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Chapter 4

Video Quality Metrics

Quality generally indicates excellence, and the universal societal norm is to strive for the 
highest achievable quality in most fields. However, in case of digital video, a measured, 
careful approach is taken to allow some deficit in quality that is not always discernible by 
typical viewers. Such concessions in perceivable visual quality make room for a valuable 
accomplishment in terms of compression.

Video quality is a characteristic of a video signal passed through a transmission 
or processing system, representing a measure of perceived degradation with respect to 
the original source video. Video processing systems usually introduce some distortions 
or artifacts in the video signal, but the amount involved may differ depending on 
the complexity of the content and the parameters chosen to process it. The variable 
degradation may or may not be perceivable or acceptable to an end user. In general,  
it is difficult to determine what would be an acceptable quality for all end users. However, 
it remains an important objective of video quality evaluation studies. So understanding 
various types of visual degradations or artifacts in terms of their annoyance factors, and 
the evaluation of the quality of a video as apparent to the end user, are very important.

In this chapter, we first focus on the careful and intentional information loss due 
to compression and the resulting artifacts. Then we discuss the various factors involved 
in the compression and processing of video that influence the compression and that 
contribute to visual quality degradation.

With these understandings, we move toward measuring video quality and discuss 
various subjective and objective quality metrics to measure with particular attention 
to various ITU-T standards. The discussions include attempts to understand relative 
strengths and weaknesses of important metrics in terms of capturing perceptible 
deterioration. We further discuss video coding efficiency evaluation metrics and some 
example standard-based algorithms.

In the final part of this chapter, we discuss the parameters that primarily impact 
video quality, and which parameters need to be tuned to achieve good tradeoffs beween 
video quality and compression speed, the knowledge of which is useful in designing 
some video applications. Although some parameters are dictated by the available system 
or network resources, depending on the application, the end user may also be allowed to 
set or tune some of these parameters.
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Compression Loss, Artifacts, and Visual Quality
Compression artifacts are noticeable distortions in compressed video, when it is 
subsequently decompressed and presented to a viewer. Such distortions can be present 
in compressed signals other than video as well. These distortions are caused by the 
lossy compression techniques involved. One of the goals of compression algorithms 
is to minimize the distortion while maximizing the amount of compression. However, 
depending on the algorithm and the amount of compression, the output has varying levels 
of diminishing quality or introduction of artifacts. Some quality-assessment algorithms 
can distinguish between distortions of little subjective importance and those objectionable 
to the viewer, and can take steps to optimize the final apparent visual quality.

Compression Loss: Quantization Noise
Compression loss is manifested in many different ways and results in some sort of visual 
impairment. In this section we discuss the most common form of compression loss and 
its related artifact, namely the quantization noise.

Quantization is the process of mapping a large set of input values to a smaller 
set—for example, rounding the input values to some unit of precision. A device or an 
algorithmic function that performs the quantization is called a quantizer. The round-off 
error introduced by the process is referred to as quantization error or the quantization 
noise. In other words, the difference between the input signal and the quantized signal is 
the quantization error.

There are two major sources of quantization noise in video applications: first, 
when an analog signal is converted to digital format; and second, when high-frequency 
components are discarded during a lossy compression of the digital signal. In the 
following discussion both of these are elaborated.

Quantization of Samples
The digitization process of an image converts the continuous-valued brightness 
information of each sample at the sensor to a discrete set of integers representing 
distinct gray levels—that is, the sampled image is quantized to these levels. The entire 
process of measuring and quantizing the brightnesses is significantly affected by sensor 
characteristics such as dynamic range and linearity. Real sensors have a limited dynamic 
range; they only respond to light intensity between some minimum and maximum 
values. Real sensors are also non-linear, but there may be some regions over which they 
are more or less linear, with non-linear regions at either end.

