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Abstract In this paper, we propose a preference framework for information retrieval
in which the user and the system administrator are enabled to express preference an-
notations on search keywords and document elements, respectively. Our framework
is flexible and allows expressing preferences such as “A is infinitely more preferred
than B,” which we capture by using hyperreal numbers. Due to the widespread of
XML as a standard for representing documents, we consider XML documents in this
paper and propose a consistent preferential weighting scheme for nested document
elements. We show how to naturally incorporate preferences on search keywords
and document elements into an IR ranking process using the well-known TF-IDF
ranking measure.

1 Introduction

In this paper, we propose a framework for preferential information retrieval by in-
corporating in the document ranking process preferences given by the user or the
system administrator. Namely, in our proposed framework, the user has the option
of weighting the search keywords, whereas the system administrator has the option
of weighting structural elements of the documents. We address both facets of pref-
erential weighting by using hyperreal numbers, which form a superset of the real
numbers, and in our context, serve the purpose of specifying natural preferences of
the form “A is infinitely more preferred than B.”

Keyword Preferences. To illustrate preferences on keywords, suppose that a user
wants to retrieve documents on research and techniques for “music-information-
retrieval.” Also, suppose that the user is a fan of Google technology. As such, this
user would probably give to a search engine the keywords:
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music-information-retrieval, google-search, google-ranking.

It is interesting to observe that if the user specifies these keywords in Google, then
she gets a list of only three, low quality, pages. What happens is that the true,
highly informative pages about “music-information-retrieval” are lost (or insignif-
icantly ranked) in the quest of trying to serve the “google-search” and “google-
ranking” keywords. Unfortunately, in Google and other search engines, the user
cannot explicitly specify her real preferences among the specified keywords. In this
example, what the user needs is a mechanism for saying that “music-information-
retrieval” is of primary importance or infinitely more important than “google-search”
and “google-ranking,” and thus, an informative page about “music-information-
retrieval” should be retrieved and highly ranked even if it does not relate to Google
technologies.

Structural Preferences. The other facet of using preferential weights is for system
administrators to annotate structural parts of the documents in a given corpus. In
practice, most of the documents are structured, and often, certain parts of them are
more important than others. While our proposed ideas can be applied on any corpus
of structured documents, due to the wide spread of XML as a standard for repre-
senting documents, we consider in this paper XML documents which conform to
a given schema (DTD). In the same spirit as for keyword preferences, we will use
hyperreal weights to denote the importance of different elements in the schema and
documents.

To illustrate preferences on structural parts of documents, suppose that we have
a corpus of documents representing research papers, and a user is searching for a
specific keyword. Now, suppose that the keyword occurs in the title element of one
paper and in the references element of another paper. Intuitively, the paper having
the keyword in the title should be ranked higher than the paper containing the key-
word in the references element as the title of a paper usually bears more represen-
tative and concise information about the paper than the reference entries do. In fact,
one could say that terms in the title (and abstract) are infinitely more important than
terms in the references entries as the latter might be there completely incidental.

While weighting of certain parts of documents has been considered and advo-
cated in the folklore (cf. [5, 8]), to the best of our knowledge there is no work deal-
ing with inferring a consistent weighting scheme for nested XML elements based
on the weights that a system administrator gives to DTD elements. As we explain in
Section 4, there are tradeoffs to be considered and we present a solution that prop-
erly normalizes the element weights producing values which are consistent among
sibling elements and never greater than the normalized weight of the parent element,
thus respecting the XML hierarchy.

Contributions. Specifically, our contributions in this paper are as follows.

1. We propose using hyperreal numbers (see [6, 7]) to capture both “quantitative”
and “qualitative” user preferences on search keywords. The set of hyperreal num-
bers includes the real numbers which can be used for expressing “quantitative”
preferences such as, say “A is twice more preferred than B,” as well as infinites-
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imal numbers, which can be used to express “qualitative” preferences such as,
say “A is infinitely more preferred than B.” We argue that without such qualita-
tive preferences there is no guarantee that an IR system would not override user
preferences in favor of other measures that the system might use.

2. We extend the ideas of using hyperreal numbers to annotating XML (DTD)
schemas. This allows system administrators to preferentially weight structural
elements in XML documents of a given corpus. We present a normalization
method which produces consistent preferential weights for the elements of any
XML document that complies to an annotated DTD schema.

