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Abstract:     The precision agriculture hopes to manage the variation in soil nutrient status 
continuously, which requires reliable predictions at places between sampling 
sites. For the long time, ordinary kriging has been used as one prediction 
method when the data are spatially dependent and a suitable variogram model 
exists. However, even if data are spatially correlated, there are often few soil 
sampling sites in relation to the area to be managed. Recently, Digital 
elevation models(DEMs) and remotely sensed data are becoming more readily 
available, these data are usually far more intensive than those from soil 
surveys. If these ancillary data are coregionalized with the sparse soil data, 
they might be used to increase the accuracy of predictions of the soil 
properties. 

                          Under ArcGIS platform, this paper employed spatial predictions of the soil 
total N, P, K in Chongqing tobacco planting region, China, with cokriging and 
regression kriging respectively. For the both, intensive terrain data including 
elevation, slope and aspect were used with the soil data. Traditional ordinary 
kriging(OK) was investigated as comparison basis to determine which 
approach is appropriate for different soils properties mapping. And the results 
suggest that the use of intensive ancillary data can increase the accuracy of 
predictions of soil properties in arable fields provided that the variables are 
related spatially. 
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1. INTRODUCTION 

One aim of regional precision agriculture is to use information about 
spatial distribution of soil properties to manage the field in a landscape-
specific way, for example, by the application of nutrients at the places and in 
the amounts required(Sylvester-Bradley et al., 1999) . Sampling at discrete 
places is the traditional means of obtaining information about the soil 
properties. However, field surveys are often time-consuming, labor-intensive 
and costly although it is still the dominant way to obtain information about 
most soil properties. Predicting unsampled sites by available sampling points 
data with acceptable precision and cost hence has been the focus of 
pedometrics(Webster, 1985; Cambardella et al., 1994; Goovaerts, 1997; 
McBratney et al., 2000; Auemhammer, 2001) .Traditionally, this has been 
achieved by classification, but it has been known for some time that this 
approach does not describe adequately the variation that scientists and 
farmers are aware of intuitively(Webster and Oliver, 2001) .Ordinary 
kriging(OK) is quiet suited to this problem provided that the data are 
spatially dependent(Webster and Oliver, 2001) . However, the data from soil 
surveys, are often sparse even though they might be spatially autocorrelated 
and it can lead to considerable uncertainty in the kriging 
prediction(McBratney et al., 2000) . Also, the precision of the prediction was 
shown to be very sensitive to the density of observation points and the gains 
in precision were only sight for sites located near from the observation 
sites(Auemhammer, 2001) . 

A way of refining these predictions could be to use easy-to-measure 
auxiliary data describing landscape features. Particularly, the use of 
attributes derived from Digital Elevation Models(DEMs) which becomes 
more readily available looks promising since some researchers have 
demonstrated the relationships between landforms features and soil 
properties(Chaplot et al., 2004; Lopez-Granados et al., 2005; Kay and Rainer, 
2008; Wu et al., 2008) . Recently several predictive soil attributes techniques 
that use intensive auxiliary data also have been developed ,for example, 
cokriging and regression kriging.  

Chongqing tobacco planting region, which locates in one of the poorest 
areas of southwest China and mostly is covered by hilly and mountains. 
Understanding how soil nutrients vary across landscape positions especially 
increasing the accuracy of spatial prediction of soil nutrient elements would 
be of huge economic and environmental benefit for local tobacco planting 
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and management. This study predicted spatial distribution of total N, P, K of 
this region by cokriging and regression kriging respectively in which 
intensive terrain properties including elevation, slope and aspect were used 
as auxiliary data. Traditional ordinary kriging interpolation was investigated 
as comparison basis to determine which approach is the appropriate method 
for different soil nutrient elements spatial distribution.  

This paper is organized as follows. Following the introduction, theory and 
methods used in this study are described in section 2.The study area and data 
are depicted in section 3.In section 4, results and discussion are illustrated. 
Conclusion is finally made in section 5. 

2. THEORY AND METHODS 

Ordinary kriging, cokriging and regression kriging were used in this study. 
The last two are described briefly below(for ordinary kriging, see (Webster 
and Oliver, 2001) ) 

2.1 Cokriging 

Cokriging is an extension of ordinary kriging that takes into account the 
spatial cross-correlation from two or more variables. The usual situation is 
one where the primary or target variable, ( )xZu , has been measured at many 
fewer places, x , than the secondary one, ( )xZv , with which it is 
coregionalized. We assume that they obey the intrinsic hypothesis. Both 
variables have an autovariograms, for variable u , this is  

( ) ( ) ( ){ }[ ]2

2
1 hxzxzh uuuu +−=γ  (1) 

Where h is a vector, the lag.For v also, the expected differences are zero 
and its autovariogram is ( )hvvγ .The two variables have a cross-variogram, 

( )huvγ , defined as  

( ) ( ) ( ){ } ( ) ( ){ }[ ]hxzxzhxZxZEh vvuuuv +−+−=
2
1γ    

(2) 
Which describes the way in which u is spatially related to v . 
To compute the usual cross-variogram, there must be sites where both 

u and v have been measured, i.e., collocated. The experimental cross-
variogram, ( )

^
hruv can be estimated by 
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Where uz and vz have been measured at sites ix and hxi + ,and ( )hm  is the 
number of pairs of data points separated by the particular lag vector h . 

