
401

Chapter 8

Creating a Soil Moisture
Sensor

The project in this chapter explains how to use the analog and digital ports of Intel Galileo
to create a very low-cost system that measures the moisture levels in the soil for home
applications. This project was demonstrated in a Maker Faire in October 2013 in Rome,
Italy and the purpose was to create a project with only $4.00, excluding the cost of Intel
Galileo board.

Project Details
To measure moisture in the soil, you simply measure the quantity of water in it. There
are different kinds of sensors available in the market, including neutron moisture gauge
sensors, frequency domain sensors, capacity sensors, and simple electrodes. These are all
used in home applications and each type uses different techniques.

The electrodes are one of the most affordable solutions, and for simple applications
like monitoring the plants in your home, they are good solutions.

The challenge is to create a very affordable system whereby you can use material that
you usually dispose in the trash or have in your garage.

You can build your own electrode sensor using galvanized nails, such as roofing nails
that are used to hold the interlocked concrete tiles.

Considering that the electrodes will be in constant contact with moisture, galvanized
nails are highly recommended to avoid rusting. Rust can cause poor analog readings,
forcing you to adjust the system frequently.

Each sensor consists of two electrodes, in this case, two nails separated by about
two inches. The first electrode receives a voltage and the other one is connected to an
analog port.

Soil has conductive properties that are affected proportionally by the amount of
moisture present. If there is a good quantity of water in the soil, the electrical current
propagation is good; dry soil means the propagation is bad. Of course, other factors affect
soil conductivity, including the degree of salts and nutrients in the soil.

This project is very simple and its purpose is only to indicate whether the soil has
enough water for the houseplants. It doesn’t measure any details about soil type, water
type, or mineral concentrations. This project can be applied to any kind of soil or water.

Chapter 8 ■ Creating a Soil Moisture Sensor

402

For practical purposes, this project will follow the same demonstration as performed
at Maker Faire in Italy. The project includes two sensors, so you will be able to monitor
two plants. You will have visual feedback about the sensors’ readings through a group
of LEDs forming a flower face, with eyes and a mouth. The mouth is used to represent
emotions such as happiness and sadness, according to the level of moisture in the soil. In
other words, a “happy face” will tell you if your plant has enough water; when the soil is
dried out, the face will be sad. The eyes indicate which sensor is currently selected. One
eye is related to sensor number 1 and the other eye relates to sensor number 2. You can
switch between the sensors by pressing a push button.

You are free to change this project; for one, you could increase the number of
sensors and use all six possible analog ports (A0 to A5) on the Intel Galileo instead of
only two sensors.

The section called “Ideas for Improving the Project” at the end of the chapter
explains how to increase the number of sensors how to use solenoid and pumps for
automatic irrigation, among other ideas.

Material List
To build this project you need the components listed in Table 8-1.

Table 8-1.  Mandatory Components

Quantity Components

2 Green 5mm LED

8 Red 5mm LED

1 Push button

10

2

4

1

2

3 ft

1

220 ohms 1/4 w

12K ohms 1/4 w

Galvanized nails

Universal board

Pieces of foam 3x3 inches

Wires (at least 1/4 w)

Scissors

The list in Table 8-2 is not mandatory; these materials are used for aesthetic purposes
during the development of the flower face, which is discussed in detail in this chapter.

Chapter 8 ■ Creating a Soil Moisture Sensor

403

Assembling the Moisture Sensors
To assemble the sensors, there are mechanical and electrical procedures you must follow.
They are explained in the following sections.

Mechanical Assembly
Each sensor needs two galvanized nails and a piece of non-conductive foam in order to
keep the nails separated.

For the foam, you can use the kind used to protect electronic devices packed into
boxes. You might have some in your house, in the recycling, or in your office. You can also
use pieces of Styrofoam.

Once you have the nails and the foam, simply insert the nails 1.5 to 2 inches apart.
Figure 8-1 shows you an example of the final build.

Table 8-2.  Optional Materials

Quantity Components

1 White prime spray

1 Assorted colored papers or free paint paper samples

1 3/4 transparent tape

1 Black gel pen

Figure 8-1.  The soil moisture sensor using nails and foam

Chapter 8 ■ Creating a Soil Moisture Sensor

404

Once the nails are inserted into the foam, make sure they can penetrate the soil at
least 1.5 inches. You will not bury the foam; you simply use it to keep the nails separated
and connected to the soil.