The number of various levels of quantizer output is determined by the bits available 
for quantization at the analog-to-digital converter. A quantizer with n bits represents  
N = 2n levels. Typical quantizers use 8-bits, representing 256 gray levels usually numbered 
between 0 and 255, where 0 corresponds to black and 255 corresponds to white. However, 
10-bit or even 16-bit images are increasingly popular. Using more bits brings the ability 
to perform quantization with a finer step size, resulting in less noise and a closer 
approximation of the original signal. Figure 4-1 shows an example of a 2-bit or four-level 
quantized signal, which is a coarse approximation of the input signal, and a 3-bit or  
eight-level quantized signal, representing a closer approximation of the input signal.
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In the case of an image, the difference between the true input brightness of a pixel and  
the corresponding brightness of the digital level represents the quantization error for that  
pixel. Quantization errors can take positive or negative values. Note that quantization levels  
are equally spaced for uniform quantization, but are irregularly spaced for non-uniform  
(or non-linear) quantization. If the quantization levels are equally spaced with a step size b,  
the quantization error for a digital image may be approximated as a uniformly distributed 

signal with zero mean and a variance of 
b2

12
.

Such uniform quantizers are typically memoryless—that is, the quantization level for 
a pixel is computed independently of other pixels.

Frequency Quantization
In frequency quantization, an image or a video frame undergoes a transform, such as 
the discrete cosine transform, to convert the image into the frequency domain. For an 
8×8 pixel block, 64 transform coefficients are produced. However, lossy compression 
techniques such as those adopted by the standards as described in Chapter 3, perform 
quantization on these transform coefficients using a same-size quantization matrix, 
which typically has non-linear scaling factors biased toward attenuating high-frequency 
components more than low-frequency components. In practice, most high-frequency 
components become zero after quantization. This helps compression, but the high-
frequency components are lost irreversibly. During decompression, the quantized 
coefficients undergo inverse quantization operation, but the original values cannot be 
restored. The difference between the original pixel block and the reconstructed pixel 
block represents the amount of quantization error that was introduced. Figure 4-2 
illustrates the concept.

Figure 4-1.  Quantized signals with different bit resolution
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The quantization matrix is the same size as the block of transform coefficients, 
which is input to the quantizer. To obtain quantized coefficients, an element-by-element 
division operation is performed, followed by a rounding to the nearest integer. For 
example, in Figure 4-2, quantization of the DC coefficient (the upper left element) by 
doing round(1260/16) gives the quantized coefficient 79. Notice that after quantization, 
mainly low-frequency coefficients, located toward the upper left-hand corner, are 
retained, while high-frequency coefficients have become zero and are discarded before 
transmission. Reconstruction is performed by multiplying the quantized coefficients by 
the same quantization matrix elements. However, the resultant reconstruction contains 
the quantization error as shown in Figure 4-2.

Usually quantization of a coefficient in a block depends on how its neighboring 
coefficients are quantized. In such cases, neighborhood context is usually saved and 
considered before quantizing the next coefficient. This is an example of a quantizer with 
memory.

It should be noted that the large number of zeros that appear in the quantized 
coefficients matrix is not by accident; the quantization matrix is designed in such a way 
that the high-frequency components–which are not very noticeable to the HVS–are 
removed from the signal. This allows greater compression of the video signal with little or 
no perceptual degradation in quality.

Color Quantization
Color quantization is a method to reduce the number of colors in an image. As the HVS 
is less sensitive to loss in color information, this is an efficient compression technique. 
Further, color quantization is useful for devices with limited color support. It is common 
to combine color quantization techniques, such as the nearest color algorithm, with 

Figure 4-2.  Quantization of a block of transform coefficients
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dithering–a technique for randomization of quantization error–to produce an impression 
of more colors than is actually available and to prevent color banding artifacts where 
continuous gradation of color tone is replaced by several regions of fewer tones with 
sudden tone changes.

Common Artifacts
Here are a few common artifacts that are typically found in various image and video 
compression applications.

Blurring Artifact
Blurring of an image refers to a smoothing of its details and edges, and it results from 
direct or indirect low-pass filter effects of various processing. Blurring of an object 
appears as though the object is out of focus. Generally speaking, blurring is an artifact 
the viewer would like to avoid, as clearer, crisper images are more desirable. But 
sometimes, blurring is intentionally introduced by using a Gaussian function to reduce 
image noise or to enhance image structures at different scales. Typically, this is done 
as a pre-processing step before compression algorithms may be applied, attenuating 
high-frequency signals and resulting in more efficient compression. This is also useful in 
edge-detection algorithms, which are sensitive to noisy environments. Figure 4-3 shows 
an example of blurring.

