a standard choice for 

noise suppression at the pre-processing stage of speech recognition systems. 

•  Spectral subtraction with noise estimation (SPECSUB-NE) [6]. This method 

tracks spectral minima in each frequency band without any distinction between 

speech activity and speech pause. Based on the optimally smoothed power 

spectral density estimate and the analysis of the statistics of spectral minima an 

unbiased noise estimator is implemented. Due to the last, this algorithm is more 

appropriate for real world conditions, and outperforms the SPECSUB in non-

stationary environments. 

• Multi-band spectral subtraction method (M-BAND) [7]. It is based on the 

SPECSUB algorithm but accounts for the fact that in real world conditions, in-

terferences do not affect the speech signal uniformly over the entire spectrum. 

The M-BAND method was demonstrated to outperform the standard 

SPECSUB method resulting in superior speech quality and largely reduced mu-

sical noise. 

• Speech enhancement using a minimum mean square error log-spectral ampli-

tude estimator [8], which we refer to as (Log-MMSE). This method relies on a 

short-time spectral amplitude estimator for speech signals, which minimizes the 

mean-square error of the log-spectra. 

• Speech enhancement based on perceptually motivated Bayesian estimators 

(STSA-WCOSH) of the speech magnitude spectrum [9]. This algorithm utilizes 

Bayesian estimators of the short-time spectral magnitude of speech based on 

perceptually motivated cost functions. It was demonstrated that the estimators 
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which implicitly take into account auditory masking effect perform better in 

terms of having less residual noise and better speech quality, when compared to 

the Log-MMSE method.  

• Subspace algorithm with embedded pre-whitening (KLT) [10]. It is based on 

the simultaneous diagonalization of the clean speech and noise covariance ma-

trices. Objective and subjective evaluations suggest that this algorithm offers 

advantage when the interference is speech-shaped or multi-talker babble noise. 

• Perceptually-motivated subspace algorithm (PKLT) [11]. It incorporates a hu-

man hearing model in the suppression filter  to reduce the residual noise. From 

a perceptual perspective, the perceptually based eigenfilter introduced here 

yields a better shaping of the residual noise. This method was reported to out-

perform the KLT method. 

• Wiener algorithm based on wavelet thresholding (WIENER-WT) multi-taper 

spectra [12]. It uses a low-variance spectral estimators based on wavelet thresh-

olding the multitaper spectra. Listening tests reportedly had shown that this 

method suppresses the musical noise and yielded better speech quality than the 

KLT, PKLT and Log-MMSE algorithms. 

4 Experiments and Results 

The speech front-end described in Section 1.2 was tested with each of the speech 

enhancement techniques outlined in Section 1.3. Different environmental condi-

tions and configuration settings of the speech recognition engine were evaluated. 

In the following, we describe the speech data, the speech recognition engine and 

the experimental protocol utilized in the present evaluation. Finally, we provide 

the experimental results. 

The evaluation of the front-end was carried out on the speech and noise data-

base, created during the MoveOn project [13]. The database consists of approxi-

mately 40 hours of annotated recordings, most of which were recorded in three 

audio channels fed by different sensors, plus one channel for the audio prompts. 

Thirty professional motorcyclists, members of the operational police force of UK, 

were recorded when riding their motorcycles. Each participant was asked to repeat 

a number of domain-specific commands and expressions or to provide a spontane-

ous answer to questions related to time, current location, speed, etc. Motorcycles 

and helmets from various vendors were used, and the trace of road differed among 

sessions. The database includes outdoor recordings (city driving, highway, tun-

nels, suburbs, etc) as well as indoor (studio) recordings with the same hardware. 

The database was recorded at 44.1 kHz, with resolution 16 bits. Later on, all re-

cordings were downsampled to 8 kHz for the needs of the present application. 

The Julius [14] speech recognition engine was employed for the present evalua-

tion. The decoder of the recognition engine utilizes a general purpose acoustic 

model and an application-dependent language model. The acoustic model was 
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built from telephone speech recordings of the British SpeechDat(II) database [15], 

by means of the HTK toolkit [16]. It consists of three-state left-to-right HMMs, 

without skipping transitions, one for each phone of the British SpeechDat(II) 

phone set. Each state is modelled by a mixture of eight continuous Gaussian dis-

tributions. The state distributions were trained from parametric speech vectors, 

taken out from speech waveforms after pre-processing and feature extraction. The 

pre-processing of the speech signals, sampled at 8 kHz, consisted of frame block-

ing with length and step 25 and 10 milliseconds respectively, and pre-emphasis 

with coefficient equal to 0.97. The speech parameterization consisted in the com-

putation of twelve Mel frequency cepstral coefficients [17], computed through a 

filter-bank of 26 channels, and the energy of each frame. The speech feature vec-

tor was of dimensionality equal to 39, since the first and second derivatives were 

appended to the static parameters. All HMMs were trained through the Baum-

Welch algorithm [18], with convergence ratio equal to 0.001. 

The language models were built by utilizing the CMU Cambridge Statistical 

Language Modeling (SLM) Toolkit [19]. Specifically, we used the transcriptions 

of the responses of the MoveOn end-user to the system [20] to build bi-gram and 

tri-gram word models. Words included in the application dictionary but not in the 

list of n-grams were assigned as out-of-vocabulary words. 

