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Abstract Within the broad area of computational intelligence, it is of great impor-
tance to develop new computational models of human behaviour aspects. In this 
report we look into the recently suggested theory that neural synchronization of 
activity in different areas of the brain occurs when people attend to external visual 
stimuli. Furthermore, it is suspected that this cross-area synchrony may be a gen-
eral mechanism for regulating information flow through the brain. We investigate 
the plausibility of this hypothesis by implementing a computational model of vis-
ual selective attention that is guided by endogenous and exogenous goals (i.e., 
what is known as top down and bottom-up attention). The theoretical structure of 
this model is based on the temporal correlation of neural activity that was initially 
proposed by Niebur and Koch (1994). While a saliency map is created in the 
model at the initial stages of processing visual input, at a later stage of processing, 
neural activity passes through a correlation control system which comprises of co-
incidence detector neurons. These neurons measure the degree of correlation be-
tween endogenous goals and the presented visual stimuli and cause an increase in 
the synchronization between the brain areas involved in vision and goal mainte-
nance. The model was able to simulate with success behavioural data from the “at-
tentional blink” paradigm (Raymond and Sapiro, 1992). This suggests that the 
temporal correlation idea represents a plausible hypothesis in the quest for under-
standing attention. 

1 Introduction 

Due to the great number of sensory stimulation that a person experiences at any 
given point of conscious life, it is practically impossible to integrate all informa-
tion that is available to the senses into a single perceptual event. This implies that 
a mechanism must be present in the brain to focus selectively its resources on spe-
cific information. This mechanism, known as attention, can be described as the 
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process by which information is passed on to a higher level of processing either 
through relative amplification of the neural activity that represents the “to be at-
tended” stimuli or by suppression of the distracting stimuli, or both.  

Attention can be guided by top-down and bottom-up processing as cognition 
can be regarded as a balance between internal motivations and external stimula-
tions. Volitional shifts of attention or endogenous attention results from "top-
down" signals originating in the prefrontal cortex while exogenous attention is 
guided by salient stimuli from "bottom-up" signals in the visual cortex (Corbetta 
and Shulman, 2002). 

Previous literature on attention suggests that the attention selection mechanism 
functions in two hierarchical stages: An early stage of parallel processing across 
the entire visual field that operates without capacity limitation, and a later limited-
capacity stage that deals with selected information in a sequential manner. When 
items pass from the first to the second stage of processing, they are typically con-
sidered as selected. (Treinsman and Gelade 1980). 

Previous research suggests that attention is based on two processes. The first is 
known as “biased competition” (Moran and Desimone, 1985) and it is supported 
by findings from studies with single-cell recordings. These studies have shown 
that attention enhances the firing rates of the neurons that represent the attended 
stimuli and suppresses the firing rates of the neurons that encode the unattended 
stimuli. The second process, which refers to the synchronization of neural activity 
during the deployment of attention, is supported by studies showing that neurons 
selected by attention have enhanced gamma-frequency synchronization (Gruber et 
al., 1999; Steinmetz et al., 2000; Fries et al., 2001). For example, in a study by 
Fries et al. (2001) the activity in area V4 of the brain of macaque monkeys was re-
corded while the macaques attended relevant stimuli. Results showed increased 
gamma frequency synchronization for attended stimuli compared to the activity 
elicited by distractors. A recent study by Buelhman and Deco (2008) provided 
evidence that attention is affected by both biased competition and the synchroniza-
tion of neural activity. 

A computational model for biased competition has been proposed by Deco and 
Rolls (2005). In this model Deco and Rolls have shown that competition between 
pools of neurons combined with top-down biasing of this competition gives rise to 
a process that can be identified with attention. However, it should be pointed out 
that this model only considered rate effects while gamma synchronization was not 
addressed.  

In the present report, we propose a computational model for endogenous and 
exogenous visual attention that is based on both the rate and the synchronization 
of neural activity. The basic functionality of the model relies on the assumption 
that the incoming visual stimulus will be manipulated by the model based on the 
rate and temporal coding of its associated neural activity. The rate associated with 
a visual stimulus is crucial in the case of exogenous attention since this type of at-
tention is mainly affected by the different features of the visual stimuli. Stimuli 
with more salient features gain an advantage for passing through the second stage 
of processing and subsequently for accessing working memory. On the other hand, 
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endogenous or top-down attention is mainly affected by the synchronization of in-
coming stimuli with the goals that guide the execution of a task. These goals are 
most likely maintained in the prefrontal cortex of the brain. The presence of a 
closed link between endogenous attention with synchronization is supported by 
many recent studies (Niebur et al 2002, Gross et al 2004). For example, Saalmann 
et al (2007) recorded neural activity simultaneously from the posterior parietal 
cortex as well as an earlier area in the visual pathway of the brain of macaques 
during the execution of a visual matching task. Findings revealed that there was 
synchronization of the timing activities in the two regions when the monkeys se-
lectively attended to a location. Thus, it seems that parietal neurons which pre-
sumably represent neural activity of the endogenous goals may selectively in-
crease activity in earlier sensory areas. In addition, the adaptive resonance theory 
by Grossberg (1999) implies that temporal patterning of activities could be ideally 
suited to achieve matching of top–down predictions with bottom–up inputs, while 
Engel et al (2001) in their review have noted that “If top–down effects induce a 
particular pattern of subthreshold fluctuations in dendrites of the target population, 
these could be ‘compared’ with temporal patterns arising from peripheral input by 
virtue of the fact that phase-shifted fluctuations will cancel each other, whereas in-
phase signals will summate and amplify in a highly nonlinear way, leading to a sa-
lient postsynaptic signal” (p.714). Finally, it should be noted that Hebbian learning 
suggests that action potentials that arrive synchronously at a neuron summate to 
evoke larger postsynaptic potentials than do action potentials that arrive asynchro-
nously; thus, synchronous action potentials have a greater effect at the next proc-
essing stage than do asynchronous action potentials. 

