
35

Chapter 2

Native Development

There are projects in this book that require a bit more than the simple usage of Arduino
reference APIs. Especially Chapter 7, where the OpenCV and V4L2 are explained, and
some examples will not run as simple sketches (Arduino programs). In these cases, you
will need to know how to make a new build, how to create the toolchains specifically to
your computer and how to use the cross-compilers to compile native applications.

The build system used to create the Intel Galileo images—the Yocto project—is
very powerful, but it is not as straightforward as a simple make command. There is some
computer preparation that must be done. It is also good to know a little bit about how the
build system works and how to compile the SPI and SD card images for Intel Galileo and
Intel Quark toolchains in order to have the cross-compilers in hand.

This chapter also shows you how to build a very simple native Hello World
application after the installation of the toolchains.

Considering that you will be able to create your own releases, especially the SPI
images, there is some instruction on how to recover your board—in case you make a
mistake and brick your board.

In the end, this chapter brings you some knowledge that will be necessary in the next
chapters. It is not the intention to bring a full understanding of all techniques involved in
a native development, especially debugging.

Introduction to the Yocto Build System
Suppose that you are creating a great product that uses Linux as an embedded operating
system because is open source and free—reducing the product costs, and brings a great
operating system to your users. Does this sound right? The answer is that it depends,
because Linux is an amazing operating system, but “reducing the cost” in an embedded
development could be a really huge nightmare if you do not have good control of the
features required by your product, such as which Linux distribution is able to meet your
requirements with minimal effort to join all the pieces together.

In order to create a custom Linux image and bring exactly the features that you need,
the Yocto project was created to be a flexible and customizable platform for different
hardware architectures and code.

The Yocto project brings a series of tools, methods, and code—allowing you to
choose the CPU that your product targets, the software and hardware components,
and the footprint size—to build a software release based in the Linux operating system.
Among the CPU supported are the Intel Architecture (IA), ARM, PowerPC, and MIPS.

Chapter 2 ■ Native Development

36

Besides the product releases, Yocto also allows you to build tools like system
development kits (SDK) and applications to be used with your product. For example, with
Intel Galileo boards, we’ll cover how to build your own toolchain that contains cross-
compilers for different operating systems.

Once the Yocto project is established with the configuration and components, when
new components must be added or removed, or even if a new product must be created
based in a legacy one that is supported by Yocto, everything will be easier because your
product is reusable.

The Yocto project is maintained by the Linux Foundation, meaning that your product
will be independent of any vendor or company. Companies like Intel, Dell, Mindspeed,
Wind River, Mentor Graphics, Panasonic, and Texas Instruments, among others,
participate in the Yocto project.

Yocto and this Book
To understand all the details regarding the Yocto project, another book dedicated
exclusively to Yocto would be necessary, because in the same manner that Yocto is
powerful, it is extensive—with a lot of details involved.

In this chapter specifically, some basic concepts regarding Yocto are explained so
that you understand the build process in an Intel Galileo and Intel Quark context.

Instead of executing a bunch of commands to have your builds done without any
idea of what is going on, this section brings a minimal overview about how the build
process works and what the messages on your computer monitor that appear during the
build mean.

If you are interested in understanding Yocto more deeply, it is recommended
that you access the Yocto’s documentation at https://www.yoctoproject.org/
documentation and the manual at http://www.yoctoproject.org/docs/current/
ref-manual/ref-manual.html.

Poky
Poky is the name given to the build system in a Yocto project. Poky depends on a task
executor and scheduler called the bitbake tool.

Bitbake executes all the steps of the build process, based in a group of configuration
files and metadata. Basically, bitbake parses and runs several shell scripts and the Python
code running all the compilations. If you are a regular C/C++ developer, you usually have
dependences of makefiles that were processed having the compilers invoked when you
ran the good old make command. Imagine that you have a complex project with different
software components and you need to run the make for each of them. Bitbake in a Yocto
project context might be considered the “global make command,” but you will definitely
not use any make commands because bitbake will invoke all of them for you.

https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html

Chapter 2 ■ Native Development

37

The metadata defines which components to build, the components version, and how
to build each of them. The metadata can be broken into three individual parts:

•	 Configuration files: Bitbake based in configuration files (.conf)
that holds the global definition of variables, the compilation flags,
where libraries and applications must be placed, the machine
architecture to be used, and so forth.

•	 Bitbake classes: The bitbake classes, is also known as bbclasses,
are defined in a file with the .bbclass extension. Mostly, the
heavy things during the build are done with the definitions in
these files, like how the RPM packages are generated, how the
root file system is created, and so forth.

•	 Recipes: The recipes are the files with .bb extensions and define
the individual pieces of the software to be built, the packages
that must be included, where and how to obtain source code and
patches, the dependencies, which features and definitions you
want to enable in a source, and others.

Perhaps these definitions sound a little complicated for a build system, but they are
the magic key to making the system flexible, even if it sounds overengineered. However,
in order to better understand how Poky works, and the build system in general, let’s build
an Intel Galileo image and discuss step by step what’s going on during the procedure.

Figure 2-1 was created by a Yocto project team and represents the Yocto build
system flow.

Figure 2-1.  The Yocto build system flow

Chapter 2 ■ Native Development

38

Figure 2-1 shows how the Yocto build process works. It warrants a few paragraphs to
explain each step.

Along with input files and data, the user (User Configuration), policy (Policy
Configuration), and machine configurations (Machine BSP Configuration) are loaded
and the metadata files are parsed (Metadata .bb + patches).

The build process starts downloading the components from remote repositories,
fetching local packages, HTTPS, web sites, FTP sites, and so on, as shown in the Source
Mirror(s).

Once all the necessary code is fetched to the working area (Source Fetching), the
necessary patches are applied (Path Application) and the configurations are applied
(Configuration/Compile/Autoreconf) based on the information retrieved from the
input files and data.

Then thousands of software code starts to compile and the output files goes to a
staging area (output analysis) until the expected packages are created (.rpm, .deb, or
.ipk). You will use the IPK files in this book.

Some sanity tests are done during the generation of output files (QA tests) until all
the necessary packages are created and fed (package feeds) to generate the final output
images (Image and Application Development SDK).

Note that you will need an Internet connection, because lots of code will be
downloaded to complete the build process.

The Build System Tree at a Glance
In the next section you will learn how to download metafiles and Poky to build Intel
Galileo images and your toolchain. Before building and executing a series of instructions,
it would be interesting to have an overview of how the files are organized in the Poky tree
and the Intel Galileo metafiles.

Figure 2-2 (left) shows the code structure that you will see when you download the
code necessary to build an Intel Galileo and the toolchain.

Chapter 2 ■ Native Development

39

As you can see, there is a folder called poky that contains the basic structure of a
Yocto build system. For example, in the poky directory there is a bitbake directory that
contains the bitbake binary tool and other utilities, as shown in Figure 2-2 (right), as
well as some directories starting with meta* prefix. Each meta* directory is, in fact, a layer
containing metadata—in other words, recipes, classes, and configuration files.

On top of the poky directory are other layers, like meta-clanton-bsp, meta-clanton-
distro, meta-intel, and meta-oe, which, of course, have their respective recipes, classes,
and configuration files, as well as any other metadata.

What defines which layers will in fact be part of compilation is a file called bblayers.conf
in the yocto_build/conf directory shown in Listing 2-1.

Figure 2-2.  The Poky and the layers (left) and bitbake tool (right)

Chapter 2 ■ Native Development

40

Listing 2-1.  bblayers.conf

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"
 
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/poky/meta \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/poky/meta-yocto \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/poky/meta-yocto-bsp \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/meta-intel \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/meta-oe/meta-oe \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/meta-clanton-distro \
 /home/mcramon/BSP_1.0.4_T/meta-clanton_v1.0.1/meta-clanton-bsp \
 "
 

It is time to explore the tree a bit more and check out recipe, configuration,
and class files.

An Example of a Recipe (.bb)

Let’s look at a recipe file, choose the valid layers, and search for one. For example, let’s
suppose you chose the meta layer; if you explore this layer a little, you will find very
interesting recipes, like the busybox_1.20.2.bb recipe shown in Figure 2-3(a).

Figure 2-3.  Examples of recipe (a), configuration (b), and class files (c)

Chapter 2 ■ Native Development

41

Open the busybox recipe and you will see a code structure similar to the one shown
in Listing 2-2.

Listing 2-2.  busybox_1.20.2.bb

require busybox.inc
PR = "r7"
 
SRC_URI = "http://www.busybox.net/downloads/busybox-${PV}.tar.
bz2;name=tarball \
 file://B921600.patch \
 file://get_header_tar.patch \
 file://busybox-appletlib-dependency.patch \
 file://run-parts.in.usr-bin.patch \
 file://watch.in.usr-bin.patch \
...
...
...
 
 file://inetd"
 
SRC_URI[tarball.md5sum] = "e025414bc6cd79579cc7a32a45d3ae1c"
SRC_URI[tarball.sha256sum] =
"eb13ff01dae5618ead2ef6f92ba879e9e0390f9583bd545d8789d27cf39b6882"
 
EXTRA_OEMAKE += "V=1 ARCH=${TARGET_ARCH} CROSS_COMPILE=${TARGET_PREFIX}
SKIP_STRIP=y"
 

Note that the recipes contain a SRC_URI variable that defines the URLs to download
busybox, and respective md5 and sha256 checksum to make sure that the package
downloaded was the one expected. The EXTRA_OEMAKE only adds compilation flags during
the build.

Each recipe is parsed and the Yocto build process assumes some functions during
the build processing. Some functions are listed next; they can be customized or simply
excluded according to the configurations:

•	 do_fetch

•	 do_unpack

•	 do_patch

•	 do_configure

•	 do_compile

•	 do_install

•	 do_package

http://www.busybox.net/downloads/busybox-$%7bPV%7d.tar

Chapter 2 ■ Native Development

42

Each function is related to the Yocto build flow, as explained earlier, and when you
run the build, you will see these functions displayed on your computer, so you will have
an idea of what the build process stage is for each package.

The whole list of functions that might be executed during the compilation
is specified in Chapter 8 of the Yocto Project Reference Manual at http://www.
yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#ref-tasks.

An Example of a Configuration File (.conf)

At this point, you have a good idea about what a recipe is, so let’s look at an example of a
configuration file.

Configuration files are usually under a folder called conf in a layer. A good example
is the configuration filename clanton.conf that belongs to the meta-clanton-bsp layer
under the /conf/machine folder. The content of this file is shown in Listing 2-3 and
Figure 2-3(b).

Listing 2-3.  clanton.conf

#@TYPE: Machine
#@NAME: clanton
 
#@DESCRIPTION: Machine configuration for clanton systems
 
PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto-clanton"
PREFERRED_VERSION_linux-yocto-clanton ?= "3.8%"
 
require conf/machine/include/ia32-base.inc
include conf/machine/include/tune-i586.inc
 
#Avoid pulling in GRUB
MACHINE_ESSENTIAL_EXTRA_RDEPENDS = ""
 
MACHINE_FEATURES = "efi usb pci"
 
SERIAL_CONSOLE = "115200 ttyS1"
#SERIAL_CONSOLES = "115200;ttyS0 115200;ttyS1"
 
EXTRA_IMAGEDEPENDS = "grub"
PREFERRED_VERSION_grub = "0.97+git%"
 

In this configuration file, you can see the definitions for clanton machines, such as
the serial port speed and the TTY devices to be used as serial console, the kernel name
and version, and the drivers supported, like EFI, USB, and PCI.

http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#ref-tasks
http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#ref-tasks

Chapter 2 ■ Native Development

43

An Example of a Class File (.bbclass)

The third example of a metadata component is the class file. They keep under a folder
called classes with a .bbclass extension. As an example, using the meta layer, search for
the class file bin_package.bbclass, as in Listing 2-4 and shown in Figure 2-3(c).