 The cross-variogram can be modeled in the same way as the 
autovariogram, but there is an added condition. Any linear combination of 
the variables it itself a regionalized variable, and its variance must be 
positive or zero. This is ensured if we adopt the linear model of 
coregionalization. For any pair of variables u  and v , the variogram is  

( ) ( )hgbh
k

k
k

k
uvuv ∑

=

=
1

γ  (4) 

Where the k
uvb  are the variances, for example the nugget and sill variances. 

( )hgk  is the spatial autocorrelation function which must be the same for both 
variables being analyzed. 

 The ordinary punctual cokriging prediction of the primary variable, uZ is 
obtained from the linear sum 

( ) ( )i
ok
l

V

i

n

i
il xzx

l

uz ∑∑
= =

=
1 1

0

^

λ  (5) 

Where there are V variables, Vl ,...,2,1= ,of which u  is the one to be 
predicted, and the subscript i refers to the sites of which there are ln in the 
search neighborhood where the variable l has been measured. The ilλ are the 
weights, which in the case of ‘classical ’cokriging (Goovaerts, 1997)  satisfy 
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= ,0

,1

1
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There are the non-bias conditions, and subject to them the weights, 
ilλ ,that minimize the estimation variance of ^

uZ for a point, 0x ,are found by 
solving the kriging system for all Vv ,...,2,1= and all vnj ,...2,1= .The weights 

iλ are inserted into Eq.(5) to estimate ^

0 )( xZ u . 

2.2 Regression kriging 

Odeh et al.(Odeh et al., 1995)  describe three types of regression kriging: 
model A, B and C which are developments of the general theme. For this 
study, we used model C, which we summarize here. The method is based on 
a linear regression between a target variable such as certain soil property 
( Z ), and a secondary or third variable, such as elevation or slope ( iY ).The 
regression model so obtained is used to predict Z to the locations of the 
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prediction grid at which iY is known. The residuals from the regression ε  are 
kriged to the prediction grid using the variogram computed from the 
residuals. The predicted values ^

RZ and the kriged values of the residuals 
^

okε are summed to give the predicted values of the target variable ^

RKZ . 

( ) ( ) ( )xxZxZ okRRK

^^^
ε+=  (7) 

2.3 Performance evaluation indicators  

In order to evaluate the performance of different spatial prediction 
methods, mean squared error(MSE) and root mean squared standardized 
effect(RMSSE), in this paper are used as performance measure indicators. 

The mean squared error(MSE) is expressed as  

( ) ( )[ ]∑
=

−=
l

j
ii xzxz

l
MSE

1
21

1  (8) 

The root mean squared standardized effect(RMSSE) is expressed as  

( ) ( )[ ]∑
=

−=
l

i
ii xzxzRMSSE

1

2
21l

1  (9) 

Where ( )ixz1 is standardized site true value and ( )ixz2 represents 
standardized site prediction value, l  is the number of validation sites. When  
MSE is more close to 0 and RMSSE more approaches 1, the accuracy of 
prediction is hold higher. 

3. THE STUDY AREA AND DATA SOURCES 

3.1 The study area 

The study area is located in the east part of Chongqing between north 
latitudes 28°09′and 32°12′and east longitudes 106°23′and 110°
11′(Fig.1).The climate is characterized by an average annual temperature 
between 10.1 and 18.2°C .Annual precipitation is about 1200mm. 
According to Chinese Soil Taxonomy, the soils are classified by yellow soil, 
yellow brown soil, limestone soil, purple soil and paddy soil.  
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The landform of study area is dominated by hills, low mountains and 
medium mountains. Generally, it is undulating with slopes ranging from 0 to 
84 °and altitudes within the range from 100 to 2750.92 m. Due to weak 
transportation and economy development, tobacco planting is one of local 
dominant crops productions. 