If you do not have enough nail area at the bottom, cut the foam or use bigger nails.

Electrical Assembly
The next step is to understand how the nails are connected electrically. Therefore, remove
the nails from the foam and review the image in Figure 8-2.

Figure 8-2.  Sensor electric connection

As you can see in Figure 8-2, two nails are necessary to assemble one sensor. One of
the nails is connected directly to the 5V port and other must be connected with the 12K
Ohm resistor to an analog port. In Figure 8-2, sensor 1 is connected to A0 and sensor 2 is
connected to A1.

Chapter 8 ■ Creating a Soil Moisture Sensor

405

The nails can be connected using wire wrapped around the nail’s head,
as demonstrated in Figures 8-3 and 8-4, or they can be soldered.

Figure 8-3.  The wire being prepared

Figure 8-4.  Wrapping the wire around the nail’s head

Wrap the wires around each nail and place the sensors in the foam again.
The resistors work as a voltage divisor with 5V. To assemble the 5V and the resistor,

connections are arranged using a universal board represented in Figure 8-2. This board
will be used to assemble the flower face, which is explained later in this chapter.

Chapter 8 ■ Creating a Soil Moisture Sensor

406

Figure 8-5 shows the sensor components solder into the verse of the board (the
surface without copper layer) containing a single ground (GND), the sensors cables
(S1 and S2), and the common 5V connected to the sensors.

Figure 8-5.  Sensors circuits

Using the verse of universal board and soldering the components to the backside is
not normally a good approach, but in this case it is used to emulate the demo created in
Italy. You will understand better in the sub-session entitled “Assembling the Flower Face”
in the following pages of this chapter. You can mount your sensor circuit in a different
board or create a particular PCB for each sensor, or use any other solution that you feel is
appropriate for your case. For example, you can use a breadboard instead of a universal
board to avoid the soldering process.

Assembling the Flower Face
The flower face will represent emotions based on how well the plants are watered. For
a better user interface, the LEDs in the eyes are a different color than the LEDs used in
the mouth.

Figure 8-6 shows the schematics for the flower face, where “D” means digital and “A”
means analog.

Chapter 8 ■ Creating a Soil Moisture Sensor

407

Figure 8-6.  Flower face connection

The D10 and D11 ports are used to control the green LEDs, which inform which
sensor is selected. The other ports D2 to D10 are the red LEDs and they represent the
mouth. They should be aligned horizontally containing four LEDs. The push button B1 is
used to select the sensor.

Chapter 8 ■ Creating a Soil Moisture Sensor

408

When this project was demonstrated at the Maker Faire in Italy, it used a universal
board and the resistor was hidden in the back, as demonstrated in the Figure 8-7. It
reserved space in the front of the universal board and around the LEDs in order to glue
some colored paper leaves to emulate a true flower. If the resistors were in the front, it
would not be possible to include these leaves. I painted the area that contains the LEDs
using a white primer spray and added the circle with a black pen.

Figure 8-7.  Flower face, front (left) and back (right)

The order of LEDs placed in the board and their respective connections with the
digital ports of Intel Galileo is very important. If they aren’t in proper order, the software
will be a mess and will not be intuitive for other developers.

Figure 8-8 shows how each LED is arranged, with the respective digital headers in
Intel Galileo boards.

Chapter 8 ■ Creating a Soil Moisture Sensor

409

It is recommended that you mark each wire with the corresponding port number to
avoid confusion with connections and to save time. You can do that using regular tape
and paper, as shown in Figure 8-9.

Figure 8-8.  Physical connection to Intel Galileo ports (front view)

Figure 8-9.  Marking the wires with their port numbers

Chapter 8 ■ Creating a Soil Moisture Sensor

410

Testing the Flower Face with the Software
After you have built the flower face, it is time to test if the LEDs connections are working,
if they are in the right order, if the button is properly connected and switches the sensor
when pressed, and adjust the button debounce. Using the Intel Galileo IDE, load the code
from Listing 8-1.