Listing 2-4.  bin_package.bbclass

#
ex:ts=4:sw=4:sts=4:et
-*- tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*-
#
Common variable and task for the binary package recipe.
Basic principle:
* The files have been unpacked to ${S} by base.bbclass
* Skip do_configure and do_compile
* Use do_install to install the files to ${D}
#
Note:
The "subdir" parameter in the SRC_URI is useful when the input package
is rpm, ipk, deb and so on, for example:
#
SRC_URI = "http://foo.com/foo-1.0-r1.i586.rpm;subdir=foo-1.0"
#
Then the files would be unpacked to ${WORKDIR}/foo-1.0, otherwise
they would be in ${WORKDIR}.
#
 
Skip the unwanted steps
do_configure[noexec] = "1"
do_compile[noexec] = "1"
 
Install the files to ${D}
bin_package_do_install () {
 # Do it carefully
 [-d "${S}"] || exit 1
 cd ${S} || exit 1
 tar --no-same-owner --exclude='./patches' --exclude='./.pc' -cpf - . \
 | tar --no-same-owner -xpf - -C ${D}
}
 
FILES_${PN} = "/"
 
EXPORT_FUNCTIONS do_install
 

http://foo.com/foo-1.0-r1.i586.rpm;subdir=foo-1.0

Chapter 2 ■ Native Development

44

This bbclass file provides information on what must be done for all meta layers
that make usage of binary package recipes, and in this cases skips the configure
(do_configure) and compile (do_compile) procedures indexing noexec to 1, but takes
action during the package installation (do_install).

Creating Your Own Intel Galileo Images
After a small introduction on how the Yocto build system works, it is time to create your
own releases using Poky. It is essential to prepare your computer to run the build system,
because a series of requirements are necessary to make the build system functional.

Preparing Your Computer
The first thing to do is prepare your computer to be able to build. With Yocto, the system
basically runs on Linux, but if you have Windows or Mac OSX, I really recommend that
you install a virtual machine, such as VMWare (http://www.vmware.com) or Oracle
Virtual Box (https://www.virtualbox.org), and install one of the following Linux
distributions:

Ubuntu 12.04 (LTS)•	

Ubuntu 13.10•	

Ubuntu 14.04 (LTS)•	

Fedora release 19 (Schrödinger’s Cat)•	

Fedora release 20 (Heisenbug)•	

CentOS release 6.4•	

CentOS release 6.5•	

Debian GNU/Linux 7.0 (Wheezy)•	

Debian GNU/Linux 7.1 (Wheezy)•	

Debian GNU/Linux 7.2 (Wheezy)•	

Debian GNU/Linux 7.3 (Wheezy)•	

Debian GNU/Linux 7.4 (Wheezy)•	

Debian GNU/Linux 7.5 (Wheezy)•	

Debian GNU/Linux 7.6 (Wheezy)•	

openSUSE 12.2•	

openSUSE 12.3•	

openSUSE 13.1•	

http://www.vmware.com/
https://www.virtualbox.org/

Chapter 2 ■ Native Development

45

If you have a recent version of a Linux operating system, but it is not listed in the
previous distribution list, it is recommended to check that this list is not outdated. To check
the most recent distributions supported by Yocto, read the “Supported Linux Distribution”
section in the Yocto Reference Project Manual at http://www.yoctoproject.org/
docs/1.7/ref-manual/ref-manual.html#detailed-supported-distros.

Some people are able to compile successfully on Mac OSX, but there are so many
steps necessary to make this possible that having a virtual machine is the quickest
solution.

This book shows a complete build process using Linux Ubuntu 12.04.04. If you
have a computer or a virtual machine with Ubuntu installed, and you want to check the
version, you can run the following command in a terminal shell:
 
mcramon@ubuntu: ~/ $ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 12.04.4 LTS
Release: 12.04
Codename: precise
 

The next step requires the installation of some packages used by bitbake during
the build process. The easiest way to install all the dependences is to run the following
command:
 
mcramon@ubuntu:~/$ sudo apt-get install subversion libcurl4-openssl-dev
uuid-dev autoconf texinfo libssl-dev libtool iasl bitbake diffstat gawk
chrpath openjdk-7-jdk connect-proxy autopoint p7zip-full build-essential
gcc-multilib vim-common gawk wget git-core
 

There is an important note regarding the IASL that is a compiler used to support
ACPI (Advanced Configuration and Power Interface). When Intel included support to
run Windows on Intel Galileo boards, a new power management configuration was
created, and, consequently, the IASL compiler had to be updated to attend the ACPI 5.0
specification. Thus, when you install the IASL (one of the components) in the previous
command, you need to make sure it supports ACPI revision 5.0 or greater.

If you are using Ubuntu 14, the repositories already point to a version of IASL that
supported ACPI 5.0; however, if you have Ubuntu 12, you will probably have problems,
because the repositories point to the IASL version that only supports ACPI revision 4.0
and will have problems compiling the UEFI packages. So, if you have Ubuntu 12, the
easiest way to install the correct IASL without upgrading your OS or pointing to the
repositories of version 14 is to install from a source with the following commands:
 
mcramon@ubuntu:~/tools$ sudo apt-get remove iasl
mcramon@ubuntu:~/tools$ sudo apt-get install libbison-dev flex
mcramon@ubuntu:~/tools$ mkdir iasl
mcramon@ubuntu:~/tools$ cd iasl/
mcramon@ubuntu:~/tools/iasl$ git clone git://github.com/acpica/acpica.git
mcramon@ubuntu:~/tools$ cd acpica
mcramon@ubuntu:~/tools/acpica$ make
 

http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#detailed-supported-distros

Chapter 2 ■ Native Development

46

After the make command compiles and links everything, the output files will be in the
.../generate/unix/bin folder.
 
mcramon@ubuntu:~/tools/acpica$ cd ./generate/unix/bin
mcramon@ubuntu:~/tools/iasl/acpica/generate/unix/bin$./iasl
Intel ACPI Component Architecture
ASL+ Optimizing Compiler version 20141107-64 [Dec 12 2014]
Copyright (c) 2000 - 2014 Intel Corporation
 
Supports ACPI Specification Revision 5.1
 

The previous command gives you an installation of IASL that supports ACPI 5.1 and,
of course, it is enough to meet the requirements of ACPI 5.0 because it points to the latest
release of IASL repositories in https://github.com/acpica/acpica.

Next, just create a link in /usr/bin/iasl pointing to your IASL, compiled manually:
 
mcramon@ubuntu:~/sudo ln -s <YOUR IASL PATH> /usr/bin/iasl
 

For example:
 
mcramon@ubuntu:~/sudo ln -s /home/mcramon/tools/iasl/acpica/generate/unix/
bin/iasl /usr/bin/iasl
 

After you install all the packages, your machine is able to run the Yocto builds and
you need to follow some steps to create your images, as commented in the next section.

The SPI vs. SD Card Images
The Intel Galileo images are based in Linux 3.8 and there are two possible images
(targets): the SPI image or the SD card image.

The SPI image is an image that fits on Intel Galileo SPI flash memory. It contains the
very basic software, but allows running the sketches (Arduino programs) and contains
some basic utilities, like busybox.

The SD card image must be stored in a micro SD card with a maximum capacity of
32GB and that allows booting Intel Galileo from it. This image contains a powerful variety
of software, such as Python, node.js, and the drivers to support Intel WiFi and Bluetooth
cards, among others.

Both images have the same procedure to build, changing only the target name in the
bitbake command. However, with the SD images, you just need to copy some of the build
output files in the micro SD cards; on the other hand, the SPI images require additional
steps and can be created as capsule files or binary files, which will be discussed later.

The next sections explain how to build Intel Galileo and toolchain images.

https://github.com/acpica/acpica

Chapter 2 ■ Native Development

47

Building Intel Galileo Images
There are some steps that must be followed in order to prepare all the metafiles necessary
to build such images. The instructions shown in this chapter are related to release 1.0.4.
(I can guarantee that the process for 1.0.5 will be simpler because you will not need to
worry about downloading and applying patches manually. So, if you are reading this book
and a release newer than 1.0.4 is available, you will not need to follow all of these steps,
especially the manual application of patches.) The steps are outlined here:

1.	 Create a directory where your build will be placed.
 
mcramon@ubuntu:~/$ mkdir BSP_1.0.4_build
 

2.	 Download the BSP patches. Access the download center
at https://downloadcenter.intel.com/Detail_Desc.
aspx?DwnldID=24355 and read the instructions on how to
compile the BSP. With 1.0.4, there are instructions to access
the GitHub link at https://github.com/01org/Galileo-
Runtime and download the file https://github.com/01org/
Galileo-Runtime/archive/1.0.4.tar.gz. Next, decompress
the downloaded file:
 
mcramon@ubuntu:~/$ wget https://github.com/01org/Galileo-
Runtime/archive/1.0.4.tar.gz
mcramon@ubuntu:~/$ tar -xf Galileo-Runtime-1.0.4.tar.gz
mcramon@ubuntu:~/$ cd Galileo-Runtime-1.0.4
 

3.	 Decompress the patches.
 
mcramon@ubuntu:~/$ tar -xvf patches_v1.0.4.tar.gz
patches_v1.0.4/
patches_v1.0.4/.DS_Store
patches_v1.0.4/meta-clanton.patches/
patches_v1.0.4/._patch.meta-clanton.sh
patches_v1.0.4/patch.meta-clanton.sh
patches_v1.0.4/._patch.Quark_EDKII.sh
patches_v1.0.4/patch.Quark_EDKII.sh
patches_v1.0.4/._patch.sysimage.sh
patches_v1.0.4/patch.sysimage.sh
patches_v1.0.4/Quark_EDKII.patches/
patches_v1.0.4/sysimage.patches/
patches_v1.0.4/sysimage.patches/.DS_Store
patches_v1.0.4/sysimage.patches/sysimage_v1.0.1+1.0.4.patch
patches_v1.0.4/Quark_EDKII.patches/.DS_Store
patches_v1.0.4/Quark_EDKII.patches/Quark_EDKII_v1.0.2+ACPI_for_
Windows.patch

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24355
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24355
https://github.com/01org/Galileo-Runtime
https://github.com/01org/Galileo-Runtime
https://github.com/01org/Galileo-Runtime/archive/1.0.4.tar.gz
https://github.com/01org/Galileo-Runtime/archive/1.0.4.tar.gz
https://github.com/01org/Galileo-Runtime/archive/1.0.4.tar.gz
https://github.com/01org/Galileo-Runtime/archive/1.0.4.tar.gz

Chapter 2 ■ Native Development

48

patches_v1.0.4/meta-clanton.patches/.DS_Store
patches_v1.0.4/meta-clanton.patches/meta-clanton.post-patch.init.
patch
patches_v1.0.4/meta-clanton.patches/meta-clanton_v1.0.1+quark-
init.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/
patches_v1.0.4/meta-clanton.patches/post-setup.patches/.DS_Store
patches_v1.0.4/meta-clanton.patches/post-setup.patches/1.usb_
improv_patch-1.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/2.GAL-193-
clloader-1.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/3.GAL-199-
start_spi_upgrade-1.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/4.MAKER-
222-Sketch_download_unstable-5.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/GAL-118-
USBDeviceResetOnSUSRES-2.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/patch.sh
patches_v1.0.4/meta-clanton.patches/post-setup.patches/uart-
1.0.patch
patches_v1.0.4/meta-clanton.patches/post-setup.patches/uart-
reverse-8.patch
 

If you pay attention to the files extracted, you will realize that there are patches for
several different repositories, such as meta-clanton, UEFI firmware, and native BSP code.
The usage of these patches will be discussed according the steps to build the BSP or to
generate the Intel Galileo Images.

4.	 Extract the meta-clanton.

At this point you have some tar.gz files extracted in your directory, such as the
directory for SPI flash tools, the firmware based on Intel EDKII, and the sysimage
templates; but what really matters at this point is the meta-clanton directory that must be
decompressed. 

  
mcramon@ubuntu:~/$ tar -zxvf meta-clanton_v1.0.1.tar.gz
Galileo-Runtime-1.0.4/
Galileo-Runtime-1.0.4/Quark_EDKII_v1.0.2.tar.gz
Galileo-Runtime-1.0.4/README.txt
Galileo-Runtime-1.0.4/grub-legacy_5775f32a+v1.0.1.tar.gz
Galileo-Runtime-1.0.4/meta-clanton_v1.0.1.tar.gz
Galileo-Runtime-1.0.4/patches_v1.0.4.tar.gz
Galileo-Runtime-1.0.4/quark_linux_v3.8.7+v1.0.1.tar.gz
Galileo-Runtime-1.0.4/spi-flash-tools_v1.0.1.tar.gz
 

Alternatively, you can decompress all files, if you want, by running the following
command:
 

Chapter 2 ■ Native Development

49

mcramon@ubuntu:~/$ for file in $(ls *.tar.gz); do tar -zxvf
$file;done

 
Enter the decompressed meta-clanton directory, and then observe the files and

directories that you have.
 
mcramon@ubuntu:~/$ cd meta-clanton_v1.0.1/
mcramon@ubuntu:~/$ ls
LICENSE meta-clanton-bsp meta-clanton-distro README setup
setup.sh
 

Note that you have the meta-clanton layer, but the main build processor Poky is not
present and you need to fetch it.