Figure 4-3.  An example of blurring of a frequency ramp. Low-frequency areas are barely 
affected by blurring, but the impact is visible in high-freqeuncy regions

Motion blur appears in the direction of motion corresponding to rapidly moving 
objects in a still image or a video. It happens when the image being recorded changes 
position (or the camera moves) during the recording of a single frame, because of either 
rapid movement of objects or long exposure of slow-moving objects. For example, motion 
blur is often an artifact in sports content with fast motion. However, in sports contents, 
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motion blur is not always desirable; it can be inconvenient because it may obscure the 
exact position of a projectile or athlete in slow motion. One way to avoid motion blur is 
by panning the camera to track the moving objects, so the object remains sharp but the 
background is blurred instead. Graphics, image, or video editing tools may also generate 
the motion blur effect for artistic reasons; the most frequent synthetic motion blur is 
found when computer-generated imagery (CGI) is added to a scene in order to match 
existing real-world blur or to convey a sense of speed for the objects in motion. Figure 4-4 
shows an example of motion blur.

Deinterlacing by the display and telecine processing by studios can soften images, 
and/or introduce motion-speed irregularities. Also, compression artifacts present in 
digital video streams can contribute additional blur during fast motion. Motion blur has 
been a more severe problem for LCD displays, owing to their sample-and-hold nature, 
where a continuous signal is sampled and the sample values are held for a certain time 
to eliminate input signal variations. In these displays, the impact of motion blur can be 
reduced by controlling the backlight.

Block Boundary Artifact
Block-based lossy coding schemes, including all major video and image coding 
standards, introduce visible artifacts at the boundaries of pixel blocks at low bit rates.  
In block-based transform coding, a pixel block is transformed to frequency domain using 
discrete cosine transform or similar transforms, and a quantization process discards 
the high-frequency coefficients. The lower the bit rate, the more coarsely the block is 
quantized, producing blurry, low-resolution versions of the block. In the extreme case, 
only the DC coefficient, representing the average of the data, is left for a block, so that the 
reconstructed block is only a single color region.

Figure 4-4.  An example of motion blur
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The block boundary artifact is the result of independently quantizing the blocks 
of transform coefficients. Neighboring blocks quantize the coefficients separately, 
leading to discontinuities in the reconstructed block boundaries. These block-boundary 
discontinuities are usually visible, especially in the flat color regions such as the sky, 
faces, and so on, where there are little details to mask the discontinuity. Compression 
algorithms usually perform deblocking operations to smooth out the reconstructed block 
boundaries, particularly to use a reference frame that is free from this artifact. Figure 4-5 
shows an example of block boundary artifact.

Figure 4-5.  An example of block boundary artifact

This artifact is so common that many names are popularly used for it. Although the 
discontinuities may or may not align with the boundaries of macroblocks as defined in 
the video and image coding standards, macroblocking is a common term for this artifact. 
Other names include tiling, mosaicing, quilting, and checkerboarding.
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Ringing Artifact
Ringing is unwanted oscillation of an output signal in response to a sudden change in 
the input. Image and video signals in digital data compression and processing are band 
limited. When they undergo frequency domain techniques such as Fourier or wavelet 
transforms, or non-monotone filters such as deconvolution, a spurious and visible 
ghosting or echo effect is produced near the sharp transitions or object contours. This is 
due to the well-known Gibb’s phenomenon—an oscillating behavior of the filter’s impulse 
response near discontinuities, in which the output takes higher value (overshoots) or lower 
value (undershoots) than the corresponding input values, with decreasing magnitude 
until a steady-state is reached. The output signal oscillates at a fading rate, similar to a bell 
ringing after being struck, inspiring the name of the ringing artifact. Figure 4-6 depicts the 
oscillating behavior of an example output response showing the Gibb’s phenomenon.  
It also depicts an example of ringing artifact in an image.