 
Fig.1: Location of the study area 

3.2 Data sources 

The soil was sampled in the spring of 2007 at 300 sites of 17 tobacco 
planting  counties at a depth of 0-20cm. The position of each site was 
georeferenced using a DGPS(Differential Global Positioning System). From 
the observations, 40 sites, randomly selected, were kept aside for 
validation(the validation set).Therefore, the 260 remainder sites formed the 
prediction set. 

The field soil was analyzed for total Nitrogen(N),Phosphorus(P) and K2O 
as soon after sampling as possible. Kjeldahl method was utilized to measure 
the soil total N , and the total P and K2O were determined by x-ray 
fluorescence(XRF) analysis(Lu and Yang, 1993) . 

A DEM was constructed using ArcMAP Version 9.2(ESRI).  50×50m 
DEM data were derived from automated image matching of scanned 
panchromatic aerial photograph based on AUNDEM(Auemhammer, 
2001) . Primary terrain attributes including elevation, slope and aspect were 
extracted by ArcMAP spatial analyst module. 
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4. RESULTS AND DISCUSSION 

4.1 Exploratory data analysis 

Table 1 list the descriptive statistics of total N,P and K2O in the study area. 
The K-S test indicates that the whole dataset all followed a normal 
distribution. 

Table 1. Descriptive statistics for Total N,P, K2O 
Item Mean Min Max Skewness S.D K-S 

Total N(ug/g) 1534.40 798.64 2933. 0.89 356.70 0.21 
Total P(ug/g) 717.50 299.10 1448.90 0.78 202.34 0.17 
Total K2O(%) 2.41 0.68 5.66 0.65 0.74 0.15 

The Pearson product moment correlation coefficients were calculated 
between the total N,P, K2O and elevation, slope and aspect from the co-
located data to determine whether it was feasible to use these terrain data to 
improve their prediction. Table 2 gives the correlation coefficients of N,P 
and K2O with terrain data. For all three soil nutrients, they all related to 
elevation and ranged from weak for K2O,to moderate for P and strong for N. 
For slope, both N and P were inversely related but K2O is likely to be 
indirect. Besides K2O, the other soil elements have no obvious links with 
aspect. 
Table 2.Pearson product moment correlation coefficients between soil nutrients and terrain 
data 

Item Elevation Slope Aspect 
Total N 0.295* 0.173* ‐0.026 
Total P 0.179* 0.116* ‐0.051 

Total K2O 0.113* 0.075 .‐132* 

4.2 Cokriging 

Experimental cross- and auto-variograms were obtained by applying Eq.(4) 
using the DEM predictions of elevation, slope and aspect at the observation 
sites. We fitted the models of coregionalization to soil total N,P, K2O and 
three terrain attributes. It is shown as in table 3. 

It was indicated that the two sets variograms of elevation, slope for N and 
P were both bounded and were fitted by exponential, spherical ,Gaussian, 
spherical function respectively. The variograms of aspect for N and P were 
unbounded, whereas it it was bounded for K2O with the range set to 



352 Xuan Wang , Jiake Lv , Chaofu Wei , Deti Xie
 

 

121.04.Under the ArcGIS platform, elevation, slope were associated  as 
covariances for N,P spatial prediction and elevation, aspect act covariances 
for K2O spatial prediction. The whole prediction maps were shown in Fig.2. 
Table3 Varioram model parameters with elevation, slope and aspect of soil nutrients 

Item Variable Model Nugget Sill Range(Km) 

N 
Elevation Exponential 0.69 0.90 141.163 

Slope Spherical 1.13 1.21 320.606 
Aspect Linear 1.21   

P 
Elevation Gaussian 0.71 0.88 118.198 

Slope Spherical 1.13 1.21 320.606 
Aspect Linear 1.21   

K2O 
Elevation Exponential 0.61 0.89 117.379 

Slope Linear 0.71   
Aspect Spherical 0.62 1.01 121.04 

 
(a) Total N-Cokriged                                          (b) Total P-Cokriged 

 
(c)  Total K2O-Cokriged 

Fig.2 Spatial distribution for total N, P,K2O with cokriging 

4.3 Regression kriging 

Linear regressions of total N,P, K2O were done on the DEM data at the 
observation sites. The equations were depicted as follows: 

067.128151.08.1482.01 ++= βα－hY  ( 635.02＝r ) 

189.263205.0751.032.02 −+= βα＋hY ( 517.02＝r ) 
(10) 
(11) 
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254.2001.0003.0001.03 ++= βα－hY ( 611.02＝r ) (12) 

where 1Y , 2Y and 3Y  represents total N, P, K2O respectively, h ,α , β  
represents elevation, slope and aspect. 