5.	 Apply the meta-clanton patches. Return to the previous
directory and run the meta-clanton patches with following
command:
 
mcramon@ubuntu:~/$ cd ..
mcramon@ubuntu:~/$./patches_v1.0.4/patch.meta-clanton.sh
 

This patch fetches new metafiles and the Poky, and then applies code patches.
Internally, the patch.meta-clanton.sh script calls a second script named setup.sh

that downloads the some new metafiles that are included in the meta-clanton directory.
The new metafiles are meta-intel and meta-oe. Also, two new directories were prepared:
poky and yocto_build. This might take some time, depending on the speed of your
Internet connection.

You can check the new files as follows:
 
mcramon@ubuntu:~/$ cd meta-clanton_v1.0.1/
mcramon@ubuntu:~/$ ls
LICENSE meta-clanton-bsp meta-clanton-distro meta-intel
meta-oe poky README setup setup.sh yocto_build
 

At times during the Intel Galileo development, new bugs arise and new fixes
are introduced. The Intel Galileo BSP images lays on Intel Clanton BSP baseline but
the development of two lines run in parallel with some merges of Intel Galileo fixes
sporadically. When new fixes arises before any official Intel Clanton baseline release, then
patches are provided and the Intel Galileo BSP continues independently.

For example, this chapter is based on release 1.0.4, but when you downloaded the
BSP sources, you have notices such as meta-clanton_v1.0.1.tar.gz that mean baseline
1.0.1. In this case, Intel provides patches that must be applied on top of 1.0.1, and once
applied, you have a legitimate source 1.0.4. It is great if there is no patch to be applied,
because the baseline is in sync with previous Intel Galileo fixes.

So, the second action done by patch.meta-clanton.sh is to apply not only code fixes
but also possible recipe files that must be correct; for example, patching a new OpenSSL
code or applying security fixes.

Chapter 2 ■ Native Development

50

Intel is doing its best to replace the patches script with efficient .bbappend files
provided as a source, so that you will not need to apply any patches manually.

6.	 Set the environment variables. After applying all the
patches, it is necessary to set the environment variables and
Poky directly where the build should start. To do this, run the
following commands:
 
mcramon@ubuntu:~/$ cd ./meta-clanton_v1.0.1
mcramon@ubuntu:~/$ source poky/oe-init-build-env yocto_build
 

At the end of this command, your prompt in the terminal shell will be automatically
moved to the yocto_build directory.

7.	 Enable the cache and set the number of threads. This step is
just a recommendation. It is not necessary to follow because
you could start your build; however, these changes will enable
the cache and might make your build a little bit faster.

Open the file .../meta-clanton/yocto_build/conf/local.conf with the text
editor of your preference.

The change is the variable BB_NUMBER_THREADS that represents the maximum number
of threads that your bitbake command will be able to handle. My suggestion is to multiply
the numbers of threads on your computer processor by 2; for example, if your computer
supports 8 threads, you can change this number to 16. If you are using a free version
of virtual machines, check the number of core processors that it allows you to set. For
example, the free version of VMware only allows setting a maximum of four cores, and if
each core of your processor holds one single thread, then BB_NUMBER_THREADS could be 8.

 
BB_NUMBER_THREADS = "12"
 
Still, in yocto.conf you can make the following changes:
 
SSTATE_DIR ?= "/tmp/yocto_cache-sstate"
SOURCE_MIRROR_URL ?= "file:///tmp/yocto_cache/"
INHERIT += "own-mirrors"
BB_GENERATE_MIRROR_TARBALLS = "1"
 
By enabling the cache, if your build is interrupted for some reason, such as a lapse

moment of Internet disconnection, if you re-execute the bitbake command, the build
will not start from scratch because the cache is reused and the code that was previously
downloaded does not need to be downloaded again.

The next step is the compilation itself.

Chapter 2 ■ Native Development

51

8.	 Compile the images. It is time to execute the build process
using the bitbake tool. At this point, you have two possible
images related to Intel Galileo: the SPI image and the SD card
image. To check the name of each target release, type the
command bitbake -s, which brings all the targets supported
by the current configurations: 

mcramon@ubuntu:$ bitbake -s |grep galileo
galileo-target :0.1-r0
image-full-galileo :1.0-r0
image-spi-galileo :1.0-r0
 

The target image-full-galileo creates the SD card image; image-spi-galileo
creates the SPI image; and galileo-target must be ignored because it is not used
anymore.

Then, using bitbake again, you can run the build process for the target you want to
work. For example, for SPI you just need to run this:

 
mcramon@ubuntu:$ bitbake image-spi-galileo

 
All the configurations are checked; the download of the sources, packages, and

patches that compose the software is started; each component is properly set, enabling
and disabling features and software definitions; and finally, everything is compiled and
the images are generated.

During the compilation process, you will be able to see the do_ actions in place of
different recipes, the number of tasks completed and to be completed, and warnings
if the mirrors failed to download the expected code. You do not need to worry about
warnings, because they are an indication that the code failed to be fetched and a different
mirror will be used. You only need to worry if there are errors reported, and in this
case, you need to identify the recipe file and check whether the URL mirrors changed,
which would fix the file, or if you have a generic error like an Internet connection loss or
insufficient space in the device.

Figure 2-4 shows a snapshot of a full image process given after the command
bitbake image-full-galileo is used to create SD card releases. Note that there are 2,924
tasks to be done, but only 190 were executed, which means that this is the beginning
of the compilation. You can also observe some actions in place, such as do_configure,
do_compile, do_patch, and do_unpack, for different recipes.

Chapter 2 ■ Native Development

52

If the compilation is fine, the next step is to check the output files.

9.	 In the end, if everything downloads and is configured,
compiled, and linked, and patches are applied, you should
have the images available in the ...meta-clanton/yocto_
build/tmp/deploy/images directory.

If you created SD card images, you just need to copy the files to your SD card;
otherwise, some additional steps are necessary with SPI images.

The next section explains how to build the toolchain, but if you are excited to test your
release, read the “Booting Intel Galileo with Your Own Images” section in this chapter.

Building and Using the Cross-Compiler Toolchain
It is important to understand how to create the cross-compilers and IPK packages
because some chapters of this book will make use of them, especially in Chapter 7, and, of
course, if you want to create native applications.

The next sections explain how to build the toolchain and how you might generate a
toolchain for different operating systems.

Note that if your intention is only to create images to Intel Galileo boards, then this
section is not mandatory.

Compiling the Toolchain for Different Architectures
If you are a Windows or Mac OSX user, you are probably running the Yocto build using a
virtual machine. At this point, you might be asking if you can create a toolchain for your
native operating system, instead of using virtual machines for everything, including the
toolchain.

Figure 2-4.  bitbake output for full image compilation

Chapter 2 ■ Native Development

53

The answer is yes, and it is very simple to create a toolchain for other architectures,
even if you have a Linux machine, because it is one of the proposals of the Yocto build
system.

To make such a change, it is necessary to open the file .../meta-clanton/yocto_
build/conf/local.conf and add the variable SDKMACHINE followed by a string that
describes the machine architecture designed to the SDK build.
 
SDKMACHINE = "i386-darwin"
 
BB_NUMBER_THREADS = "12"
 
PARALLEL_MAKE = "-j 14"
 
MACHINE = "clanton"
DISTRO ?= "clanton-tiny"
EXTRA_IMAGE_FEATURES = "debug-tweaks"
USER_CLASSES ?= "buildstats image-mklibs image-prelink"
PATCHRESOLVE = "noop"
CONF_VERSION = "1"
 

Basically, the strings for different operating systems are shown in Table 2-1.

Table 2-1.  Machine Architecture Definition

String Target Architecture

i586 Linux, 32-bit

x86_64 Linux, 64-bit

i386-darwin OSX

i686-mingw32 Windows, 32- and 64-bit

If the SDKMACHINE is not explicitly declared, then the toolchain will assume the
computer architecture that runs the Yocto build.

You need to use the text editor of your preference, or simply change the machine
using a command line. For example, if you want to specify the target as 32-bit Linux, you
can run the following:
 
mcramon@ubuntu:~/$ cd meta-clanton_v1.0.1/yocto_build
mcramon@ubuntu:~/$ echo 'SDKMACHINE = "i586"' >> conf/local.conf
 

The next sections discuss how to build and install the toolchains for different
operating systems.

Chapter 2 ■ Native Development

54

Building the Toolchains
The generations of toolchains require the same steps mentioned in the “Building Intel
Galileo Images” section; however, the bitbake command is different and additional layers
must be downloaded.

Note that it is always recommended to check any possible changes in the process—
how the toolchains are generated in case this book becomes outdated. In this case, consult
the Quark BSP Build Guide, which you can access at http://www.intel.com/content/
dam/www/public/us/en/documents/guides/galileo-quark-x1000-bsp-guide.pdf.

The instructions in this section generate the toolchain based on the uclibc library,
because it is the default library set in the metafiles. If you are interested in creating the
toolchains based in eglibc, you need to read Chapter 7, specifically the “Preparing the
BSP Software Image and Toolchain” section.

The generation of toolchains is different for Linux, Windows, and OSX, as you will
read in the following instructions.

Linux

The following is the command to generate the toolchain for 32-bit Linux:
 
mcramon@ubuntu:~/$ cd ./meta-clanton_v1.0.1
mcramon@ubuntu:~/$ source poky/oe-init-build-env yocto_build
mcramon@ubuntu:~/$ echo 'SDKMACHINE = "i586"' >> conf/local.conf
mcramon@ubuntu:~/$ bitbake meta-toolchain
 

If you want to generate for 64-bit Linux, you need to change the SDKMACHINE to
x86_64. Alternatively, you can replace the command bitbake meta-toolchain with
bitbake image_full –c populate_sdk and the result will be the same.

OSX

OSX requires you have a legitimate Mac computer with OSX 10.8 or later and with Xcode
5.1.0 or later installed. Initially, using your Mac computer, perform the following steps:

1.	 Go to the App Store and install Xcode 5.1.0 or later.

2.	 Install the command-line development tools using
Preferences ➤ Downloads and choose command-line tools.

3.	 Using the terminal shell, create the file OSX-sdk.zip with
following commands:
 
$ mkdir ~/Desktop/OSX-sdk
$ cd ~/Desktop/OSX-sdk
$ ditto `xcrun --sdk macosx10.8 --show-sdk-path` .
$ cd ..
$ zip -yr OSX-sdk OSX-sdk
 

http://www.intel.com/content/dam/www/public/us/en/documents/guides/galileo-quark-x1000-bsp-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/galileo-quark-x1000-bsp-guide.pdf

Chapter 2 ■ Native Development

55

4.	 Copy the OSX-sdk.zip to a directory in your Linux virtual
machine. The following are the commands to create the OSX
toolchain:
 
mcramon@ubuntu:~/$ cd ./meta-clanton_v1.0.1
mcramon@ubuntu:~/$ sed -i 's|setup/gitsetup.py -c setup/$1.cfg -w
mcramon@ubuntu:~/$ sed -i 's|setup/gitsetup.py -c setup/$1.cfg -w
$1|setup/gitsetup.py -c setup/$1.cfg -w $1 --depth=1|' setup/
gitsetup.py mcramon@ubuntu:~/$./setup.sh
mcramon@ubuntu:~/$ git clone git://git.yoctoproject.org/meta-darwin
mcramon@ubuntu:~/$ cd meta-darwin ; git checkout
03b7dd85732838d78e4879332b1cc005dae25754 ; cd ..
mcramon@ubuntu:~/$ (cd poky && patch -p1) < meta-darwin/oecore.patch
mcramon@ubuntu:~/$ mv <YOUR DIRECTORY HERE>/OSX-sdk.zip meta-
darwin/recipes-devtools/osx-runtime/files darwinpath="$(pwd)/
meta-darwin"
mcramon@ubuntu:~/$ echo 'SDKMACHINE = "i386-darwin"' >> yocto_
build/conf/local.conf
mcramon@ubuntu:~/$ echo "BBLAYERS += \"$darwinpath\"" >> yocto_
build/conf/bblayers.conf
mcramon@ubuntu:~/$ source poky/oe-init-build-env yocto_build
mcramon@ubuntu:~/$ bitbake meta-toolchain