Listing 8-1.  flower_face_test.ino

// Author: Manoel Carlos Ramon
// email: manoel.c.ramon@intel.com
 
#define DEBUG 0
 
/* Pins that define if system is ON */
#define PIN_LEFT_EYE 10
#define PIN_RIGHT_EYE 11
 
/* Sensor switch button */
#define PIN_SWITCH_SYSTEM 13
 
void clear();
int current_sensor = 0;
int button_state = 0;
 
int array_happy_face[2][4] = {{1, 0, 0, 1}, /* line 1 */
 {0, 1, 1, 0}}; /* line 0 */
  
int array_sad_face[2][4] = {{0, 1, 1, 0}, /* line 1 */
 {1, 0, 0, 1}}; /* line 0 */
  
 
/* THE MOUTH - back view
 _____________ led 0 - pin 6
 | __________ led 1 = pin 7
 | | _______ led 2 = pin 8
 | | | ______ led 3 = pin 9
 | | | |
 
 O O O O line 1
 0 0 0 0 line 0
 
 ^ ^ ^ ^
 | | | |__ led 3 = pin 5
 | | |______ led 2 = pin 4
 | |________ led 1 = pin 3
 |____________ led 0 = pin 2
*/
 

Chapter 8 ■ Creating a Soil Moisture Sensor

411

int lastButtonState = LOW; // the previous reading from the input pin
long lastDebounceTime = 0;   // the last time the output pin was toggled
long debounceDelay = 500; // adjust this value if necessary to avoid
flickering
 
void clear()
{
 int pin = 0;
 for (pin = 0; pin < 12; pin++)
 {
 digitalWrite(pin, LOW);
 }
 
}
 
void drawMatrix(int array[2][4])
{
 int line = 0;
 int pin = 2;
 int c = 0;
 int level = LOW;
  
 while (line < 2)
 {
 digitalWrite(line, LOW);
  
 while (c <= 3)
 {
  
 level = array[line][c];
  
 digitalWrite(pin, level);
 c++;pin++;
 }
 c=0;
 line++;
 delay(10);
 }
  
}
 
void setup() {
  
 if (DEBUG) Serial.begin(9600);
 // put your setup code here, to run once:
 int pin = 0;

Chapter 8 ■ Creating a Soil Moisture Sensor

412

 for (pin = 0; pin < 12; pin++)
 {
 pinMode(pin, OUTPUT);
 delay(10);
 }
  
 // switch button
 pinMode(PIN_SWITCH_SYSTEM, INPUT);
 
 // turn off all leds
 clear();
 
}
 
void checkButtonState()
{
  
 // read the state of the switch into a local variable:
 int reading = digitalRead(PIN_SWITCH_SYSTEM);
  
 // check to see if you just pressed the button
 // (i.e. the input went from LOW to HIGH), and you've waited
 // long enough since the last press to ignore any noise:
 
 // If the switch changed, due to noise or pressing:
 if (reading != lastButtonState) {
 // reset the debouncing timer
 lastDebounceTime = millis();
 }
  
 if ((millis() - lastDebounceTime) > debounceDelay) {
 // whatever the reading is at, it's been there for longer
  
 // if the button state has changed:
 if (reading != button_state) {
 button_state = reading;
 
 }
 }
  
 lastButtonState = reading;
 
 return;
}
 

Chapter 8 ■ Creating a Soil Moisture Sensor

413

void loop() {
  
 // reading the button state
 checkButtonState();
  
 if(button_state != lastButtonState)
 {
 // button pressed
 current_sensor++;
 if (current_sensor > 1) current_sensor = 0;
 }
  
 if (DEBUG) Serial.println(current_sensor);
 if (current_sensor == 0)
 {
 //sensor 1 - only one LED on
 digitalWrite(PIN_RIGHT_EYE, HIGH);
 digitalWrite(PIN_LEFT_EYE, LOW);
 
 drawMatrix(array_sad_face);
 }
 else
 {
 // sensor 2 - two LEDs ON
 digitalWrite(PIN_RIGHT_EYE, HIGH);
 digitalWrite(PIN_LEFT_EYE, HIGH);
 
 //sad face
 drawMatrix(array_happy_face);
 }
}

Reviewing the Code
Before you test the circuit, review the code by checking the different functions discussed
in the following sections.

setup( ) function
In the setup() function, you set the ports 2 to 9 (the mouth) and the ports defined
by PIN_LEFT_EYE and PIN_RIGHT_EYE (the eyes) as output because they are the LEDs
connections. PIN_LEFT_EYE and PIN_RIGHT_EYE are defined by the following code:
 
#define PIN_LEFT_EYE 10
#define PIN_RIGHT_EYE 11
 

Chapter 8 ■ Creating a Soil Moisture Sensor

414

The only port defined as input in the setup() function is the port that determines
which button is connected. Its represented by the definition PIN_SWITCH_SYSTEM with
port 13 by default.
 