3. We adapt the well-known TF-IDF ranking in IR systems to take into consider-
ation the preferential weights that the search keywords and XML elements can
have. Our extensions are based on symbolic computations which can be effec-
tively computed on expressions containing hyperreal numbers.

4. We present (in the appendix) illustrative practical examples which demonstrate
the usefulness of our proposed preference framework. Namely, we use a full
collection of speeches from the Shakespeare plays, and a diverse XML collec-
tion from INEX ([13]). In both these collections, we observed a clear advantage
of our preferential ranking over the ranking produced by the classical TF-IDF
method. We believe that these results encourage incorporating both quantitative
and (especially) qualitative preferences into other ranking methods as well.

Organization. The rest of the paper is organized as follows. In Section 2, we give
an overview of hyperreal numbers and their properties. In Section 3, we present
hyperreal preferences for annotating search keywords. In Section 4, we propose an-
notated DTDs for XML documents and address two problems for consistent weight-
ing of document elements. In Section 5, we show how to extend the TF-IDF ranking
scheme to take into consideration the hyperreal weights present in the search key-
words and document elements. In Appendix, we present experimental results.

2 Hyperreal Numbers

Hyperreal numbers were introduced in calculus to capture “infinitesimal” quantities
which are infinitely small and yet not equal to zero. Formally, a number ε is said
to be infinitely small or infinitesimal (cf. [6, 7]) iff -a< ε <a for every positive
real number a. Hyperreal numbers contain all the real numbers and also all the
infinitesimal numbers. There are principles (or axioms) for hyperreal numbers (cf.
[7]) of which we mention:

Extension Principle.

1. The real numbers form a subset of the hyperreal numbers, and the order relation
x < y for the real numbers is a subset of the order relation for the hyperreal
numbers.

2. There exists a hyperreal number that is greater than zero but less than every
positive real number.
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3. For every real function f , we are given a corresponding hyperreal function f ∗
which is called the natural extension of f .

Transfer Principle. Every real statement that holds for one or more particular real
functions holds for the hyperreal natural extensions of these functions.

In short, the Extension Principle gives the hyperreal numbers and the Transfer
Principle enables carrying out computation on them. The Extension Principle says
that there does exist an infinitesimal number, for example ε . Other examples of
hyperreals numbers, created using ε , are: ε3, 100ε2+ 51ε , ε/300.

For a,b,r,s ∈ R+ and r < s, we have aεr < bεs, regardless of the relationship
between a and b.

If aεr and bεs are used for example to denote two preference weights, then aεr

is “infinitely better” than bεs even though a might be much bigger than b, i.e. co-
efficients a and b are insignificant when the powers of ε are different. On the other
hand, when comparing two preferential weights of the same power, as for exam-
ple aεr and bεr, the magnitudes of coefficients a and b become important. Namely,
aεr ≤ bεr (aεr > bεr) iff a≤ b (a > b).

3 Keyword Preferences

We propose a framework where the user can preferentially annotate the keywords
by hyperreal numbers.

Using hyperreal annotations is essential for reasoning in terms of “infinitely more
important,” which is crucially needed in a scenario with numerous documents. This
is because preference specification using only real numbers suffers from the possi-
bility of producing senseless results as those preferences can get easily absorbed by
other measures used by search engines. For instance, continuing the example given
in the Introduction,

music-information-retrieval, google-search, google-ranking,

suppose that the user, dismayed of the poor result from Google, containing only
three low quality pages, changes the query into1

music-information-retrieval OR google-search OR google-ranking.

It is interesting to observe that if the user specifies this (modified) query in
Google, then what she gets is a list of many web-pages (documents)! These pages
are ranked by their Google-computed importance which is by far biased toward

1 This second query style corresponds more closely than the first to what is known in the folklore
as the popular “free text query:” a query in which the terms of the query are typed freeform into
the search interface (cf. [5, 8]).
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general pages about “google-search” and “google-ranking” rather than “music-
information-retrieval.” The true pages about “music-information-retrieval” are sim-
ply buried under tons of other pages about “google-search” and “google-ranking”
that are highly ranked, but contain “music-information-retrieval” either incidentally
or not at all. Unfortunately, in Google and other search engines, the user cannot ex-
plicitly specify her real preferences among the specified keywords. In this example,
what the user needs is a mechanism for saying that “music-information-retrieval”
is of primary importance or infinitely more important than “google-search” and
“google-ranking.”