Windows

For Windows, the commands are the same for Windows, 64 or 32 bits; however, a
sequence of two bitbakes is required in addition to the extra metafiles.
 
mcramon@ubuntu:~/$ sed -i 's|setup/gitsetup.py -c setup/$1.cfg -w $1|setup/
gitsetup.py -c setup/$1.cfg -w $1 --depth=1|' setup/gitsetup.py
mcramon@ubuntu:~/$./setup.sh
 
mcramon@ubuntu:~/$ git clone -b dylan git://git.yoctoproject.org/meta-mingw
mcramon@ubuntu:~/$ (cd poky && patch -p1) < meta-mingw/oecore.patch
 
mcramon@ubuntu:~/$ mingwpath="$(pwd)/meta-mingw"
mcramon@ubuntu:~/$ echo 'SDKMACHINE = "i686-mingw32"' >> yocto_build/conf/
local.conf
mcramon@ubuntu:~/$ echo "BBLAYERS += \"$mingwpath\"" >> yocto_build/conf/
bblayers.conf
 
mcramon@ubuntu:~/$ cd $WORKSPACE/meta-clanton_v1.0.1poky
mcramon@ubuntu:~/$ wget http://git.yoctoproject.org/cgit.cgi/poky/patch/
meta/classes/sstate.bbclass?id=4273aa4287ecd36529f2d752c76ab8d09afc33c3 -O
sstate.bbclass.patch
git am sstate.bbclass.patch
 

http://git.yoctoproject.org/cgit.cgi/poky/patch/meta/classes/sstate.bbclass?id=4273aa4287ecd36529f2d752c76ab8d09afc33c3
http://git.yoctoproject.org/cgit.cgi/poky/patch/meta/classes/sstate.bbclass?id=4273aa4287ecd36529f2d752c76ab8d09afc33c3

Chapter 2 ■ Native Development

56

mcramon@ubuntu:~/$ cd $WORKSPACE/meta-clanton_v1.0.1
mcramon@ubuntu:~/$ source poky/oe-init-build-env yocto_build
mcramon@ubuntu:~/$ bitbake gcc-crosssdk-initial -c cleansstate
mcramon@ubuntu:~/$ bitbake meta-toolchain

The Output Files

The output files will be in the .../meta-clanton_v1.0.1/yocto_build/tmp/deploy/
sdk directory, while the ipk packages will be in the directory .../meta-clanton_v1.0.1/
yocto_build/tmp/deploy/ipk directory.

The output filename depends on whether your computer is 32 or 64 bits, the
architecture that the toolchain is designated for (we will discuss later), and the uclibc or
eglic library that the image is based on. In the end, you will have just a single script file;
however, it is a big file at around 260MB.

For example, if you compile in a 64-bit Linux machine with an Intel processor, the
output filename is clanton-tiny-uclibc-x86_64-i586-toolchain-1.4.2.sh.

The next sections discuss how to install and test the toolchains.

Installing the Cross-Compilers
The installation of the toolchain just requires you to execute the script created and choose
a destination folder, as shown:
 
mcramon@ubuntu:~/toolchain$./clanton-tiny-uclibc-x86_64-i586-toolchain-1.4.2.sh
Enter target directory for SDK (default: /opt/clanton-tiny/1.4.2):
You are about to install the SDK to "/opt/clanton-tiny/1.4.2". Proceed[Y/n]?Y
[sudo] password for mcramon:
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.
 

The shell script inflates the toolchain in the directory chosen, and all programs that
make part of the toolchain are promptly accommodated.

The “Creating a Hello World!” section in this chapter brings a practical usage of the
toolchain.

Creating a Hello World!
This section requires you to have built and properly installed the toolchain in your
computer.

If you enter the toolchain directory chosen during the installation, you will notice
many binary files, including the compilers and directories, but initially what matters is a
file that starts with environment-setup-*; for example, in my setup I have the file named
as environment-setup-i586-poky-linux-uclibc.

Chapter 2 ■ Native Development

57

This file contains a lot of variables—such as CC, CXX, CPP, AR, and NM—that must be
exported to your computer shell. They are used to compile, link, and archive your native
programs with the toolchain, so primarily you need to make this variable part of the
development environment, sourcing it as follows:
 
mcramon@ubuntu:/opt/clanton-tiny/1.4.2$ source environment-setup-i586-poky-
linux-uclibc
 

For example, you will be able to compile a problem with $(CC) -c $(CFLAGS)
$(CPPFLAGS) since CC points to the C compilers, CFLAGS to the C compiler flags, and
CPPFLAGS to the C++ compiler flags. If you check some of these variables after sourcing
them, you will see something like this:
 
mcramon@ubuntu:/opt/clanton-tiny/1.4.2$ echo $CC
i586-poky-linux-uclibc-gcc -m32 -march=i586 --sysroot=/opt/clanton-
tiny/1.4.2/sysroots/i586-poky-linux-uclibc
mcramon@ubuntu:/opt/clanton-tiny/1.4.2$ echo $CFLAGS
-O2 -pipe -g -feliminate-unused-debug-types
mcramon@ubuntu:/opt/clanton-tiny/1.4.2$ echo $CXXFLAGS
-O2 -pipe -g -feliminate-unused-debug-types -fpermissive
 

Listing 2-5 brings a simple Hello World program written in C, which is present in the
code folder of this chapter.

Listing 2-5.  HelloWorld.c

#include <stdio.h>
int main(int argc, char const* argv[])
{
 printf("Hello, World! This is Intel Galileo!\n");
 return 0;
}
 

Copy this program to your computer and compile it using the variables you exported.
 
mcramon@ubuntu:/ ${CC} ${CFLAGS} HelloWorld.c -o HelloWorld
 

You should have the executable HelloWorld created using the cross-compiler. Just
copy this file to a micro SD card formatted using FAT or FAT32. If you do not know how to
format the micro SD card, read the “Boot from SD Card Image" section of this chapter for
instructions.

Insert the micro SD card on your Intel Galileo and boot the board connecting the
power supply. Also connect the serial cables, as explained in Chapter 1, and open a Linux
terminal shell.

Chapter 2 ■ Native Development

58

Then locate the micro SD card mounted to the /media/mmcblk0p1 partition, and
execute the HelloWorld, as shown:
 
root@clanton:/# cd /media/mmcblk0p1/
root@clanton:/media/mmcblk0p1# ls
HelloWorld
root@clanton:/media/mmcblk0p1# ./HelloWorld
Hello, World! This is Intel Galileo!
 

If you see the output message, it means that your toolchain is functional and
generating the binaries correctly. There are multiples ways to transfer your executable
to the board, using either WiFi, Ethernet, a pen drive, or a micro SD card. For more
information, read the “Transferring Files Between Intel Galileo and Computers” section in
Chapter 5.

You can also create a simple makefile for this HelloWorld by simply using the
variables exported by the environment-setup-i586-poky-linux-uclibc as a base. For
example, Listing 2-6 shows a makefile for the HelloWorld program.

Listing 2-6.  Makefile

SHELL = /bin/bash
TARGET_NAME = i586-poky-linux-uclibc
DIST = clanton-tiny
CC = $(TARGET_NAME)-gcc -m32 -march=i586 --sysroot=/opt/$(DIST)/1.4.2/sysr
oots/$(TARGET_NAME)
CFLAGS = -O2 -pipe -g -feliminate-unused-debug-types
OUTPUT_FILE = HelloWorld
 
all: target
 
target: $(patsubst %.c,%.o,$(wildcard *.c))
 $(CC) $(CFLAGS) $^ -o $(OUTPUT_FILE)
 
clean:
 rm -f $(TARGET_BIN) *.o $(OUTPUT_FILE)
 

The makefile created is designated to target i586-poky-linux-uClibc, as stored in
the variable TARGET_NAME and considers the toolchain installed in the /opt/clanton-tiny
directory according the CC variable. So, if you create the toolchain for a different target, or
used a different directory installation, it is necessary to adapt this makefile.

The makefile also brings three commands: clean to clean all the object files and the
output file named as HelloWorld, because it is the value in the OUTPUT_FILE variable; all
and target do the same thing—in other words, compile the C programs, invoking the
compiler pointed by CC and CFLAGS.

To create a HelloWorld, all you need to do is type make.
 

Chapter 2 ■ Native Development

59

mcramon@ubuntu:~/native$ make
i586-poky-linux-uclibc-gcc -m32 -march=i586 --sysroot=/opt/clanton-
tiny/1.4.2/sysroots/i586-poky-linux-uclibc -O2 -pipe -g -feliminate-unused-
debug-types -c -o HelloWorld.o HelloWorld.c
i586-poky-linux-uclibc-gcc -m32 -march=i586 --sysroot=/opt/clanton-
tiny/1.4.2/sysroots/i586-poky-linux-uclibc -O2 -pipe -g -feliminate-unused-
debug-types HelloWorld.o -o HelloWorld
 

The next section talks about debugging native applications.

Debugging Native Applications
It is possible to debug native application and kernel modules using GDB, Eclipse,
and JTAG tools. This book focuses on Arduino projects, so all debugging methods are
concentrated in the Intel Arduino IDE, and not in native applications or kernel contexts.
In the scope of this book, it is important to know how build systems work, how to build
and compile native applications, and how to generate the cross-compilers, because these
features will be used in the following chapters, especially when you work with OpenCV
and V4L2 in Chapter 7.

However, if you are interested in learning how to debug native applications, Intel
provides a very good tutorial about how to use Eclipse with Intel Galileo and Intel Edison
in the developer zone. This tutorial can be accessed at https://software.intel.com/
en-us/getting-started-for-c-c-plus-plus-eclipse-galileo-and-edison.

For kernel debugging, GDB, and JTAG enabling using openOCD, it is recommended
that you read the Source Level Debugging using OpenOCD/GDB/Eclipse on Intel Quark
SoC X1000 manual, present in the manuals folder of this chapter, or you can access it at
https://communities.intel.com/docs/DOC-22203.

The next section explains how to make Intel Galileo boot with the images that you
created with poky.

Booting Intel Galileo with Your Own Images
As explained earlier, you have two image targets related to Intel Galileo—the SPI card
image and the SD card image. The procedures to make Intel Galileo boot using these
images differ and must be followed as directed in the following sections.

Booting from SD Card Images
The SD card release only requires that you copy some of the output files to a micro SD
card, insert it in Intel Galileo, and then power-on the board.

Preparing the Micro SD Card
Before copying the files, there are important details to know regarding the format of the
micro SD card, which must be FAT or FAT32 with a single partition.

https://software.intel.com/en-us/getting-started-for-c-c-plus-plus-eclipse-galileo-and-edison
https://software.intel.com/en-us/getting-started-for-c-c-plus-plus-eclipse-galileo-and-edison
https://communities.intel.com/docs/DOC-22203

Chapter 2 ■ Native Development

60

First of all, you need to format the SD card in your computer. Nowadays, computers
offer SD card slots; if you insert the micro SD card into a SD card adaptor connected to
the slot, you are able to read, write, or format your micro SD card, as shown in Figure 2-5.
However, if your computer does not provide any kind of access to the micro SD card, then
you will need a micro SD card reader that connects to a USB port. Figure 2-6 shows an
example of an SD card reader in a laptop and a micro SD card reader device.

Figure 2-5.  An SD card adaptor to be used with a computer

Figure 2-6.  A micro SD card USB adaptor

With a physical connection between the micro SD card and your computer
established, you just need to format the micro SD card according to your OS.

Chapter 2 ■ Native Development

61

Windows

If you are a Windows user and you are running a virtual machine with Linux to run Yocto
builds, you might be excited to use the regular format procedure offered by Windows; in
other words, open Explorer, right-click the SD card drive, and select the Format option.
In this case, deselect Quick Format and choose the right partition format, as shown in
Figure 2-7.

Figure 2-7.  Formatting the micro SD card on Windows

Mac OSX

Formatting a micro SD card on Mac OSX is quite easy. In Spotlight, type Disk Utility and
run the Disk Utility software. Click the micro SD card in the left panel and then click the
Erase tab. Select the format type in the Format combo box and click the Erase button.
Figure 2-8 shows the Disk Utility options.