/* Sensor switch button */
#define PIN_SWITCH_SYSTEM 13

loop( ) function
The loop() function checks the button state. If it is different from the previous state, that
means the user pressed the button and the sensor selection must be changed.

Thus, if sensor 1 is the selected sensor, the variable current_sensor is zero (0) and
a sad face will be displayed using the LEDs. Note that only one eye, represented by the
green LED connected to PIN_RIGHT_EYE, is ON, which means that when there is only one
eye ON, it’s sensor 1.

Otherwise, if the user selected sensor 2, a happy face will be displayed and both
“eyes,” represented by the green LEDs, will be ON. In this case, the current_sensor
variable value is one (1).

drawMatrix( ) function
The drawMatrix() function is responsible for drawing the mouth according to the matrix
passed as its argument.

Each expression is defined by a double dimension matrix, represented by the
array_happy_face[][] and array_sad_face[][] integer arrays.
 
int array_happy_face[2][4] = {{1, 0, 0, 1}, /* line 1 */
 {0, 1, 1, 0}}; /* line 0 */

int array_sad_face[2][4] = {{0, 1, 1, 0}, /* line 1 */
 {1, 0, 0, 1}}; /* line 0 */
 

In the matrixes, the value 1 means the LED must be turned ON and 0 means OFF.
Considering this, you can see that the 1s in array_happy_face[][] form a smiling mouth
and that they form a sad mouth in the array_sad_face[][].

checkButtonState( ) function
The checkButtonState() function is responsible for determining whether the user
pressed the button. For this, the checkButtonState() implements the same logic used by
the debounce example in the IDE (see Examples->02.Digital->Debounce).

In the global scope, the variable called debounceDelay adjusts the button’s debounce
interval. If, during your tests, you think the button is flickering, you can increase this
interval.
 
long debounceDelay = 500; // adjust this value if necessary to avoid
flickering

Chapter 8 ■ Creating a Soil Moisture Sensor

415

Testing the Flower Face
This test is quite easy and fun. Just make all the connections according to the schematics.
If everything is working okay, the first thing you will see is a sad face with only one eye ON,
as shown in Figure 8-10.

Figure 8-10.  The sad face and sensor 1 selected

Then press the button. If the button connection and its debounce interval are
working properly, you will see a happy face with two eyes ON, as shown in Figure 8-11.

Chapter 8 ■ Creating a Soil Moisture Sensor

416

Remember, one eye ON means sensor 1 and two eyes ON means sensor 2.

Running the Project
Now it’s time to run the project. You’ll make a few changes to the code shown in Listing 8-1.

Calibration Procedure
If you tested the flower face and assembled the sensor correctly, the project is ready to
go. You now need to integrate the logic with the sensors in the code and make some final
adjustments.

The final code that joins the flower face and the sensors is called soil_moisture.ino.
Just a few simply changes need to be made to the code.

Figure 8-11.  The happy face and sensor 2 selected

Chapter 8 ■ Creating a Soil Moisture Sensor

417

Defining the Connections
The first change is to define where the sensors are connected and define a variable to set
the initial value.
 
/* Moisture sensor - Analog Input */
#define ANALOG_MOISTURE_SENSOR_1 A0
#define ANALOG_MOISTURE_SENSOR_2 A1
int sensor_value = 0;

Setting the Boundary Values
The next change is to create a definition that will set a boundary value for when soil is wet
enough. You can initiate your test using good soil; in other words, soil that contains the
quantity of water that you judge good for your plants. The first thing to do is to enable to
debug messages by setting the DEBUG defitition to “1”.
 
#define DEBUG 1
 

As soon as you upload the problem using the IDE, you should start the serial monitor
by pressing Ctrl+Shift+M or by selecting Tools ➤ Serial-Monitor, as explained in Chapter
3. You will see a message in the serial terminal that reads “sensor value:” with the
appropriate value. Make sure you are selecting the right sensor during this calibration.