But, let us suppose for a moment that Google would allow users to specify pref-
erences expressed by real numbers. Now, imagine the user who is trying to convey
that her “first and foremost” preference is for documents on “music-information-
retrieval” rather than general documents about Google technology. For this, the user
specifies that music-information-retrieval is 100 times more important than google-
search. After all, “100 times more important” seems quite convincing in colloquial
talking! However, what would happen if, according to the score computed by the
search engine, general documents about google-search were in fact 1000 times more
important than documents about music-information-retrieval? If the user preference
levels were used to simply boost the computed document score by the same factor,
then still, documents about google-search would be ranked higher than documents
about music-information-retrieval. What the user would experience in this case is
an “indifferent” search engine with respect to her preferences.

The solution we propose is to use hyperreal numbers for expressing preferential
weights. In order to always have an effective comparison of documents with respect
to a user query, we will fix an infinitesimal number, say ε , and build expressions on
it. By the Extension Principle, such a number does exist. Now, we give the following
definition.

Definition 1. An annotated free text query is simply a set of keywords (terms) with
preference weights which are polynomials of ε .

For all our practical purposes it suffices to consider only polynomials with coef-
ficients in R+. For example, 3+2ε +4ε2.

By making this restriction we are able to perform symbolic (algorithmic) com-
putations on expressions using ε . All such expressions translate into operations on
polynomials with real coefficients for which efficient algorithms are known (we will
namely need to perform polynomial additions, multiplications and divisions2).

Let us illustrate our annotated queries by continuing the above example. The user
can now give

music-information-retrieval, google-search : ε , google-ranking : ε2

2 The division is performed by first factoring the highest power of ε . For example, (6 + 3ε +
3ε2)/(4 + 2ε + 3ε2) is first transformed into (6ε−2 + 4ε−1 + 3)/(3ε−2 + 2ε−1 + 4), and then we
perform the division as we would do for (6x2 + 4x + 3)/(3x2 + 2x + 4). Observe that, as ε is
infinitely small, ε−1 is infinitely big.
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to express that she wants to find documents on Music Information Retrieval and
she is interested in the Google technology for retrieving and ranking music. How-
ever, by leaving intact the music-information-retrieval and annotating google-search
by ε and google-ranking by ε2, the user makes her intention explicit that a docu-
ment on music-information-retrieval is infinitely more important than any docu-
ment on simply google-search or google-ranking. Furthermore, in accord with the
above user expression, documents on music-information-retrieval and/or google-
search are infinitely more important than documents on simply google-ranking. Of
course, among documents on Music Information Retrieval, those which are relevant
to Google search and Google ranking are more important.

We note that our framework also allows the user to specify “soft” preference
levels. For example, suppose that the user changes her mind and prefers to have
both google-search and google-ranking in the same “hard” preference level as deter-
mined by the power of infinitesimal ε . However, she still prefers, say “twice more,”
google-search over google-ranking. In this case, the user gives

music-information-retrieval, google-search : 2ε , google-ranking : ε.

4 Preferentially Annotated XML Schemas

In this section, we consider the problem of weighting the structural elements of doc-
uments in a corpus with the purpose of influencing an information retrieval system
to take into account the importance of different elements during the process of doc-
ument ranking. Due to the wide spread of XML as a standard for representing docu-
ments, we consider in this paper XML documents which conform to a given schema
(DTD). In the same spirit as in the previous section, we will use hyperreal weights
to denote the importance of different elements in the schema and documents.

While the idea of weighting the document elements is old and by now part of
the folklore (cf. [8]), to the best of our knowledge, there is no work that system-
atically studies the problem of weighting XML elements. The problem becomes
challenging when elements can possibly be nested inside other elements which can
be weighted as well, and one wants to achieve a consistent weight normalization
reflecting the true preferences of a system administrator. Another challenging prob-
lem, as we explain in Subsection 4.4, is determining the right mapping of weights
from the elements of a DTD schema into the elements of XML documents.

4.1 Hyperreal Weights

In our framework, the system administrator is enabled to set the importance of vari-
ous XML elements/sections in a DTD schema. For example, she can specify that the
keywords elements of documents in an XML corpus, with “research activities” as the
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main theme, is more important than than a section, say on related work. Intuitively,
an occurrence of a search term in the keywords section is way more important than
an occurrence in the related work section as the occurrence in the latter might be
completely incidental or only loosely related to the main thrust of the document.

Thus, in our framework, we allow the annotation of XML elements by weights
being, as in the previous section, polynomials of a (fixed) infinitesimal ε .