Chapter 2 ■ Native Development

62

Ubuntu

On Ubuntu there are several utilities with a very nice graphical interface that can format
the micro SD card, including GParted (http://gparted.sourceforge.net) and Disk
Utility for Ubuntu (https://apps.ubuntu.com/cat/applications/precise/gnome-
disk-utility/). To avoid any new software installation, however, it is possible to format
using simple command-line commands. The steps are as follows:

1.	 Open a terminal by pressing Ctrl+Alt+T at same time.

2.	 Type the command df to check the partition in your
computer, including the micro SD card mounted. Then
identify the device name that defines the micro SD card; for
example, /dev/sdb1.

3.	 Unmount the SD card using the umount command followed by
the device name. For example:
 
umount /dev/sdb1
 

4.	 Use the MKDOSFS utility to format the card. For example:
 
mkdosfs -F 32 -v /dev/sdb1
 

With the micro SD card ready, it is time to copy your image into it.

Figure 2-8.  The Disk Utility on Mac OSX formatting the micro SD card

http://gparted.sourceforge.net/
https://apps.ubuntu.com/cat/applications/precise/gnome-disk-utility/
https://apps.ubuntu.com/cat/applications/precise/gnome-disk-utility/

Chapter 2 ■ Native Development

63

Copying Files to a Micro SD Card
If you successfully create your SD card image, enter ../yocto_build/tmp/deploy/images
in the directory and type the ls -l command:
 
mcramon@ubuntu $ cd ./tmp/deploy/images/
mcramon@ubuntu $ ls -l
total 150576
drwxr-xr-x 3 mcramon mcramon 4096 Nov 18 23:01 boot
-rw-r--r-- 2 mcramon mcramon 373760 Nov 19 00:04 bootia32.efi
lrwxrwxrwx 2 mcramon mcramon 42 Nov 18 23:58 bzImage -> bzImage--3.8-
r0-clanton-20141119062948.bin
-rw-r--r-- 2 mcramon mcramon 1984512 Nov 18 23:58 bzImage--3.8-r0-clanton-
20141119062948.bin
lrwxrwxrwx 2 mcramon mcramon 42 Nov 18 23:58 bzImage-clanton.bin ->
bzImage--3.8-r0-clanton-20141119062948.bin
-rw-r--r-- 1 mcramon mcramon 1689687 Nov 19 00:08 core-image-minimal-
initramfs-clanton-20141119062948.rootfs.cpio.gz
lrwxrwxrwx 1 mcramon mcramon 66 Nov 19 00:08 core-image-minimal-
initramfs-clanton.cpio.gz -> core-image-minimal-initramfs-clanton-
20141119062948.rootfs.cpio.gz
-rw-r--r-- 2 mcramon mcramon 279670 Nov 18 23:59 grub.efi
-rw-r--r-- 1 mcramon mcramon 314572800 Nov 19 00:26 image-full-galileo-
clanton-20141119062948.rootfs.ext3
lrwxrwxrwx 1 mcramon mcramon 53 Nov 19 00:26 image-full-galileo-
clanton.ext3 -> image-full-galileo-clanton-20141119062948.rootfs.ext3
-rw-rw-r-- 2 mcramon mcramon 1556960 Nov 18 23:58 modules--3.8-r0-clanton-
20141119062948.tgz
-rw-rw-r-- 2 mcramon mcramon 294 Nov 19 00:25 README_-_DO_NOT_DELETE_
FILES_IN_THIS_DIRECTORY.txt
 

There is a folder called boot with files and links. The only function of the links is to
make “easy reading” of the files that receive a timestamp in their names. For example,
the bzImage--3.8-r0-clanton-20141119062948.bin, where 20141119062948 is only the
timestamp; thus, if you run the bitbake again without any modification, you will have
another bzImage file with a different timestamp and a link pointing to the newest one.

Thus, you will need to copy to your micro SD card as follows:

1.	 boot (the whole directory, including subdirectories)

2.	 bzImage

3.	 core-image-minimal-initramfs-clanton.cpio.gz

4.	 grub.efi

5.	 image-full-galileo-clanton.ext3

Copy these files and directories to your micro SD card, insert it into the micro SD
card slot (see Chapter 1), and power-on your Intel Galileo.

Chapter 2 ■ Native Development

64

This is everything you need if you are using SD card images. The next section
explains this procedure when SPI images are used.

Booting from SPI Card Images
When you build an SPI image, the process results in a single file created to store your
image in the SPI flash memory. In this case, two different types of files can be built:

•	 Capsule file: This file contains the system images, the kernel, the
file system partition, and the boot loader packages (grub), but
it does not contain the platform data. Platform data informs the
MAC address of your Ethernet controller and the board model,
such as Intel Galileo or Intel Galileo Gen2. This file is very useful
in most cases; if you have a board without boot issues and the
Ethernet controller is working with a correct MAC address, the file
is very handy. Usually, capsule files (or cap files) contain the .cap
extension, and you can flash Intel Galileo boards using the Intel
Arduino IDE or the UEFI shell, which will be discussed later.

•	 Binary file: This binary file contains everything; in other words,
everything in a capsule file, plus the platform data. Usually, these
files have the .bin extension and must be flashed with an SPI
programmer.

Figure 2-9 shows a flowchart that explains the process to generate both of these files.

Figure 2-9.  SPI files generation flowchart

Initially it is necessary to generate the Intel Galileo SPI images that will generate the
SPI files as output.

In parallel, it is possible to compile the firmware and generate the files related to
firmware as output. Then a template is mounted using a file named layout.conf that
contains all the ingredients necessary to build files a single file that will be used to flash
the SPI flash memory.

Chapter 2 ■ Native Development

65

With layout.conf ready, the SPI flash tool is called to generate capsule and binary
files without platform data. If the intention is to have files without platform data, at this
point the capsule files might be used; otherwise, the platform data must be patched using
a Python script, which will be discussed later. A final binary with all the information is
created.

Creating the Capsule Files Flash Files
When you downloaded the BSP board support package in the step 2 of the “Creating your
Own Intel Galileo Images” section of this chapter, you should have noticed that files in
addition to the meta-clanton data were downloaded, among them files called spi-flash-
tools_v1.0.1.tar.gz and Quark_EDKII_v1.0.1.tar.gz.

Compiling the UEFI Firmware

To decompress the Linux kernel before your board boots, there is firmware responsible
to initialize the board components, including the Intel Quark SoC. It also assumes other
activities after the boot.

The Intel Galileo provides firmware compliant with UEFI (Unified Extensible
Firmware Interface) standards that consist of boot procedures, runtime services calls, and
data tables used for power management methods like ACPI (Advanced Configuration and
Power Interface).

EDKII means the environment cross-platform for firmware development.
Of course, to understand the UEFI specification and EDKII development process,

it would require a full book dedicated to this subject. In the context of this book, the
concept is limited to how to build the EDKII, which is one of the core elements to have a
functional SPI image.

The next sections discuss how to prepare your environment and how to compile the
firmware.

Preparing the Environment

The following are the dependences to compile the UEFI firmware:

Python 2.6 or newer•	

Any GCC and G++ with versions between 4.3 and 4.7•	

Subversion•	

uuid-dev•	

IASL•	

If you run the command line proposed in the “Preparing Your Computer” section,
you should be fine with these dependences, except Python. Check to see if you have
Python installed on your Linux by running the following command:
 

Chapter 2 ■ Native Development

66

mcramon@ubuntu:~$ dpkg --get-selections | grep -v deinstall|grep -i python
 

Or you can run this:
 
mcramon@ubuntu:~$ python --version
Python 2.7.3
 

If you do not have Python installed, you can install it by following the instructions
at https://www.python.org/downloads/. If you want a quick try using version 2.7.6, you
can run the following commands:
 
mcramon@ubuntu:~/$ �wget https://www.python.org/ftp/python/2.7.6/Python-

2.7.6.tgz
mcramon@ubuntu:~/$ tar -zxvf Python-2.7.6.tgz
mcramon@ubuntu:~/$ cd Python-2.7.6/
mcramon@ubuntu:~/$./configure
mcramon@ubuntu:~/$ make
mcramon@ubuntu:~/$ make install
 

After this, you are ready to compile the firmware by following the steps presented in
the next section.

Compiling the Firmware

Once you have downloaded the right package, you need to follow these instructions step
by step:

1.	 Extract the package. The first thing to do is go back to the
base directory and decompress the file:
 
mcramon@ubuntu $ tar -xvf Quark_EDKII_v1.0.2.tar.gz
 

Unfortunately, it is necessary to apply patches manually, but fortunately this can be
done with a single command line:

 
mcramon@ubuntu $./patches_v1.0.4/patch.Quark_EDKII.sh
 

This patch only fixes some ACPI tables to support Windows, which is not within the
scope of this book, but it is recommended to run this patch anyway to keep your firmware
updated.

2.	 Prepare the SVN project. The EDKII is maintained using the
SVN configuration control release tool.
 
mcramon@ubuntu:~/$ cd Quark_EDKII_v1.0.2/
mcramon@ubuntu:~/$./svn_setup.py
mcramon@ubuntu:~/$ svn update
mcramon@ubuntu:~/$ export WORKSPACE=$(pwd)
 

https://www.python.org/downloads/
https://www.python.org/ftp/python/2.7.6/Python-2.7.6.tgz
https://www.python.org/ftp/python/2.7.6/Python-2.7.6.tgz

Chapter 2 ■ Native Development

67

The first command, ./svn_setup.py, is a Python script that brings a series of code
related to EDKII to your computer. The command svn update makes certain that you
have the latest changes in fetched files. This step might take few minutes, depending on
your Internet connection speed.

3.	 Identify the GCC that you have installed. There is a
compilation flag used during the firmware compilation that
depends of the GCC compiler installed on your computer.
To check which version you have, you can type the following
command:
 
mcramon@ubuntu:~/$ gcc --version
gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
Copyright (C) 2011 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
 

In the example, GCC informed us that the version is 4.6.3, which means that the flag
to be used in the compilation line of EDKII will be the string GCC46.

The GCC and G++ compilers tested at the time that this book was written was
between version 4.3 and 4.7, which means that the flags supported are GCC43, GCC44,
GCC45, GCC46, and GCC47.

The easiest way to keep the right flag during your compilation is to export a variable
in bash with the latest character of the version:

 
mcramon@ubuntu:~/$ export GCCVERSION=$(gcc -dumpversion | cut -c 3)
mcramon@ubuntu:~/$ echo $GCCVERSION
4
 

So, for GCC version 4.6.3, the last character, 6, is stored in the variable GCCVERSION; if
the version was 4.7.x, the character 7 would be stored.

4.	 Compile the firmware. In the folder that you extracted the
EDKII, you will notice a file called quarkbuild.sh. This file
is a shell script that compiles the firmware for you with the
following options:
 
quarkbuild.sh [-r32 | -d32 | -clean] [GCC43 | GCC44 | GCC45 |
GCC46 | GCC47]
[PlatformName] [-DSECURE_LD (optional)] [-DTPM_SUPPORT
(optional)]
 

Chapter 2 ■ Native Development

68

These can be defined as follows:

•	 -clean: Delete the build files/folders.

•	 -d32: Create a DEBUG build.

•	 -r32: Create a RELEASE build.

•	 GCC4x: GCC flags used for this build.

•	 [PlatformName]: Name of the Platform package you want to
build.

•	 [-DSECURE_LD]: Create a Secure Lockdown build (optional).

•	 [-DTPM_SUPPORT]: Create EDKII build with TPM support
(optional). 

Note■■  T his option has a one-time prerequisite described in CryptoPkg\Library\
OpensslLib\Patch-HOWTO.txt in the EDKII directory that you downloaded and extracted.

So you can type:
 
mcramon@ubuntu:~/$./quarkbuild.sh -r32 GCC46 QuarkPlatform
 

Or, if you exported the GCCVERSION variable you can run:
 
mcramon@ubuntu:~/$./quarkbuild.sh -r32 GCC4$GCCVERSION QuarkPlatform
 

Several files will be compiled, taking a few minutes to finish.
The files that really matter will be in the output directory at Quark_EDKII_v1.0.2/

Build/QuarkPlatform/RELEASE_GCC46/FV/FlashModules.
 
mcramon@ubuntu:~/BSP_1.0.4_T/Quark_EDKII_v1.0.2/Build/QuarkPlatform/RELEASE_
GCC46/FV/FlashModules$ l -1
EDKII_BOOTROM_OVERRIDE.Fv
EDKII_BOOT_STAGE1_IMAGE1.Fv
EDKII_BOOT_STAGE1_IMAGE2.Fv
EDKII_BOOT_STAGE2_COMPACT.Fv
EDKII_BOOT_STAGE2.Fv
EDKII_BOOT_STAGE2_RECOVERY.Fv
EDKII_NVRAM.bin
EDKII_RECOVERY_IMAGE1.Fv
Flash-EDKII-missingPDAT.bin
RMU2.bin
RMU.bin
 

Chapter 2 ■ Native Development

69

If you want to see some extra debug messages, especially during the boot, you can
generate the debug releases using the -d32 flag, as follows:
 
mcramon@ubuntu:~/$./quarkbuild.sh -d32 GCC4$(GCCVERSION) QuarkPlatform
 

In this case, the output directory is in the DEBUG_GCC4X directory instead of the
RELEASE_GCC4X directory with same files.