Figure 4-6.  An example of ringing artifact
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Aliasing Artifacts
Let us consider a time-varying signal x(t) and its sampled version x(n) = x(nT), with 
sampling period T >0. When x(n) is downsampled by a factor of 2, every other sample 
is discarded. In the frequency (w) domain, the Fourier transform of the signal X(e jw) 
is stretched by the same factor of 2. In doing so, the transformed signal can in general 
overlap with its shifted replicas. In case of such overlap, the original signal cannot be 
unambiguously recovered from its downsampled version, as the overlapped region 
represents two copies of the transformed signal at the same time. One of these copies  
is an alias, or replica of the other. This overlapping effect is called aliasing. Figure 4-7 
shows the transform domain effect of downsampling, including aliasing.

Figure 4-7.  Transform domain effect of downsampling, causing aliasing

In general, aliasing refers to the artifact or distortion resulting from ambiguous 
reconstruction of signals from its samples. Aliasing can occur in signals sampled in 
time—for instance, digital audio—and is referred to as temporal aliasing. Aliasing can 
also occur in spatially sampled signals—for instance, digital images or videos—where it  
is referred to as spatial aliasing.

Aliasing always occurs when actual signals with finite duration are sampled. This 
is because the frequency content of these functions has no upper bound, causing their 
Fourier transform representation to always overlap with other transformed functions.  
On the other hand, functions with bounded frequency content (bandlimited) have infinite 
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duration. If sampled at a high rate above the so-called Nyquist rate, the original signal can 
be completely recovered from the samples. From Figure 4-7, it is clear that aliasing can be 

avoided if the original signal is bandlimited to the region | |w
p

<
M

, where M is the 

downsampling factor. In this case, the original signal can be recovered from the 
downsampled version using an upsampler, followed by filtering.

Jaggies

Popularly known as jaggies, this common form of aliasing artifact produces visible stairlike 
lines where there should be smooth straight lines or curves in a digital image. These stairs 
or steps are a consequence of the regular, square layout of a pixel. With increasing image 
resolution, this artifact becomes less visible. Also, anti-aliasing filters are useful in reducing 
the visibility of the aliased edges, while sharpening increases such visibility.

Figure 4-8 shows examples of aliasing artifacts such as jaggies and moiré patterns.

Figure 4-8.  Examples of aliasing artifacts

Moiré Pattern

Due to undersampling of a fine regular pattern, a special case of aliasing occurs in the 
form of moiré patterns. It is an undesired artifact of images produced by various digital 
imaging and computer graphics techniques—for example, ray tracing a checkered 
surface. The moiré effect is the visual perception of a distinctly different third pattern, 
which is caused by inexact superposition of two similar patterns. In Figure 4-8, moiré 
effect can be seen as an undulating pattern, while the original pattern comprises a closely 
spaced grid of straight lines.

Flickering Artifacts
Flicker is perceivable interruption in brightness for a sufficiently long time (e.g., around  
100 milliseconds) during display of a video. It is a flashing effect that is displeasing to  
the eye. Flicker occurs on old displays such as cathode ray tubes (CRT) when they are 
driven at a low refresh rate. Since the shutters used in liquid crystal displays (LCD) for 
each pixel stay at a steady opacity, they do not flicker, even when the image is refreshed.
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Jerkiness

A flicker-like artifact, jerkiness (also known as choppiness), describes the perception of 
individual still images in a motion picture. It may be noted that the frequency at which 
flicker and jerkiness are perceived is dependent upon many conditions, including 
ambient lighting conditions. Jerkiness is not discernible for normal playback of video at 
typical frame rates of 24 frames per second or above. However, in visual communication 
systems, if a video frame is dropped by the decoder owing to its late arrival, or if the 
decoding is unsuccessful owing to network errors, the previous frame would continue 
to be displayed. Upon successful decoding of the next error-free frame, the scene on the 
display would suddenly be updated. This would cause a visible jerkiness artifact.

Telecine Judder

Another flicker-like artifact is the telecine judder. In order to convert the 24 fps film 
content to 30 fps video, a process called telecine, or 2:3 pulldown, is commonly applied. 
The process converts every four frames of films to five frames of interlaced video. Some 
DVD or Blu-ray players, line doublers, or video recorders can detect telecine and apply a 
reverse telecine process to reconstruct the original 24 fps video content. Figure 4-9 shows 
the telecine process.