4.2 DTDs

Let Σ be the (finite) tag alphabet of a given XML collection, i.e. each tag is an
element of Σ . Then, a DTD D is a pair (d,r) where d is a function mapping Σ -
symbols to regular expressions on Σ and r is the root symbol (cf. [2]).

A valid XML document complying to a DTD D = (d,s) can be viewed as a tree,
whose root is labeled by r and every node labeled, say by a, has a sequence of
children whose label concatenation, say bc . . .x, is in L(d(a)).

A simple example of a DTD defining the structure of some XML research docu-
ments is the following:

paper → preamble body

preamble → title author+ abstract keywords

body → introduction section∗ related-work? references

where ‘+’ implies “one or more,” ‘∗’ implies “zero or more” and ‘?’ implies “zero
or one” occurrences of an element.

In essence, a DTD D is an extended context-free grammar, and a valid XML
document with respect to D is a parse tree for D.

4.3 Annotated DTDs

To illustrate annotated DTDs, let us suppose that the system administrator wants
to express that in the body element, the introduction is twice more important than
a section, and both are infinitely more important than related-work and references,
with the latter being infinitely less important than the former, we would annotate the
rule for body as follows:

body→ (introduction : 2) (section : 1)∗ (related-work : ε)? (references : ε2).

Further annotations, expressing for example that the preamble element is three
times more important than the body element, and in the preamble, the keywords
element is 5 times more important than title and 10 times more important than the
rest, would lead to having the following annotated DTD:
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paper → (preamble : 3) (body : 1)

preamble → (title : 2) (author : 1)+ (abstract : 1) (keywords : 10)

body → (introduction : 2) (section : 1)∗ (related-work : ε)? (references : ε2).

Since an annotated element can be nested inside other elements, which can be
annotated as well, the natural question that now arises is: How to compute the actual
weight of an element in a DTD? One might be tempted to think that the actual
weight of an element should obtained by multiplying its (annotation) weight by the
weights of all its ancestors. However by doing that, we could get strange results as
for example a possibly increasing importance weight as we go deep down in the
XML element hierarchy.

What we want here is “an element to never be more important than its parent.”
For this, we propose normalizing the importance weights assigned to DTD elements.
There are two ways for doing this. Either divide the weights of a rule by the sum of
the rule’s weights, or divide them by the maximum weight of the rule. In the first
way, the weight of the parent will be divided among the children. On the other hand,
in the second way, the weight of the most important child will be equal to the weight
of the parent.

The drawback of the first approach is that the more children there are, the lesser
their weight is. Thus, we opt for the second way of weight normalization as it better
corresponds to the intuition that nesting in XML documents is for adding structure
to text rather than hierarchically dividing the importance of elements.

For example, in the above DTD, for the children of preamble, we normalize
dividing by the greatest weight of the rule, which is 10. Normalizing in this way the
weights of all the rules, we get

paper → (preamble : 1) (body : 1/3)

preamble → (title : 1/5) (author : 1/10)+ (abstract : 1/10) (keywords : 1)

body → (introduction : 1) (section : 1/2)∗ (related-work : ε/2)? (references : ε2/2).

After such normalization, for determining the actual weight of an element, we mul-
tiply its DTD weight by the weights of all its ancestors. For example, the weight of
a section element is (1/3) · (1/2).

As mentioned earlier, under this weighting scheme, the most important child of
a parent has the same importance as the parent itself. Thus, for instance, element
introduction has the same importance (1/3) as its parent body. Note that the weight
normalization can of course be automatically done by the system, while we annotate
using numbers that are more comfortable to write.

4.4 Weighting Elements of XML Documents

In the previous section, we described how to compute the weight of an element in
a DTD. However, the weight of an element in an XML document depends not only
on the DTD, but also on the particular structure of the document. This is because
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the same element might occur differently nested in different valid XML documents.
For example, if we had an additional rule, section → (title : 1) (text : 1/2), in our
annotated DTD, then, given a valid XML document, the weight of a title element
depends on the particular nesting of this element. Namely, if the nesting is

〈paper〉〈preamble〉〈title〉 . . .〈/title〉 . . .〈/preamble〉 . . .〈/paper〉

then the normalized weight of the title element is 1/5. On the other hand, if the
nesting is

〈paper〉 . . .〈body〉〈section〉〈title〉 . . .〈/title〉 . . .〈/section〉 . . .〈/body〉〈/paper〉

then the normalized weight of the title element is (1/3) · (1/2) ·1 = 1/6.
In general, in order to derive the correct weight of an element in an XML docu-

ment, we need to first build the element tree of the document. This will be a parse
tree for the context-free grammar corresponding to the DTD. For each node a of this
tree with children bc . . .x, there is a unique rule a → r in the DTD such that word
bc . . .x is in L(r).