Next, set SOIL_ID_GOOD to the appropriate value. In Listing 8-1, it was set to 350,
which determined if the soil is completely dried out or had enough moisture. The 350
value was tested in three different locations in the United States and in one location in
Italy and worked very well for this demo. However, you should test and determine the
best value for your soil and moisture level.
 
/* The analog reading boundary when soil is good */
#define SOIL_IS_GOOD 350
 

The loop function is changed so that it reads the current analog port selected by the
push button, compares the value, and displays the right emotion in the flower face circuit,
as shown in the following excerpt from Listing 8-1.
 
void loop() {
 
 // reading the button state
 checkButtonState();
  
 if(button_state != lastButtonState)
 {
 // button pressed
 current_sensor++;
 if (current_sensor > 1) current_sensor = 0;
 }
 

Chapter 8 ■ Creating a Soil Moisture Sensor

418

 // reading the sensor
 switch (current_sensor)
 {
 case 0:
 sensor_value = analogRead(ANALOG_MOISTURE_SENSOR_1);
  
 // first sensor - one LED ON
 digitalWrite(PIN_RIGHT_EYE, HIGH);
 digitalWrite(PIN_LEFT_EYE, LOW);
 
 break;
  
 case 1:
 sensor_value = analogRead(ANALOG_MOISTURE_SENSOR_2);
  
 // second sensor - two LEDs ON
 digitalWrite(PIN_RIGHT_EYE, HIGH);
 digitalWrite(PIN_LEFT_EYE, HIGH);
 
 break;
 }
  
 if (DEBUG)
 {
 Serial.print("current_sensor:");
 Serial.println(current_sensor);
  
 Serial.print(" sensor_value:");
 Serial.println(sensor_value);
 }
  
 if (sensor_value >=SOIL_IS_GOOD)
 {
 drawMatrix(array_happy_face);
 }
 else
 {
 drawMatrix(array_sad_face);
 }
  
}
 

Chapter 8 ■ Creating a Soil Moisture Sensor

419

The code is very simple and everything is done using the digital and analog headers.
In the loop() function will call the function checkButtonState(), which updates the
variable button_state. If button_state is different than the previous state saved in the
lastButtonState variable, the current_sensor variable changes and can assume two
values—0 or 1. The value 0 represents the first sensor and the value 1 represents the
second one.

The switch instruction will determine which sensor the user selected and call
the analogRead() function, which will read the analog port that corresponds to the
connected sensor and load the value to the sensor_value variable.

If the first sensor (case 0) is selected, digitalWrite() will turn ON just one flower eye,
because only one LED will be HIGH, as shown here:
 
digitalWrite(PIN_RIGHT_EYE, HIGH);
digitalWrite(PIN_LEFT_EYE, LOW
 

In case 1, two eyes will be ON because both LEDs will be HIGH:
 
digitalWrite(PIN_RIGHT_EYE, HIGH);
digitalWrite(PIN_LEFT_EYE, HIGH);
 

After this there is a debug message section, which will be displayed in the serial
monitor if DEBUG is defined as 1, as explained previously.

Finally, if the sensor_value variable reports moist soil, the drawMatrix() function
will draw a smile in the flower face. Otherwise, a sad face is shown, as explained in the
section called “Testing the Flower Face with Software” of this chapter.

Showing This Project in a Fair
When this project was used as a demo at the Maker Faire, two soil samples were used, one
dried and the other one with a good quantity of moisture. The soil was in two disposable
cups with sensors connected. The flower face included some colored leaves that were
added using free painting paper samples you can find in construction stores like Lowes
and Home Depot.

Figure 8-12 shows how the sensors were arranged in the cups and Figure 8-13 shows
the flower face with the leaves when sensor 1 measured dry soil.

Chapter 8 ■ Creating a Soil Moisture Sensor

420

Figure 8-13.  The flower face with leaves

Figure 8-12.  The sensors in the cups

Chapter 8 ■ Creating a Soil Moisture Sensor

421

Ideas for Improving the Project
This project was created knowing that it would be used as a demo in a fair or classroom.
But how could you change the project to attend to your real needs? For example, sprinkler
systems usually irrigate plants periodically, regardless of moisture level, which can
be wasteful. The next sections discuss ideas for adjusting this project to meet real-life
scenarios.