Figure 4-9.  The telecine process

Notice that by the telecine process two new frames B/C and C/D are created, that 
were not part of the original set of source frames. Thus, the telecine process creates a 
slight error in the video signal compared to the original film frames. This used to create 
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the problem for films viewed on NTSC television that they would not appear as smooth 
as when viewed in a cinema. This problem was particularly visible during slow, steady 
camera movements that would appear slightly jerky when telecined.

Other Image Artifacts
There are several other artifacts commonly observed in compressed video. Some of these 
are discussed below. Figure 4-10 shows examples of various image artifacts.

Figure 4-10.  Examples of various image artifacts

Corruption due to Transmission Error

Owing to transmission errors in the compressed bitstream ,visible corruption may be 
observed in the reconstructed signal. Transmission errors can also disrupt the bitstream 
parsing, leading to partially decoded pictures or decoded pictures with missing blocks. 
In case of gross errors, decoders may continue to apply updates to the damaged picture 
for a short time, creating a ghost image effect, until the next error-free independently 
compressed frame is available. Ghosting is a common artifact in open-air television signals.

Image Noise

The camera sensor for each pixel contains one or more light-sensitive photodiodes that 
convert the incoming light into electrical signals, which is processed into the color value 
of the pixel in an image. However, this process is not always perfectly repeatable, and 
there are some statistical variations. Besides, even without incident light, the electrical 
activity of the sensors may generate some signal. These unwanted signals and variations 
are the sources of image noise. Such noise varies per pixel and over time, and increases 
with the temperature. Image noise can also originate from film grain.

Noise in digital images is most visible in uniform surfaces, such as in skies and 
shadows as monochromatic grain, and/or as colored waves (color noise). Another type of 
noise, commonly called hot pixel noise, occurs with long exposures lasting more than a 
second and appears as colored dots slightly larger than a single pixel. In modern cameras, 
however, hot pixel noise is increasingly rare.
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Factors Affecting Visual Quality
Visual artifacts resulting from loss of information due to processing of digital video signals 
usually degrade the perceived visual quality. In addition to the visual artifacts described 
above, the following are important contributing factors that affect visual quality.

•	 Sensor noise and pre-filtering: Sensor noise, as mentioned 
above, is an undesirable by-product of image capture that affects 
visual quality. Not only is the noise itself visually disturbing, but 
its presence also impacts subsequent processing, causing or 
aggravating further artifacts. For example, pre-filtering is typically 
done after an image is captured but before encoding. In the 
pre-filtering stage, aliasing or ringing artifacts can occur; these 
artifacts would be visible even if lossless encoding is performed.

•	 Characteristics of video: Visual quality is affected by digital  
video characteristics including bit depth, resolution, frame rate, 
and frame complexity. Typical video frames use 8 bits for each 
pixel component, while premium quality videos allocate 10 to  
16 bits. Similarly, high-definition video frames are four to six 
times as large as standard-definition video frames, depending 
on the format. Ultra-high-definition videos exhibit the highest 
quality owing to their 24 to 27 times higher pixel resolutions than 
their standard-definition counterparts.

Frame rate is another important factor; although the HVS can 
perceive slow motion at 10 frames per second (fps) and smooth 
motion at 24 fps, higher frame rates imply smoother motion, 
especially for fast-moving objects. For example, a moving ball may 
be blurry at 30 fps, but would be clearer at 120 fps. Very fast 
motion is more demanding–wing movements of a hummingbird 
would be blurry at 30 fps, or even at 120 fps; for clear view of such 
fast motion, 1000 fps may be necessary. Higher frame rates are 
also used to produce special slow-motion effects. One measure 
of the complexity of a frame is the amount of details or spatial 
business of the frame. Artifacts in frames with low complexity and 
low details are generally more noticeable than frames with higher 
complexity.