A mechanism for selective attention based on the rate and synchronization of 
the neural activity for incoming stimuli is thus used in the proposed model. The 
model has been implemented computationally to simulate the typical data from 
“the attentional blink” phenomenon (Raymond and Sapiro,1992). 

2 The Attentional Blink Phenomenon 

The Attentional Blink (AB) is a phenomenon observed with using the rapid serial 
visual presentation (RSVP) paradigm. In the original experiment by Raymond and 
Shapiro (1992), participants were requested to identify two letter targets T1 and 
T2 among digit distractors with each stimulus appearing for about 100ms (Figure 
1.a). Results revealed that the correct identification of T1 impaired the identifica-
tion of T2 when T2 appeared within a brief temporal window of 200-500 ms after 
T1. When T2 appeared outside this time window it could be identified normally 
(Figure 1.b series 1.). 

Another important finding from the AB task is that when T1 is not followed by 
a mask/distractor, the AB effect is significantly reduced. That is, if the arrival of 
the incoming stimulus at t= 200ms (lag 2) and/or lag 3 (t=300ms) are replaced by 
a blank then the AB curve takes the form shown by series 2 and 3 in Figure 1.  
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Figure1. Presentation of the RSVP for the “attentional blink” experiment (Figure1.a) and the 
typical attentional blink curve with no blanks (red series), with blank at lag 1 (green series) and 
blank at lag 2 (black series) based on the data of Raymond and Sapiro (1992) (Figure1.b). 

3 Neural Correlates of the Attentional Blink Phenomenon 

Event-related potentials (ERPs) are signals that measure the electrical activity of 
neuronal firing in the brain relative to events such as the presentation of stimuli. 
Over the years a number of ERP components related to attention have been identi-
fied in the literature. 

The first distinguishable physiological signals are observed around 130-150ms 
post stimulus (P1/N1 signals). Most likely, these signals correspond to the initial 
processing in the visual cortex and reflect early pre-frontal activation by the in-
coming visual stimuli. At about 180-240 ms post-stimulus the P2/N2 signals are 
observed which have become clearer over the last years with the use of MEG (Io-
annides and Taylor, 2003). These signals have been proposed as control signals 
for the movement of attention (Hopf et al., 2000 , Taylor 2002). More specifically, 
the CODAM model of attention that is proposed by Taylor (2002) follows a con-
trol theory approach and uses the N2 signal as the signal from the controller that 
modulates the direction of the focus of attention. Moreover, in Bowman and Wy-
ble’s (2007) Simultaneous Type Serial Token (ST2) model, when the visual sys-
tem detects a task-relevant item, a spatially specific Transient Attentional En-
hancement (TAE), called the blaster, is triggered. In the ST2 model the presence of 
a correlation between the blaster and a component of the P2/N2 signal is also hy-
pothesized. The P300 ERP component which is present at about 350–600 ms post-
stimulus is taken to be an index of the availability for report of the attention-
amplified input arriving from earlier sensory cortices to the associated working 
memory sensory buffer site. Thus, access to the working memory sensory site is 
expected to occur in the specific time window. Finally, the N4 component which 
is recorded at around 400 ms is related to semantic processing indicating percep-
tual awareness.  
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The chronometric analysis of the ERPs occurring during the attentional blink 
has revealed some important observations. More importantly in the case where the 
second target was not perceived, the P1/N1 and the N400 components which are 
considered indices of semantic processing were still obtained even though the N2 
and P300 were no longer observed (Sergent et al 2005). Thus, one possible expla-
nation for the classic U-shaped curve of Figure 1.b (series 1) based on the identifi-
cation of the second target to have a minimum at around 300 ms, is that an early 
attention processing component of the second target (possibly N2 of T2) is inhib-
ited by a late component of the first target (P300 of T1), (Vogel et al 1998,Fell et 
al 2001).  

4 Proposed Model 

The proposed model is a two stage model that, in contrast to other computational 
models, contains a correlation control module (Figure 3). That is, in the case of 
endogenous attention tasks, the functioning of the model is based on the synchro-
nization of incoming stimuli with information held in the endogenous goals mod-
ule which has probably been initialized by information from long –term memory 
(Engel et al 2001).  