5.	 Create symbolic links. If you successfully compiled the
firmware, you might have the following output:

 
mcramon@ubuntu:~/Quark_EDKII_v1.0.2$ cd Build/QuarkPlatform/
mcramon@ubuntu:~/BSP_1.0.4_T/Quark_EDKII_v1.0.2/Build/QuarkPlatform$ ls
DEBUG_GCC46 RELEASE_GCC46
 

The directories DEBUG_GCC46 and RELEASE_GCC46 are the result of a debug and
release compilation using GCC compiler version 4.6. It is necessary to simplify such
directories using soft links, naming them DEBUG_GCC and RELEASE_GCC only because these
are the names that the system image tools will search for.
 
mcramon@ubuntu:~/$ ln -s DEBUG_GCC46 DEBUG_GCC
mcramon@ubuntu:~/$ ln -s RELEASE_GCC46 RELEASE_GCC
mcramon@ubuntu:~/$ ls -l
total 8
lrwxrwxrwx 1 mcramon mcramon 11 Nov 21 20:21 DEBUG_GCC -> ../DEBUG_GCC46
lrwxrwxrwx 1 mcramon mcramon 13 Nov 21 20:21 RELEASE_GCC -> ../RELEASE_
GCC46
 

If you achieve this step, congratulations, you are ready to generate the next step—
creating the capsule files.

Troubleshooting Compiling the Firmware

Some problems can show up during the firmware compilation, but all of them are related
to your environment settings. The following lists the most common errors and explains
how to resolve them.

 •	 Python does not fetch the code. In this case, the first thing to do
is check whether your Internet connection is working. You can try
to test by opening a web browser or via a command line using a
wget command like this:
 
mcramon@ubuntu:~/tmp$ wget --spider http://example.com
Spider mode enabled. Check if remote file exists.
--2014-11-21 19:53:29-- http://example.com/
Resolving example.com (example.com)... 93.184.216.119,
2606:2800:220:6d:26bf:1447:1097:aa7
Connecting to example.com (example.com)|93.184.216.119|:80...
connected.

http://example.com/
http://example.com/

Chapter 2 ■ Native Development

70

HTTP request sent, awaiting response... 200 OK
Length: 1270 (1.2K) [text/html]
Remote file exists and could contain further links,
but recursion is disabled -- not retrieving.
 

If you are behind a proxy, then you need also to configure the subversion proxy
settings, editing the file located in ~/.subversion/servers. Then search for the section
[global] and set your proxy configuration as shown in the following lines:

 
[global]
http-proxy-host = <YOUR HOST IP>
http-proxy-port = <YOUR PORT NUMBER>
http-proxy-username = <YOUR USER NAME>
http-proxy-password = <YOUR PASSWORD>
 

•	 A GCC compiler not supported. If you have a GCC compiler
that is not supported, you can download and install one of the
versions supported and change the link called gcc in the /usr/
bin directory to point to the old one. For example:
 
mcramon@ubuntu:~/cd /usr/bin
mcramon@ubuntu:~/sudo ln -s /usr/bin/gcc-4.6 gcc
 

This file contains a tool that is used to create the cap and binary files based in your
SPI images.

The procedure for the creation is quite simple, as explained next.

Preparing layout.conf

At this point, you need make the other zipped files that you have downloaded but not
used until now. So, move to the base directory and type the following command line to
decompress all of them, if you have not done so yet:
 
mcramon@ubuntu:~/BSP_1.0.4_T$ tar -zxvf spi-flash-tools_v1.0.1.tar.gz
mcramon@ubuntu:~/BSP_1.0.4_T$ tar -zxvf sysimage_v1.0.1.tar.gz
mcramon@ubuntu:~/BSP_1.0.4_T$ tar -zxvf grub-legacy_5775f32a+v1.0.1.tar.gz
mcramon@ubuntu:~/BSP_1.0.4_T$ tar -zxvf quark_linux_v3.8.7+v1.0.1.tar.gz
 

Then run a script that will create symbolic links, making the folder names much
simpler:
 
mcramon@ubuntu:~/BSP_1.0.4_T$./sysimage_v1.0.1/create_symlinks.sh
See if we can: ln -s ./spi-flash-tools_* spi-flash-tools
Found spi-flash-tools_v1.0.1
+ ln -s spi-flash-tools_v1.0.1 spi-flash-tools
See if we can: ln -s ./Quark_EDKII_* Quark_EDKII

Chapter 2 ■ Native Development

71

Found Quark_EDKII_v1.0.2
+ ln -s Quark_EDKII_v1.0.2 Quark_EDKII
See if we can: ln -s ./sysimage_* sysimage
Found sysimage_v1.0.1
+ ln -s sysimage_v1.0.1 sysimage
See if we can: ln -s ./meta-clanton_* meta-clanton
Found meta-clanton_v1.0.1
+ ln -s meta-clanton_v1.0.1 meta-clanton
See if we can: ln -s ./quark_linux_* quark_linux
Found quark_linux_v3.8.7+v1.0.1
+ ln -s quark_linux_v3.8.7+v1.0.1 quark_linux
See if we can: ln -s ./grub-legacy_* grub-legacy
Found grub-legacy_5775f32a+v1.0.1
+ ln -s grub-legacy_5775f32a+v1.0.1 grub-legacy
 

If this script does not work it is because you are executing from the wrong directory.
Make sure that you are in the base folder where you download all tar.gz files.

As you can see, the script tried to find each component of the BSP source
package and create symbolic links to them using common names. For example, grub-
legacy_5775f32a+v1.0.1 turns grub-legacy, and the same process is done to the other
directories, as you can see if you type ls -l after the script execution.
 
mcramon@ubuntu:~/BSP_1.0.4_T$ ls -l
total 5292
-rw-r--r-- 1 mcramon mcramon 2657072 Nov 17 23:11 board_support_package_
sources_for_intel_quark_v1.0.1.7z
-rw-r--r-- 1 mcramon mcramon 30720 Nov 17 22:54 BSP-Patches-and-Build_
Instructions.1.0.4.tar
lrwxrwxrwx 1 mcramon mcramon 27 Nov 21 20:32 grub-legacy -> grub-
legacy_5775f32a+v1.0.1
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 grub-
legacy_5775f32a+v1.0.1
-rw-rw-r-- 1 mcramon mcramon 192465 May 22 2014 grub-
legacy_5775f32a+v1.0.1.tar.gz
lrwxrwxrwx 1 mcramon mcramon 19 Nov 21 20:32 meta-clanton -> meta-
clanton_v1.0.1
drwxr-xr-x 9 mcramon mcramon 4096 Nov 18 21:58 meta-clanton_v1.0.1
-rw-rw-r-- 1 mcramon mcramon 517412 May 22 2014 meta-clanton_v1.0.1.tar.gz
drwxr-xr-x 2 mcramon mcramon 4096 Oct 20 13:31 patches
lrwxrwxrwx 1 mcramon mcramon 18 Nov 21 20:32 Quark_EDKII -> Quark_
EDKII_v1.0.2
drwxr-x--- 21 mcramon mcramon 4096 Nov 21 18:48 Quark_EDKII_v1.0.2
drwxrwxr-x 6 mcramon mcramon 4096 Nov 21 18:40 Quark_EDKII_v1.0.2-svn_
externals.repo
-rwxr-xr-x 1 mcramon mcramon 1502762 Nov 21 15:20 quark_edkii_v1.0.2.tar.gz
lrwxrwxrwx 1 mcramon mcramon 25 Nov 21 20:32 quark_linux -> quark_
linux_v3.8.7+v1.0.1

Chapter 2 ■ Native Development

72

drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 quark_linux_v3.8.7+v1.0.1
-rw-rw-r-- 1 mcramon mcramon 236544 May 22 2014 quark_linux_
v3.8.7+v1.0.1.tar.gz
-rw-rw-r-- 1 mcramon mcramon 480 May 22 2014 sha1sum.txt
lrwxrwxrwx 1 mcramon mcramon 22 Nov 21 20:32 spi-flash-tools ->
spi-flash-tools_v1.0.1
drwxr-xr-x 6 mcramon mcramon 4096 May 22 2014 spi-flash-tools_v1.0.1
-rw-rw-r-- 1 mcramon mcramon 219559 May 22 2014 spi-flash-tools_
v1.0.1.tar.gz
lrwxrwxrwx 1 mcramon mcramon 15 Nov 21 20:32 sysimage ->
sysimage_v1.0.1
drwxr-xr-x 9 mcramon mcramon 4096 May 22 2014 sysimage_v1.0.1
-rw-rw-r-- 1 mcramon mcramon 9876 May 22 2014 sysimage_v1.0.1.tar.gz
-rw-r--r-- 1 mcramon mcramon 2938 Nov 18 22:14 uart-reverse-8.patch
 

The reason for this “simplification” is related to the sysimage directory bringing a
configuration file that tells the “ingredients”—in other words, the files that will be used to
compose the flash image and the version of the image.

For example, check the directories that you have in the sysimage file:
 
mcramon@ubuntu:~/BSP_1.0.4_T$ cd sysimage
mcramon@ubuntu:~/BSP_1.0.4_T/sysimage$ ls -l
total 36
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 config
-rwxr-xr-x 1 mcramon mcramon 2496 May 22 2014 create_symlinks.sh
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 grub
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 inf
-rw-r--r-- 1 mcramon mcramon 1488 May 22 2014 LICENSE
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 sysimage.CP-8M-debug
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 sysimage.CP-8M-debug-secure
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 sysimage.CP-8M-release
drwxr-xr-x 2 mcramon mcramon 4096 May 22 2014 sysimage.CP-8M-release-secure
 

Note that there are four directories to generate a flash image with 8MB for debug and
release compilation, and for unsecure and secure boots.

In each of these directories, there is a file called layout.conf. This file must be
changed to point to the correct “ingredients” of your build and the right version number.

To make your life easier, there is a script that does the changes in all directories
automatically for you, even if you do not need to change all of them. Running the script
executes the following command in the base directory:
 
mcramon@ubuntu:~/BSP_1.0.4_T$./patches_v1.0.4/patch.sysimage.sh
 

You might ask which changes this script really makes. Let’s assume one of the
directories—sysimage.CP-8M-debug for example—and open the layout.conf file with
the text editor of you preference before running the patch_sysimage.sh script. layout.
conf is shown in Listing 2-7.

Chapter 2 ■ Native Development

73

Listing 2-7.  layout.conf

WARNING: this file is indirectly included in a Makefile where it
defines Make targets and pre-requisites. As a consequence you MUST
run "make clean" BEFORE making changes to it. Failure to do so may
result in the make process being unable to clean files it no longer
has references to.
 