An experimental variogram was also computed on the residuals of total N, 
P and K2O from the regression at each site. It is shown as table 4. 
Table 4 Parameters for the fittest residuals theoretical models of total N,P,K2O 

Item Model Nugget Sill Range(km) C/C0+C R2 

N residuals 
Spherical 7.94 10.99 211.40 0.72 0.872 

Exponential 6.05 10.61 114.601 0.57 0.958 
Gaussian 7.11 10.41 75.820 0.68 0.811 

P residuals 
Spherical 11.77 29.49 81.259 0.40 0.672 

Exponential 4.94 29.68 78.022 0.17 0.713 
Gaussian 15.23 29.53 72.210 0.52 0.966 

K2O residuals 
Spherical 0.15 0.23 72.651 0.65 0.753 

Exponential 0.12 0.24 57.718 0.50 0.821 
Gaussian 0.16 0.23 54.479 0.70 0.934 

It was found that the highest determined coefficient(R2) existed in 
Exponential, Gaussian, Gaussian Model for total N,P, K2O residuals 
respectively. The whole spatial prediction map is displayed in Fig.3.   

 
(a) Total N- RK                             (b) Total P-RK  

    
   (c) Total K2O-RK                                                                                      

Fig.3 Spatial distribution for total N, P,K2O with regression kriging 
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4.4 Ordinary kriging 

Different semivariogram models for models for the soil N,P,K2O were 
presented in Table 5. 

Table 5 Parameters for the fittest residuals theoretical models of total N,P,K2O 
Item Model Nugget Sill Range(km) C/C0+C R2 

N 
Spherical 0.94 1.29 11.811 0.73 0.731

Exponential 0.77 1.31 10.235 0.59 0.742
Gaussian 1.02 3.85 10.496 0.26 0.867

sP 
Spherical 2.39 4.50 10.983 0.53 0.821

Exponential 1.89 4.53 11.378 0.42 0.910
Gaussian 2.74 4.51 9.437 0.61 0.877

K2O 
Spherical 4.91 5.68 121.766 0.86 0.726

Exponential 4.11 5.63 63.034 0.73 0.891
Gaussian 4.73 5.62 58.767 0.84 0.677

It was found that the highest determined coefficient(R2) existed in 
Gaussian, Exponential, Exponential Model for total N,P, K2O respectively. 
The whole spatial prediction map is displayed in Fig.4. 

   
(a) Total N-OK                                           (b) Total P-OK 

 
(c) Total K2O-OK 

Fig.4 Spatial distribution for total N, ,K2O with ordinary kriging 
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4.5 Discussion 

The MSEs and RMMSEs for total N,P, K2O are given in table 6 for each 
method of spatial prediction. 

Table 6 MSE and RMSSE between the measured and predicted values at the validation sites  
Item  CoK RK OK 

N 
MSE 0.065 0.047 0.091 

RMSSE 0.872 0.911 0.811 

P 
MSE 0.071 0.082 0.102 

RMME 0.946 0.901 0.777 

K2O 
MSE 0.034 0.027 0.061 

RMSE 0.911 0.973 0.897 

For total N, the MSE for regressing kriging was the smallest, followed by 
that for cokriging, and last was the ordinary kriging. The RMSSE of being 
close to 1 is ranked by RK,CoK and OK. These results show that that some 
benefit aroused from using the more intensive terrain data to predict the 
sparser soil properties.Fig.2,3,4 shows the spatial prediction maps with 
different methods. Generally, the major patterns of variation are evident but 
the detail is different. The most variable map is the one from the OK 
prediction, and the smoothest is from regression kriging. 

Table 6 shows that CoK was the most accurate method of prediction for 
total P, followed by regression kriging, and the ordinary kriging was the 
worst in this case. The less accurate predictions from regression kriging 
probably reflect regression model less good determined coefficient . 

For total K2O ,the prediction accuracy rank shows similar pattern with 
total N. 

5. CONCLUSION 

Understanding the spatial variation of soil properties to mange the field is 
one aim of precision agriculture. Increasing the accuracy of the spatial 
predictions of soil nutrient elements with the aid of available ancillary data is 
quiet economic and environmental typically in complex terrain hilly 
areas ,because soil nutrient elements are measured sparsely compared with 
ancillary data such as elevation, slope and aspect. This study predicted the 
three soil nutrient elements spatial distribution with CoK, RK and OK in 
Chongqing tobacco planting area, and the methods of incorporating ancillary 
terrain data both show good advantage. 
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With the intensive environmental data like DEM and remotely sensed data 
from satellites and ground-based systems become increasingly available, 
they are likely to confer benefit in the context of general environmental 
management where sampling to record the variable and limits the accuracy 
of predictions. However, up to now there is no single best method for all 
variables. The coregionalization and the relations between the deterministic 
components of the variation should still be examined carefully before 
deciding on the most appropriate method of prediction. 
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