Increasing the Number of Sensors
This project uses only two sensors, but the Intel Galileo pin-out includes six analog ports.
That means you can expand the number of sensors with minimal changes to the software
and hardware.

If you want to have more than two sensors, instead of the flower face, you can build a
simple board with multiple LEDS with each LED representing a sensor. When the LED is
ON, the respective sensor indicates the plant needs water. When the LED is OFF, the soil
has water enough.

Automatic Irrigation
It’s possible to use this project to make an automatic irrigation system, but there are small
differences when you need to irrigate a small plant or a large area.

Such differences are related to what type of device will be used in the irrigation: a
pump or a solenoid valve.

When the quantity of water required is small, such as with indoor plants, you can use
low voltage water pumps that operate between 3V to 9V, and you need a recepticle that
collects water and distributes it to the plants. The recepticle might be a bottle, a bucket, a
basin, or anything that can hold the water to be used by your plants.

When you’re irrigating a large area, you’ll need 12V or 24V solenoid valves that
control the water that comes from a hose or pipe. These values work as a switch on and
switch off. In other words, they either enables or do not enable the water flow.

In both cases, the pumps and solenoid valves work with different voltage levels and
require higher levels of current than your board is able to control. Therefore, it’s better to
isolate the Intel Galileo and use a mechanical or solid state relay.

Figure 8-14 represents a practical circuit using a mechanical relay.

Chapter 8 ■ Creating a Soil Moisture Sensor

422

Figure 8-14.  Drive relay connected to a pump or solenoid

The circuit shown in Figure 8-14 can be assembled using the material listed
in Table 8-3.

Table 8-3.  Optional Materials

Quantity Components

1 R1: 1K Ohm

1 D1: 1N4001 or 1N4004

1 Q1: 2N2222A or BC548

1 Relay

There are affordable shields with relays available in the market. Figure 8-15 shows
an example of a shield equipped with two relays that operates up to 30 VDC and 10A and
costs less than $4.00 on eBay.

Chapter 8 ■ Creating a Soil Moisture Sensor

423

Figure 8-15.  Example of an inexpensive shield relay

The outdoor sprinklers in landscapes are equipped with solenoid valves responsible
for activating water flow. Using the circuit shown in Figure 8-14, you can manage your
sprinklers by directly replacing the sprinklers’ timers. Just make sure you are using the
relay and power supply compatible with your sprinklers.

Using Appropriate Wires
It’s possible to find wires that are more appropriate for an outdoor application at any
hardware store. The demo uses simple telephony wires, but it’s better to use wires that
withstand moisture and water, can handle high temperatures, and work underground in
the soil. Usually, they are 16 AWG and are specified as burial wires.

Using a Commercial Sensor
You can replace the galvanized nails with commercial sensors. Many electrode sensors
are very affordable and are more appropriate for this application. They are usually offered
with tine potentiometers, which allow you to make fine adjustments to the analog port
reading. They can be found on eBay for less than $5.00.

Figure 8-16 shows an example of a commercial sensor that can be used with this project.

Chapter 8 ■ Creating a Soil Moisture Sensor

424

Figure 8-16.  Commercial soil sensor with potentiometer

Tweeting
Tweeting is another way to improve this project. In the Chapter 6, you will learn how to
tweet using Intel Galileo. I will talk again about this project and explain how to make the
plants tweet in order to communicate when they need water.

Summary
This chapter explained how to build a project using parts that you can find in your garage,
recycling, or in a construction store near you.

The next chapters offer resources that can be integrated into this project, like tweeting.

	Chapter 8: Creating a Soil Moisture Sensor
	Project Details
	Material List
	Assembling the Moisture Sensors
	Mechanical Assembly
	Electrical Assembly

	Assembling the Flower Face
	Testing the Flower Face with the Software
	Reviewing the Code
	setup( ) function
	loop( ) function
	drawMatrix( ) function
	checkButtonState( ) function
	Testing the Flower Face

	Running the Project
	Calibration Procedure
	Defining the Connections
	Setting the Boundary Values
	Showing This Project in a Fair

	Ideas for Improving the Project
	Increasing the Number of Sensors
	Automatic Irrigation
	Using Appropriate Wires
	Using a Commercial Sensor
	Tweeting

	Summary