Naturally, we want to assign weights to a’s children b, c, . . . , x based on the
weights in annotated expression r. Thus, the question becomes how to map the
weights assigned to the symbols of r to the symbols of word bc . . .x.

Since b, c, . . . , x occur in r, this might seem as a straightforward matter. However,
there is subtlety here arising from the possibility of ambiguity in the regular expres-
sion. For example, suppose the (annotated) expression r is (b : 1 + c : 1)∗(b : 2)(b :
3)∗, and element a has three children labeled by b. Surely, bbb is in L(r), but what
label should we assign to each of b’s? There are three different ways of assigning
weights to these b’s: (b : 1)(b : 1)(b : 2), (b : 1)(b : 2)(b : 3), and (b : 2)(b : 3)(b : 3).

However, according to the SGML standard (cf. [3]), the only allowed regular
expressions in the DTD rules are those for which we can uniquely determine the
correspondence between the symbols of an input word and the symbols of the regu-
lar expression.

These expressions are called “1-unambiguous” in [3].
For such an expression r, given a word bc . . .x in L(r), there is a unique mapping

of word symbols b, c, . . . , x to expression symbols. Thus, when r is annotated with
symbol weights, we can uniquely determine the weights for each of the b, c, . . . , x
word symbols.

Based on all the above, we can state the following theorem.

Theorem 1. If T is a valid XML tree with respect to an annotated DTD D, then
based on the weight annotations of D, there is a unique weight assignment to each
node of T .

Now, given an XML document, since there is unique path from the root of an
XML document to a particular element, we have that

Corollary 1. Each element of a valid XML document is assigned a unique weight.
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The unique weight of an element is obtained by multiplying its local node weight
with the weights of the ancestor nodes on the unique path connecting the element
with the document root.3

5 Preferential Term Weighting and Document Scoring

Formally, let V (vocabulary) be the set of distinctive terms in a collection C of
documents. Denote by m and n the cardinalities of V and C respectively. Let ti be
term in V and d j a document in C. Suppose that ti occurs fi j times in d j. Then, the
normalized term frequency of ti in d j is

tf i j =
fi j

max{ f1 j, . . . , fm j} ,

where the maximum is in fact computed over the terms that appear in document d j.
Considering now XML documents whose elements are weighted based on an-

notated DTDs, we have that not all occurrences of a term “are created equal.” For
instance, continuing the example in Section 4, an occurrence of a term ti in the key-
words element of a document is 5 times more important than an occurrence (of ti)
in the title, and infinitely more important than an occurrence in the related-work
element.

Hence, we refine the T F measure to take the importance of XML elements into
account. When an XML document conforms to an annotated DTD, each element ek

will be accordingly weighted, say by wk.
Suppose that term ti occurs fi jk times in element ek of document d j. Now, we

define the normalized term frequency of ti in d j as

tf i j =
∑k wk fi jk

max{∑k wk f1 jk, . . . ,∑k wk fm jk}
.

The other popular measure used in Information Retrieval is the inverse document
frequency (IDF) which is used jointly with the TF measure. IDF is based on the
fraction of documents which contain a query term. The intuition behind IDF is that
a query term that occurs in numerous documents is not a good discriminator, or does
not bear to much information, and thus, should should be given a smaller weight than
other terms occurring in few documents. The weighting scheme known as TF*IDF,
which multiplies the TF measure by the IDF measure, has proved to be a powerful
heuristic for document ranking, making it the most popular weighting scheme in
Information Retrieval (cf. [10, 5, 8]).

Formally, suppose that term ti occurs ni times in a collection of n elements. Then,
the inverse document frequency of ti is defined to be

3 All weights are considered being normalized.
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idf i = log
n
ni

.

IDF has a natural explanation from an information theoretic point of view. If we
consider a term ti as a “message” and pi = ni

n as the probability of receiving mes-
sage ti, then, in Shannon’s information theory [9], the information that the message
carries is quantified by

Ii =− log pi,

which coincides with the IDF measure. The connection is clear; terms occurring
in too many documents do not carry too much information for “discriminating”
documents ([1]). On the other hand, terms that occur in few documents carry more
information and hence have more discriminative power.