[main]
size=8388608
type=global
 
[MFH]
version=0x1
flags=0x0
address=0xfff08000
type=mfh
 
[Flash Image Version]
type=mfh.version
meta=version
value=0x01000105
 
[ROM_OVERLAY]
address=0xfffe0000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/EDKII_BOOTROM_OVERRIDE.Fv
type=some_type
 
[signed-key-module]
address=0xfffd8000
item_file=config/SvpSignedKeyModule.bin
svn_index=0
type=some_type
in_capsule=no
 
On a deployed system, the SVN area holds the last known secure
version of each signed asset.
TODO: generate this area by collecting the SVN from the assets
themselves.
[svn-area]
address=0xfffd0000
item_file=config/SVNArea.bin
type=some_type

Chapter 2 ■ Native Development

74

A capsule upgrade must implement some smart logic to make sure the
highest Security Version Number always wins (rollback protection)
in_capsule=no
 
[fixed_recovery_image]
address=0xfff90000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/EDKII_RECOVERY_IMAGE1.Fv
sign=yes
type=mfh.host_fw_stage1_signed
svn_index=2
in_capsule=no
 
[NV_Storage]
address=0xfff30000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/EDKII_NVRAM.bin
type=some_type
 
[RMU]
address=0xfff00000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/RMU.bin
type=none_registered
 
[boot_stage1_image1]
address=0xffec0000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/EDKII_BOOT_STAGE1_IMAGE1.Fv
sign=yes
boot_index=0
type=mfh.host_fw_stage1_signed
svn_index=1
 
[boot_stage1_image2]
address=0xffe80000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/EDKII_BOOT_STAGE1_IMAGE2.Fv
sign=yes
boot_index=1
type=mfh.host_fw_stage1_signed
svn_index=1
 

Chapter 2 ■ Native Development

75

[boot_stage_2_compact]
address=0xffd00000
item_file=../../Quark_EDKII/Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/
FlashModules/EDKII_BOOT_STAGE2_COMPACT.Fv
sign=yes
type=mfh.host_fw_stage2_signed
svn_index=3
 
[Ramdisk]
address=0xffa60000
item_file=../../meta-clanton/yocto_build/tmp/deploy/images/image-spi-
clanton.cpio.lzma
sign=yes
type=mfh.ramdisk_signed
svn_index=7
 
[LAYOUT.CONF_DUMP]
address=0xffcff000
type=mfh.build_information
meta=layout
 
[Kernel]
address=0xff852000
item_file=../../meta-clanton/yocto_build/tmp/deploy/images/bzImage
sign=yes
type=mfh.kernel_signed
svn_index=6
 
[grub.conf]
address=0xff851000
item_file=grub/grub-spi.conf
sign=yes
type=mfh.bootloader_conf_signed
svn_index=5
 
[grub]
address=0xff800000
item_file=../../meta-clanton/yocto_build/tmp/deploy/images/grub.efi
sign=yes
fvwrap=yes
guid=B43BD3E1-64D1-4744-9394-D0E1C4DE8C87
type=mfh.bootloader_signed
svn_index=4
 

Chapter 2 ■ Native Development

76

As you can see, this file is has sections like [main], [MFH], [Flash Image Version],
[ROM OVERLAY], and so on. Each section contains data fields with respective values, but
there are two sections that the script changes:

•	 [Flash Image Version]: It is recommended that you make a
simple change in the [Flash Image Version] because it brings
version 0x01000105 in the value field. This means that when you
boot your board, the version read will be 01.00.01.05, or simply
1.0.1, because 05 is omitted; and considering that the release of
this example is based on 1.0.4, it is recommended to change to
0x01000400, which means 1.0.4. If you want to see the correct
version number, this change is necessary.

•	 [RamDisk]: This section needs to replace the string image-
spi-clanton.cpio.lzma with image-spi-galileo-clanton.
cpio.lzma, because if you check the images generated in /
meta-clanton/yocto_build/tmp/deploy/images/, the image
generated is named image-spi-galileo.cpio.lzma. Thus, this
section should be as follows:

 
[Ramdisk]
address=0xffa60000
item_file=../../meta-clanton/yocto_build/tmp/deploy/images/image-
spi-galileo-clanton.cpio.lzma
sign=yes
type=mfh.ramdisk_signed
svn_index=7
 

In general, the script also adjusts the path filenames, removing all PLAIN directories
and pointing to valid paths.

The sysimage brings the template with the old version because the tool did not
require any changes since 1.0.1, and the template comes with the same version number.

The other sections—like [NVM Storage], [RMU], [boot_stage1_image1], [boot_
stage1_image2], and [boot_stage_2_compact]—search for the EDKII components that
you created in the previous section; but pay attention to DEBUG. This explains why you
created the soft links in the step 5 of the “Steps to Compile the Firmware” section of this
chapter.

The sections [Ramdisk], [LAYOUT.CONF_DUMP], [Kernel], [grub.conf], and
[grub] try to find the elements that you generated after running the Yocto build, and the
directories that you decompressed and created are simple symbolic links in this section
with the create_symlinks.sh script.

Thus, when you run the patch_sysimage.sh script, the changes mentioned are
automatically done in the layout.conf files of each directory.

Chapter 2 ■ Native Development

77

Using the SPI Tool

The SPI tool is on the spi-flash-tool directory that you decompressed. It is used to
create the capsule files and binary files with or without platform data.

In the same directory as your layout.conf file, run the following command:
 
mcramon@ubuntu:~/$../../spi-flash-tools/Makefile
 

If everything runs OK, you should have generated three new files in the same
directory:

•	 Flash-missingPDAT.cap: This is the expected capsule file, absent
of platform data, which you can flash to your Intel Galileo.

•	 Flash-missingPDAT.bin: This is a binary file absent of platform
data necessary to generate SPI images, which is discussed in the
“Creating SPI Images with Platform Files” section.

•	 FVMAIN.fv: This file is used to recover your board if it does not
boot anymore. This is discussed in the “What to Do If Intel Galileo
Bricks" section of this chapter.

Flashing the Capsule Files
After a long procedure and many hours creating your capsule file, it is time to test it by
flashing the SPI flash memory. In fact, there are three different ways to flash, as discussed
in next sections.

Flashing the Capsule File with the Intel Arduino IDE

This is the easiest way to flash the capsule file with the current software provided at the
time this book was published. You just need to copy the Flash-missingPDAT.cap file in
a specific folder of the IDE, as explained in the “Updating the Firmware with a Different
Firmware” section of Chapter 3. This procedure only requires usage of the regular USB
data cable, which prevents copying the capsule files with a micro SD card or a USB pen
driver.

Chapter 2 ■ Native Development

78

Flashing the Capsule File with a Linux Terminal Shell

The procedure described here is exactly the same thing that Intel Arduino IDE does
automatically for you, sending remote commands to Intel Galileo boards. Thus if you do
not want to use the IDE, then the procedure to flash your capsule file is as follows:

1.	 Connect the serial cabled to Intel Galileo and open a Linux
terminal, as explained in the “Preparing Your Cables” section
of Chapter 1.

2.	 Check which release is being used currently in your board,
checking the content of the file /sys/firmware/board_data/
flash_version. It possible to check using a Linux terminal
shell and typing the following command:
 
root@clanton:~# cat /sys/firmware/board_data/flash_version
0x01000105
 

3.	 Copy the Flash-missingPDAT.cap that you created in the
previous sections to a micro SD card or a pen driver properly
formatted with FAT or FAT32 in a single partition, as described
in the “Booting from SD Card” section of this chapter.

4.	 If your release is 0.7.5 or 0.8.0, run the following command:
 
insmod /tmp/0.7.5/efi_capsule_update.ko
Or
insmod /tmp/0.8.0/efi_capsule_update.ko
 

5.	 If your release is 0.9.0 or 1.0.0, run the following:
 
modprobe efi_capsule_update
 

6.	 With newer releases, run the following:
 
modprobe sdhci-pci
modprobe mmc-block
mkdir /lib/firmware
cd /media/mmcblk0p1/
cp Flash-missingPDAT.cap /lib/firmware/Flash-missingPDAT.cap
echo -n Flash-missingPDAT.cap > /sys/firmware/efi_capsule/
capsule_path
echo 1 > /sys/firmware/efi_capsule/capsule_update
reboot
 

Chapter 2 ■ Native Development

79

Make sure that you really ran the command reboot; otherwise, the process to update
the capsule file will not work.

Flashing the Capsule File with a UEFI Shell

The idea on this procedure is to open a UEFI shell as soon the board boots and then
flash your capsule file, but this only works if you have a board with a nonsecure boot;
otherwise, the UEFI shell will be locked and this procedure will not work.

This procedure requires that you have the following:

The •	 Flash-missingPDAT.cap file that must be present in the same
directory of your layout.conf.

The •	 CapsuleApp.efi file that was generated when you compiled
the EDKII firmware. It must be present in the ./Quark_EDKII/
Build/QuarkPlatform/PLAIN/DEBUG_GCC/FV/Applications/
directory or the ./Quark_EDKII/Build/QuarkPlatform/PLAIN/
RELEASE_GCC/FV/ Applications/ directory, depending whether
you compile using release or debug flags as discussed in the
“Compiling the EDKII Firmware” section of this chapter.

You will need serial cables to open the terminal shell, as discussed •	
in the “Preparing Your Cables” section in Chapter 1. This will
allow you to debug the board using a serial audio jack cable for
Intel Galileo or a FTDI cable for Intel Galileo Gen 2.

You need to know how to use some serial terminal software. Read •	
the “Testing Your Cables” section in Chapter 1 to understand
how to use putty for Windows or minicom for Linux or Mac
OSX. However, you also need to configure the serial software to
recognize special characters from your keyboard. For putty, click
the left panel, Terminal ➤ Keyboard, and select the SCO box
from the Functions and Keys and Keypad tab.

Finally, you need a micro SD card or a USB pen driver.•	
Here is the procedure that must be followed:

1.	 Format the micro SD card or the USB pen drive with FAT or
FAT32 in a single partition, as described in the “Booting from
SD Card Images” section of this chapter.

2.	 Copy the files CapsuleApp.efi and Flash-missingPDAT.cap
to the micro SD card.

3.	 With the board off, keep the serial cable connected and open
the serial terminal software, such as putty or minicom.

4.	 Power-on the board connecting the power supply.

5.	 As soon you see the image shown in Figure 2-10, press the
F7 function key.  

Chapter 2 ■ Native Development

80

7.	 You will see the partition mounted on the board. Usually, a
micro SD card and a pen drive are fs0. Just type fs0: and press
Enter. Check the content of the micro SD card or the USB pen
driver with the command ls, as shown in Figure 2-12.  

Figure 2-10.  Initial screen just after the boot with the F7 option

6.	 In the menu, choose the UEFI Internal Shell option by using
the arrow keys, as shown in Figure 2-11. Press Enter and then
press the ESC key to receive the shell prompt.  

Figure 2-11.  Selecting the UEFI internal shell

Chapter 2 ■ Native Development

81

8.	 You should be able to see the files you copied to the micro SD
card. In this case. just type the following command to start the
flashing procedure. 

fs0:\> CapsuleApp.efi Flash-missingPDAT.cap
CapsuleApp: SecurityAuthenticateImage 0xD504410found.
CapsuleApp: creating capsule descriptors at 0xF0DE510
CapsuleApp: capsule data starts at 0xD504410 with
size 0x6F6190
CapsuleApp: capsule block/size 0xD504410/0x6F6190

Flashing the Capsule File with the Firmware Update Tool

At the end of 2014, Intel provided a new tool called the Intel Firmware Update tool that
allows you to select the capsule files that come internally in the application, or to browse
your desktop file system to select a custom one. This is a stand-alone application, very
simple to use, and it does not require you to have the Arduino IDE installed.

Figure 2-13 shows this application’s user interface.

Figure 2-12.  Selecting the fs0 partition and checking the files

Chapter 2 ■ Native Development

82

Subscribe to the Intel Maker Community forum at https://communities.intel.
com/community/makers to receive more information about this tool, as many other
updates will be available.

Creating SPI Images Flash Files
Imagine this hypothetical situation: due to some mistake, you realized that you bricked
your Intel Galileo and it does not boot anymore. Before ordering a new one, you can
consider flashing using an SPI flash programmer, but you need to have the binary build
patched with platform data files.

In previous sections, I mentioned how to compile using Yocto and how to generate
the capsule and binary files that do not contain platform data.

To follow the procedures in this section, you should

1.	 Have successfully compiled the UEFI firmware
(EDKII packages).

2.	 Identified the Ethernet MAC address of your board.

3.	 Have a flash programmer, such as DediProg.

As explained before, platform data contains information like the Ethernet MAC
address of your board and which board model you have. Thus, each board should contain
a unique and exclusive platform file, because each board contains an exclusive MAC
address.

To discover the Ethernet MAC address of your board, you just need to take a look at
the white label on your board, as shown in Figure 2-14.

Figure 2-13.  Intel Galileo Firmware Update tool prototype

https://communities.intel.com/community/makers
https://communities.intel.com/community/makers

Chapter 2 ■ Native Development

83

Figure 2-14.  The white label with the exclusive Ethernet MAC address

The tool responsible for generating the binary with platform data is actually a Python
script named platform-data-patch.py in the .../spi-flash-tools/platform-data
directory. The only thing that this script does is patch the binaries with that platform data
configuration file.