In the conducted simulations each stimulus that enters the visual field, is coded 
by determining the rate of the related neuron spikes (enhanced relatively by the sa-
lience filters) as well as the exact timing of the spikes. This means that both of 
these characteristics are considered in the race between the different visual stimuli 
to access working memory as initially implemented in a computational model by 
Niebur and Koch (1994).  

As shown in Figure 3, a visual stimulus initially moves from the inputs module 
into the first stage of parallel processing. In this stage, competition among all sti-
muli, implemented as lateral inhibition, exerts the first impact on each of the neu-
ral responses. Following that, as the neural activity continues up through the visual 
hierarchy, the information from the visual stimuli passes through the semantic cor-
relation control module. During this stage of process, a coincidence detection me-
chanism similar to the procedure discussed by Mikula and Niebur (2008) meas-
ures the degree of correlation between the visual stimuli and the endogenous goals 
(in the case of top-down attention).  

This procedure provides an advantage (in the case of amplification) to the se-
lected neural activity for accessing working memory. However, the initialization 
of a signal by the correlation control module (that can be implied to be relevant 
with the N2pc signal -component of N2/P2), can be represented by the combined 
firing of a neural network. Thus, it is appropriate to consider a relative refractory 
period each time the correlation control module “fires” or activates the specific 
signal for amplification or inhibition. Consequently, the refractory period of the 
correlation control module combined with the lateral inhibition between the RSVP 
items causes the attenuation of the attentional blink in the case in which the dis-
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tractors are replaced by blanks and both these mechanisms are inherited in the 
proposed model (series 2 and 3 in Figure1.b.). 

 

 

Figure 3. Diagram of the proposed computational model.  

Finally, after the handling of the neural activity of each incoming stimulus, a 
specific working memory node is excited producing inhibition towards the other 
working memory nodes. After a specific threshold is passed, the working memory 
node will fire an action potential simulating the initialization of the P300 signal 
representing perceptual awareness of the specific visual stimuli as well as inhibi-
tion of the following signal from the correlation control model ( possibly the N2/ 
P2 signals of the following stimulus) if it appears during that specific timing. 

It should be also noted that even stimuli with completely no correlation with 
the endogenous goals could gain access to working memory sites, provided that 
their response has been enhanced sufficiently by the salience filters at the first 
stages of processing. Thus, the model allows for exogenous shifts of attention. 
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5 Simulations and Results 

The computational model has been implemented in the Matlab-Simulink environ-
ment. Each of the visual stimuli has been represented by a 10 ms sequence of 
spikes. As seen in Figure 4, in each ms a value of one (spike) or zero (no-spike) is 
possible. For coding a target, a specific pattern has been decided so that if the in-
coming stimulus represents a target, it will have a 0.9 possibility for each time step 
to have the correct information. On the other hand if the incoming stimulus repre-
sents a distractor, it will have a 0.85 possibility of not having the correct informa-
tion at each time step. Both distractors and targets will have the same rate, which 
equals to 10 spikes ± a random noise, since both (targets and distractors) have the 
same effect from the salience filters (same brightness, intensity etc.).

    

Figure4. Coding of the incoming visual stimuli.  

Inside the endogenous goals module, the pattern representing the targets is 
saved. Therefore, when a visual stimulus enters, a coincidence detector mecha-
nism measures the degree of correlation and fires a relative signal. For the simula-
tions, T1 was always presented at time t=0 and T2 at each of the following time 
lags. For each time lag that T2 was presented, the simulations where run for 50 
times for the three different cases. That is, when distractors capture all the avail-
able positions causing masking to the targets, with blank at lag 1 and with blank at 
lag 2. The simulation results compared to experimental results can be seen in Fig-
ure 5 below. 

Figure5. Comparison between simulation data (5.a) and experimental data (5.b).  
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6 Discussion 

The model described above has implemented computationally a novel conjecture 
put forward by Niebur and Koch 1994. Niebur and Koch have suggested that im-
posing a temporal modulation on attended sensory signals is a plausible mecha-
nism for producing unique percepts within the highly distributed architecture of 
the cortex.  

The coincidence detector mechanism proposed as a basic functionality of the 
correlation control module between the incoming stimuli and the endogenous 
goals can cause an increase in the synchronization of the different cortical areas 
involved in the process. Actually, coincidence detector neurons in the brain are 
neurons that they fire if they receive synchronous inputs from other neurons. Co-
incidence of firing between two or more neurons can cause increase in the strength 
of the following synapses connected on the specific neurons. This will gradually 
cause synchronization between the involved brain areas as has been observed 
(Saalmann et al 2007) and mentioned in the previous section. 

The model presented here has successfully managed to simulate the behavioral 
data of the attentional blink experiment giving one supplementary confirmation 
that the temporal correlation between different cortical areas might be an impor-
tant mechanism for regulating information through the brain. Furthermore, the co-
incidence detector neural network model of selective attention can be used to 
simulate some other important attentional phenomena contributing thus to the 
formulation of more explicit theories of attention.  
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