In XML Information Retrieval, considering each XML element that contains text
as a mini-document, we can compute multiple IDF scores for a given term. Note that
here, we restrict ourselves to textual elements only, i.e. those elements that contain
terms. For instance, in the above example, introduction is a textual element, while
body is not.

Depending on the importance weight of each textual element, the IDF scores
should be appropriately weighted. Intuitively, in the above example, the IDF score
of a term with respect to the related-work elements is infinitely less important than
the IDF score of the term with respect to say introduction elements.

Formally, let E be the set of textual element-weight pairs (eh,wh) extracted from
XML document collection C. This set is finite because C is finite, and for each ele-
ment in an XML document, there is a unique weight assigned to it (see Corollary 1).

For a textual element-weight pair (eh,wh), let nh be the total number of such
elements in the XML documents in collection C. Suppose that a term ti occurs in nhi

of these eh elements (of weight wh). Then, we define the IDF of ti with respect to
these elements as

idf hi = log
nh

nhi
.

Next, we define the IDF score of a term ti with respect to the whole document
collection as

idf i = ∑h wh · idf hi

∑h wh
.

This is the weighted average of IDF scores computed for each textual element-
weight pair (eh,wh).

Finally, the TF*IDF weighting scheme combines the term frequency and inverse
document frequency, producing a composite weight for each term in each document.
Namely, the TF*IDF weighting scheme assigns to term ti a weight in document d j

given by
tf idf i j = tf i j× idf i .

In the vector space model, every document is represented by a vector of weights
which are the TF*IDF scores of the terms in the document. For the other terms in
vocabulary V that do not occur in a document, we have a weight of zero.
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Similarly, a query q can be represented as a vector of weights with non-zero
weights for the terms appearing in the query. The weights are exactly those hyperreal
numbers specified by the user multiplied by the IDF scores of the terms.

Now, we want to rank the documents by computing their similarly score with
respect to a query q. The most popular similarity measure is the cosine similarity,
which for a document d j with weight vector w j and a query q with weight vector
wq is

cosine(w j,wq) =
〈w j,wq〉

||w j||× ||wq|| =
∑m

i=1 wi j×wiq√
∑m

i=1 w2
i j×

√
∑m

i=1 w2
iq

,

where m is the cardinality of vocabulary V .
The above formula naturally combines the query preference weights, XML ele-

ment weights, and Information Retrieval measures. Note that, we can in fact rank
documents using instead the square of the cosine similarity. Thus, we only need to
compare fractions of polynomial expressions based on the (fixed) infinitesimal ε . As
such, these expressions allow for an algorithmic (symbolic) comparison procedure
for ranking XML documents.

Finally, the query can be a complete document in its own. Such queries are of the
type: Find all the documents which are similar to a given document. We derive
weights for the elements of the query document in exactly the same manner as
described in Section 4. The vector of weights for the query document is computed
as for any other document in the collection. Then, this vector is compared against
the vectors of the documents in the collection by computing the cosine similarity as
described above.

6 Experiments

We have implemented a system incorporating our proposed framework and com-
pared its ranking effectiveness with that of a system that ranks using the classical
TF-IDF measure. The main research question we address is:

Does our preferential IR improve users’ search experience compared to a tradi-
tional IR?

Through experiments we provide practical evidence that our preferential IR does
indeed perform better than a traditional IR.

As described in the previous sections, we annotated XML schema elements and
search keywords in order to mark their importance in ranking the documents. We
designed our experiments for both document retrieval and element retrieval. We
used the following corpora as test-beds.

Corpus I On-line Internet Shakespeare Edition of the English Department ([12]),
University of Victoria for element retrieval. This corpus consists of all the Shake-
speare plays in XML format. The elements of interest are the speeches which
total more than 33,000. For this corpus we consider all the speeches to be of the
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same importance, and thus, only search keyword preferences are in fact relevant
for this corpus in influencing the ranking process.

Corpus II An INEX (INitiative for the Evaluation of XML retrieval) (cf. [13]) cor-
pus. INEX is a collaborative initiative that provides reference collections (cor-
pora). For evaluating our method, we have chosen a collection named “topic-
collection” with numerous XML documents of moderate size. The topics of doc-
uments vary from climate change to space exploration. We preferentially anno-
tated the DTD of this collection and gave many preferentially annotated search
queries.

Due to space constraints, we do not show our results here, but we point the reader
to the full version of this paper [4].
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