The performance of different enhancement methods, implemented as in [22], 

was assessed by evaluating their effect on the speech recognition results. Two dif-

ferent experimental setups were considered: (i) indoors and (ii) outdoors condi-

tions. The performance of each enhancement method in the indoors condition was 

used as a reference, while the outdoors condition is the environment of interest. In 

contrast to previous work [21], were the performance of enhancement algorithms 

was investigated on the basis of objective tests on the enhanced signals, here we 

examine directly the operational functionality of the system by measuring the 

speech recognition performance. Specifically, the percentage of correctly recog-

nized words (CRW) and the word recognition rates (WRRs) obtained in the speech 

recognition process after applying each enhancement method were measured. The 

CRW indicates the ability of the front-end to recognize the uttered message from 

the end-user, while the WRR points out the insertion of non uttered words, to-

gether with the word deletions and substitutions that the CRW measures. In terms 

of these performance measures we assess the practical worth of each algorithm 

and its usefulness with respect to overall system performance. These results are 

compared against the quality measures obtained in earlier work [21]. 

We evaluated the speech recognition performance for each speech enhance-

ment method in the indoors and outdoors conditions, with bi-gram and tri-gram 

language models. Table 1 presents the performance for the indoor experiments, in 

terms of WRR and CRW in percentages. 
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As can be seen in Table 1, the best performing method for the case of indoor 

recordings was the Log-MMSE together with the non-enhanced speech inputs. All 

remaining methods decreased the speech recognition performance. This is owed to 

the distortion that these speech enhancement methods introduce into the clean 

speech signal. Obviously, indoors, i.e. on noise-free speech, the general purpose 

acoustic model performs better without speech enhancement pre-processing. 

As Table 1 presents, the speech recognition performance for the bi-gram lan-

guage model was better than the one for the tri-gram language model. This is 

owed to the limited amount of data that were available for training the language 

models. Obviously the data were sufficient for training the bi-gram model but not 

enough for the tri-gram model. 

In Table 2 we present the speech recognition performance in percentages for 

the outdoors scenario, in terms of WRR and CRW, for both the bi-gram and tri-

gram language models. 

In contrast to the indoors scenario, the speech enhancement in the noisy out-

doors scenario (motorcycles on the move) improved the speech recognition per-

Table 2. Performance (WRR and CRW in percentages) for various speech enhancement tech-

niques for the outdoors recordings. 

Enhancement Techniques 2-gram LM 3-gram LM 

 WRR CRW WRR CRW 

M-BAND 55.16 69.13 49.65 69.63 

STSA-WCOSH 49.56 66.00 41.73 65.82 

SPECSUB-NE 46.34 67.22 30.87 68.09 

PKLT 39.76 58.11 29.40 58.48 

Log-MMSE 39.22 64.17 27.83 64.90 

KLT 39.20 64.16 27.84 64.92 

WIENER-WT 35.64 54.07 29.06 54.59 

SPECSUB 26.95 57.49 14.84 57.23 

No Enhancement 23.77 54.95 14.29 55.17 

Table 1. Performance (WRR and CRW in percentages) for various speech en-

hancement techniques for the indoors recordings. 

Enhancement Techniques 2-gram LM 3-gram LM 

 WRR CRW WRR CRW 

Log-MMSE 76.75 81.41 70.29 81.36 

No Enhancement 76.71 81.41 70.25 81.30 

M-BAND 75.61 79.87 71.27 80.19 

SPECSUB-NE 74.25 81.35 68.53 70.80 

PKLT 74.10 80.07 67.85 79.88 

WIENER-WT 73.48 80.31 67.15 80.24 

KLT 69.69 78.32 63.95 78.09 

STSA-WCOSH 66.16 77.30 59.10 77.11 

SPECSUB 50.89 77.04 40.35 77.04 
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formance. Specifically, all speech enhancement methods demonstrated superior 

performance, when compared to the baseline result, i.e. without speech enhance-

ment. As Table 2 presents, the multi-band speech enhancement technique, M-

BAND, outperformed all other methods evaluated here. Similarly to the indoors 

case, the bi-gram language model provided more accurate recognition results. 

These results reveal, that the ranking of speech enhancement algorithms based on 

the human perception of speech quality (please refer to [21]) differs from the rank-

ing in terms of speech recognition performance. Specifically, the M-BAND algo-

rithm, which was among the top-4 performers in terms of perceptual quality, is the 

best performing algorithm in terms of CWR and WRR. Moreover, although the 

spectral subtraction with noise estimation algorithm, SPECSUB-NE, didn’t per-

form well in the perceptual speech quality evaluation, here it has the second best 

performance in terms of CRW. 

5 Conclusions 

Aiming at successful human-machine interaction in the motorcycle environment 

we evaluated the recognition performance of a purposely built speech front-end. 

Various speech enhancement techniques were assessed in an attempt to find the 

most appropriate pre-processing of the speech signal. The experimental results 

showed severe degradation of the speech recognition performance in the condi-

tions of the motorcycle environment, compared to the clean-speech recordings 

conducted with the same hardware setup. The multi-band spectral subtraction 

method demonstrated the best performance among the eight evaluated techniques, 

when measured in terms of improvement of the speech recognition rate. Finally, 

the selection of an appropriate speech enhancement technique, proved to be essen-

tial for the successful interaction between the user and the dialogue system. 
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