The spatial information (detail) and temporal information 
(motion) of the video are critical parameters. These play a 
crucial role in determining the amount of video compression 
that is possible and, consequently, the level of impairment that 
is suffered when the scene is transmitted over a fixed-rate digital 
transmission service channel.
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•	 Amount of compression: For compressed digital video the 
amount of compression matters because compression is usually 
achieved by trading off visual quality. Highly compressed 
video has lower visual quality than lightly compressed video. 
Compression artifacts are noticeable and can be annoying 
for low-bit-rate video. Also, based on available bits, different 
amounts of quantization may have been done per block and per 
frame. The impact of such differences can be visible depending 
on the frame complexity. Furthermore, although compression 
techniques such as chroma subsampling take advantage of the 
HVS characteristics, premium contents with 4:4:4 chroma format 
have better visual quality compared to 4:2:0 contents.

•	 Methods of compression: Lossless compression retains all the 
information present in the video signal, so it does not introduce 
quality degradation. On the other hand, lossy compression aims to 
control the loss of quality by performing a careful tradeoff between 
visual quality and amount of compression. In lossy compression, 
selection of modes also influences the quality. In error-prone 
environments such as wireless networks, intra modes serve as a 
recovery point from errors at the expense of using more bits.

•	 Multiple passes of processing: In off-line video applications 
where real-time processing is not necessary, the video signal may 
undergo multiple passes. Analyzing the statistics of the first pass, 
parameters can be tuned for subsequent passes. Such techniques 
usually produce higher quality in the final resulting signals. 
However, artifacts due to various processing may still contribute 
to some quality loss.

•	 Multiple generations of compression: Some video applications 
may employ multiple generations of compression, where a 
compressed video signal is decompressed before compressing 
again with possibly different parameters. This may result in 
quality degradation owing to the use of different quantization 
maps for each generation. Typically, after the second generation 
visual quality deteriorates dramatically. To avoid such quality 
loss, robust design of quantization parameters is necessary.

•	 Post-production: Post-production effects and scene cuts can 
cause different portions of the encoded video sequence to have 
different quality levels.

Video Quality Evaluation Methods and Metrics
Video quality is evaluated for specification of system requirements, comparison of 
competing service offerings, transmission planning, network maintenance, client-based 
quality measurement, and so on. Several methods have been proposed in the literature 
to address the quality evaluation problem for various usages. With many methods and 
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algorithms available, the industry’s need for accurate and reliable objective video metrics 
has generally been addressed by the ITU in several recommendations, each aiming 
toward particular industries such as standard- and high-definition broadcast TV.

The standardization efforts are being extended with the progress of modern 
usages like mobile broadcasting, Internet streaming video, IPTV, and the like. 
Standards address a variety of issues, including definitions and terms of reference, 
requirements, recommended practices, and test plans. In this section, we focus on 
the definitions, methods, and metrics for quality-evaluation algoithms. In particular, 
Quality of Experience (QoE) of video is addressed from the point of view of overall user 
experience—that is, the viewer’s perception—as opposed to the well-known Quality  
of Service (QoS) measure usually employed in data transmission and network 
performance evaluation. 

There are two approaches to interpreting video quality:

The first approach is straightforward; the actual visual quality •	
of the image or video content is determined based on subjective 
evaluation done by humans.

In the second approach is synonymous with the signal fidelity •	
or similarity with respect to a reference or perfect image in some 
perceptual space. There are sophisticated models to capture the 
statistics of the natural video signals; based on these models, 
objective signal fidelity criteria are developed that relate video 
quality with the amount of information shared between a 
reference and a distorted video signal.

In the following discussion, both subjective and objective video quality metrics are 
presented in detail.

Subjective Video Quality Evaluation
Video processing systems perform various tasks, including video signal acquisition, 
compression, restoration, enhancement, and reproduction. In each of these tasks, aiming 
for the best video quality under the constraints of the available system resources, the 
system designers typically make various tradeoffs based on some quality criteria. 

An obvious way of measuring quality is to solicit the opinion of human observers 
or subjects. Therefore, the subjective evaluation method of video quality utilizes human 
subjects to perform the task of assessing visual quality. However, it is impossible to 
subjectively assess the quality of every video that an application may deal with. Besides, 
owing to inherent variability in quality judgment among human observers, multiple 
subjects are usually required for meaningful subjective studies. Furthermore, video 
quality is affected by viewing conditions such as ambient illumination, display device, 
and viewing distance. Therefore, subjective studies must be conducted in a carefully 
controlled environment.