In this same directory there is a platform-data template called sample-platform-data.
ini, as shown in Listing 2-8.

Listing 2-8.  sample-platform-data.ini

Every module contains:
[unique name]
id=decimal integer, data type identifier
desc=string, short description of a data; max 10 characters
data.value=[ABC | CAFEBEBA | xyz abc | /path/to/file]
data.type=[hex.uint[8/16/32/64] | hex.string | utf8.string | file]
ver=decimal integer, version number; if not specified defaults to 0
 

Chapter 2 ■ Native Development

84

WARNING: the platform type data.value MUST match the MRC data.value below
[Platform Type]
id=1
desc=PlatformID
data.type=hex.uint16
ClantonPeak 2, KipsBay 3, CrossHill 4, ClantonHill 5, KipsBay-fabD 6,
GalileoGen2 8
data.value=2
 
WARNING: the MRC data.value MUST match the platform type data.value above
[Mrc Params]
id=6
ver=1
desc=MrcParams
data.type=file
data.value=MRC/clantonpeak.v1.bin
#data.value=MRC/kipsbay.v1.bin
#data.value=MRC/crosshill.v1.bin
#data.value=MRC/clantonhill.v1.bin
#data.value=MRC/kipsbay-fabD.v1.bin
#data.value=MRC/GalileoGen2.bin
 
If you are developing MRC for a new system you can alternatively
inline the value like this:
 
data.type=hex.string
data.value=00000000000000010101000300000100010101017C92000010270000102700
00409C000006
 
The unique MAC address(es) owned by each device are typically found
on a sticker. You must find it(them) and change the bogus values
below.
[MAC address 0]
id=3
desc=1st MAC
data.type=hex.string
data.value=FFFFFFFFFF00
 
[MAC address 1]
id=4
desc=2nd MAC
data.type=hex.string
data.value=02FFFFFFFF01
 

Make a copy of this file, saving it using another name—for example,
galileo-platform-data.ini—and open this file in the text editor of your preference.

Chapter 2 ■ Native Development

85

As you can observe, this file is divided into sections such as [Platform Type],
[Mrc Params], [MAC address 0], and [MAC address 1]; but what really matters with Intel
Galileo boards are the sections [Platform Type] and [MAC address 0]. On each section
there is a field called data.value= that represents the place you will need to modify the
platform data.

In the section [Platform Type,] there is the following comment:
 
ClantonPeak 2, KipsBay 3, CrossHill 4, ClantonHill 5, KipsBay-fabD 6,
GalileoGen2 8
 

If your board is Intel Galileo Gen 2, the data.value must receive the value 8, and
although the Intel Galileo is not mentioned, the value must be 6 and must be considered
as KipsBay-fabD.

For example, if your board is Intel Galileo Gen 2, the [Platform Type] must be
changed in this way:
 
[Platform Type]
id=1
desc=PlatformID
data.type=hex.uint16
ClantonPeak 2, KipsBay 3, CrossHill 4, ClantonHill 5, KipsBay-fabD 6,
GalileoGen2 8
data.value=8
 

The other section that you need to modify is the [MAC address 0], again changing
the data.value field. For example, suppose your Ethernet MAC address white tag says
MAC:984FEE014C6B; then this section must be changed to the following:
 
[MAC address 0]
id=3
desc=1st MAC
data.type=hex.string
data.value=984FEE014C6B
 

Now you need to generate the binary file patching the platform data. First, take a
quick look at the option offered by the platform-data-patch.py script:
 
mcramon@ubuntu:~/$./platform-data-patch.py --help
Usage: platform-data-patch.py
 
Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -i ORIGINAL_IMAGE, --original-image=ORIGINAL_IMAGE
 input flash image [default: Flash-missingPDAT.bin]
 -p INPUT_FILE, --platform-config=INPUT_FILE
 configuration (INI) file [default: platform-data.ini]

Chapter 2 ■ Native Development

86

 -n MODIFIED_IMAGE, --name=MODIFIED_IMAGE
 output flash image [default: Flash+PlatformData.bin]
 -u, --undefined-order
 By default, items are put in the same order as they
 come in the config file. However ordering requires
 python 2.7 or above.
 

The script is very simple: the option -i indicates that the input capsule file, -p, is the
platform-data file; -n is the name of your output file; and -u must be used only if your
version of Python is lower than 2.7. So, before using this script, check which Python
version is installed on your computer by typing python --version on your console to
determine if the -u option must be used or not. If you have a recent version of Python, you
just need to run the script.

In the next example, the output file was named cool_binary.bin and the input files
were the ones created as examples in this chapter.
 
./platform-data-patch.py -i ../../sysimage/sysimage.CP-8M-debug/Flash-
missingPDAT.bin -p galileo-platform-data.ini -n cool_binary.bin
 

If the script ran smoothly, you should have the output file cool_binary.bin in the
same directory. Next it is time to flash your image using the SPI flash programmer
described in the next section.

If you make mistakes in the [Platform Type], (for example, suppose you specify
that the data.value equals 6, which means Intel Galileo, but flash an Intel Galileo Gen 2
board), during the boot, the firmware will recognize the incompatibility and will ask you
to select the board type, manually displaying a menu that might be seen using the Linux
terminal shell in your board.
 
Type '0' for 'ClantonPeakSVP' [PID 2]
Type '1' for 'KipsBay' [PID 3]
Type '2' for 'CrossHill' [PID 4]
Type '3' for 'ClantonHill' [PID 5]
Type '4' for 'Galileo' [PID 6]
Type '5' for 'GalileoGen2' [PID 8]
 

So, if you see this menu, the platform file on your board was not patched, or it was
patched with wrong data.

Flashing Using an SPI Flash Programmer

It is recommended to use the flash programmer called DediProg SF100, which you can
order from http://www.dediprog.com/pd/spi-flash-solution/sf100.

Officially, the DediProg SF100 only works on Windows, but the open source
community has a program called flashrom that supports DediProg SF 100 on Linux and
Mac OSX as well.

http://www.dediprog.com/pd/spi-flash-solution/sf100

Chapter 2 ■ Native Development

87

This section will focus on DediProg for Windows, but if you are a Linux or
Mac OSX developer, you can use flashrom with DediProg by downloading from
http://www.flashrom.org/Flashrom and using the following command line:
 
flashrom -p dediprog -r biosimage.rom
 

The procedure to use the DediProg SF100 using the GUI interface is as follows:

1.	 Connect the DediProg SF100 to Intel Galileo by using the SPI
programmer terminal, as shown in Figure 2-15, but make sure
that Intel Galileo is not connected to any power supply and
that the DediProg SF100 is connected to your computer via a
USB cable. There is no power supply involved in this process,
and the DediProg SF100 uses energy from your USB port. Both
the board, Intel Galileo, and Intel Galileo Gen 2 offer the SPI
flash port, basically in the same position.  

Figure 2-15.  DediProg SF100 connected to Intel Galileo Gen 2

2.	 After running the installer that comes with DediProg SF100, run
the program DediProg Engineering. The first thing that this
program will ask about is the SPI flash memory present in the
board. If you take a quick look in the Intel Galileo schematics
(https://communities.intel.com/docs/DOC-21822), you will
notice that Intel Galileo and Intel Galileo Gen 2 uses the same
type of memory, W25Q64FV, as shown in Figure 2-16. Just
select the write memory and click the OK button.  

http://www.flashrom.org/Flashrom
https://communities.intel.com/docs/DOC-21822

Chapter 2 ■ Native Development

88

3.	 Click Configuration and change the Vcc option to Manual.
Select Vcc and 3.5V; this will save a lot of problems due to
flash error. Click the OK button, as shown in Figure 2-17.  

Figure 2-16.  Selecting the right SPI flash memory and Intel Galileo schematics

Figure 2-17.  Configuring the DediProg SF100 to Vcc 3.5V

4.	 Click the File option and select the binary with the platform
you have created, as shown in Figure 2-18. Make sure that the
Raw Binary option is selected and then click the OK button.  

Chapter 2 ■ Native Development

89

Figure 2-18.  Selecting the binary file to program

Figure 2-19.  Erasing, programming, and verifying steps in DediProg SF100

5.	 Now it is time to program. Click the Erase option to erase the
SPI flash memory. Then click Prog to program the SPI flash
memory. Finally, click Verify to make sure that your binary was
written correctly in the memory. Figure 2-19 shows the process
of each step. If the verification fails, repeat this step until you
have the SPI flash memory properly programmed. This easily
happens if you did not select the 3.5V mentioned in step 3. 

Chapter 2 ■ Native Development

90

What to Do If Intel Galileo Bricks
There are some situations where your Intel Galileo may be bricked:

You lost power during the flash.•	

The SPI programmer flashed some part of the memory •	
incorrectly, corrupting the SPI, and you could not detect the error
because you did not verify.

You made a mistake in the •	 layout.conf file.

You patched the binaries, declaring a wrong board model in the •	
platform data. For example, you have an Intel Galileo and you
incorrectly modified the platform data to Intel Galileo Gen 2.

There are two procedures that might help solve this situation after you fixed and
verified, if you did not make any mistakes with the software you created:

1.	 Use an SPI flash programmer to reprogram the SPI flash
memory. This procedure was mentioned in the “Flashing
Using an SPI Flash Programmer” section of this chapter.

2.	 Use FVMAIN.fv, created with SPI flash tool from the “Using the
SPI Tool” section of this chapter.

The procedure to use in the second case is as follows:

1.	 Power-off Intel Galileo, removing the power supply.

2.	 Copy FVMAIN.fv to a USB pen drive.

3.	 Keep the serial debug cable (FTDI or serial audio) jack
connected and open on a serial software terminal of your
preference. Read the “Preparing Your Own Cables” section in
Chapter 1 if you do not know how do to that.

Chapter 2 ■ Native Development

91

Figure 2-20.  Resistor to ground to enter the recovery mode

5.	 Ground the R2B16 resistor, as shown in Figure 2-20.  

6.	 Connect the power supply to Intel Galileo.

7.	 In the serial shell, a list of platforms will be shown; choose the
Galileo model.

8.	 Remove the resistor from ground.

9.	 In the serial shell, select the system recovery option. The
system recovery will take around 6 minutes to complete.

These are the two methods that you can try. I wish you sincere good luck with them.

Summary
In this chapter, you received an overview of how the Yocto build system works and how
to generate SD card and SPI releases for Intel Galileo boards, as well as how to generate
the toolchain and IPK packages. You could also tested the cross-compilers present in the
toolchain, creating a simple native program, and then run it on Intel Galileo to test it.

The chapter also explained the differences between capsule and binary files with
platform data, how to build firmware on EDKII repositories, and how to recover your
board if bad firmware was flashed.

4.	 Connect the USB pen drive in the USB OTG port on your Intel
Galileo Gen 2. If you are using Intel Galileo, you will need an
adaptor like the one shown in Figure 5-20 of Chapter 5.

	Chapter 2: Native Development
	Introduction to the Yocto Build System
	Yocto and this Book
	Poky
	The Build System Tree at a Glance
	An Example of a Recipe (.bb)
	An Example of a Configuration File (.conf)
	An Example of a Class File (.bbclass)

	Creating Your Own Intel Galileo Images
	Preparing Your Computer
	The SPI vs. SD Card Images
	Building Intel Galileo Images
	Building and Using the Cross-Compiler Toolchain
	Compiling the Toolchain for Different Architectures
	Building the Toolchains
	Linux
	OSX
	Windows
	The Output Files

	Installing the Cross-Compilers

	Creating a Hello World!
	Debugging Native Applications

	Booting Intel Galileo with Your Own Images
	Booting from SD Card Images
	Preparing the Micro SD Card
	Windows
	Mac OSX
	Ubuntu

	Copying Files to a Micro SD Card

	Booting from SPI Card Images
	Creating the Capsule Files Flash Files
	Compiling the UEFI Firmware
	Preparing the Environment
	Compiling the Firmware
	Troubleshooting Compiling the Firmware
	Preparing layout. conf
	Using the SPI Tool

	Flashing the Capsule Files
	Flashing the Capsule File with the Intel Arduino IDE
	Flashing the Capsule File with a Linux Terminal Shell
	Flashing the Capsule File with a UEFI Shell
	Flashing the Capsule File with the Firmware Update Tool

	Creating SPI Images Flash Files
	Flashing Using an SPI Flash Programmer

	What to Do If Intel Galileo Bricks
	Summary