Although the real perceptual video quality can be tracked by using this technique, the 
process is cumbersome, not automatable, and the results may vary depending on the viewer, 
as the same visual object is perceived differently by different individuals. Nevertheless,  
it remains a valuable method in providing ground-truth data that can be used as a reference 
for the evaluation of automatic or objective video quality-evaluation algorithms.
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Objective algorithms estimate a viewer’s perception, and the performance of an 
algorithm is evaluated against subjective test results. Media degradations impact the 
viewers’ perception of the quality. Consequently, it is necessary to design subjective tests 
that can accurately capture the impact of these degradations on a viewer’s perception. 
These subjective tests require performing comprehensive experiments that produce 
consistent results. The following aspects of subjective testing are required for accurate 
evaluation of an objective quality algorithm:

Viewers should be naïve and non-expert, representing normal •	
users whose perception is estimated by the objective quality 
models. These viewers vote on the subjective quality as instructed 
by the test designer. However, for specific applications, such as 
new codec developments, experienced voters are more suitable.

The number of voters per sample should meet the subjective •	
testing requirements as described in the appropriate ITU-T 
Recommendations. Typically a minimum of 24 voters is 
recommended.

To maintain consistency and repeatability of experiments, and to •	
align the quality range and distortion types, it is recommended 
that the experiments contain an anchor pool of samples that best 
represent the particular application under evaluation. However, 
it should be noted that even when anchor samples are used, a 
bias toward different experiments is common, simply because it 
is not always possible to include all distortion types in the anchor 
conditions.

Study group 9 (SG9) of ITU-T developed several recommendations, of which 
the Recommendation BT. 500-131 and the P-series recommendations are devoted to 
subjective and objective quality-assessment methods. These recommendations suggest 
standard viewing conditions, criteria for the selection of observers and test material, 
assessment procedures, and data analysis methods. Recommendations P.9102 through 
P.9133 deal with subjective video quality assessment for multimedia applications. Early 
versions, such as Rec. P.910 and P.911,4 were designed around the paradigm of a fixed 
video service for multimedia applications. This paradigm considers video transmission 
over a reliable link to an immobile cathode ray tube (CRT) television located in a quiet 
and nondistracting environment, such as a living room or office. To accommodate new 
applications, such as Internet video and distribution quality video, P.913 was introduced.

1ITU-R Recommendation BT.500-13: Methodology for the Subjective Assessment of the Quality of 
Television Pictures (Geneva, Switzerland: International Telecommunications Union, 2012).
2ITU-T Recommendation P.910: Subjective Video Quality Assessment Methods for Multimedia 
Applications (Geneva, Switzerland: International Telecommunications Union, 2008).
3ITU-T Recommendation P.913: Methods for the Subjective Assessment of Video Quality, Audio 
Quality and Audiovisual Quality of Internet Video and Distribution Quality Television in Any 
Environment (Geneva, Switzerland: International Telecommunications Union, 2014).
4ITU-T Recommendation P.911: Subjective Audiovisual Quality Assessment Methods for Multimedia 
Applications (Geneva, Switzerland: International Telecommunications Union, 1998).
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Ratified in January 2014, Recommendation P.913 describes non-interactive 
subjective assessment methods for evaluating the one-way overall video quality, audio 
quality, and/or audio-visual quality. It aims to cover a new paradigm of video—for 
example, an on-demand video service, transmitted over an unreliable link to a variety of 
mobile and immobile devices located in a distracting environment, using LCDs and other 
flat-screen displays. This new paradigm impacts key characteristics of the subjective test, 
such as the viewing environment, the listening environment, and the questions to be 
answered. Subjective quality assessment in the new paradigm asks questions that are not 
considered in the previous recommendations. However, this recommendation does not 
address the specialized needs of broadcasters and contribution quality television.

The duration, the number and type of test scenes, and the number of subjects are 
critical for the interpretation of the results of the subjective assessment. P.913 recommends 
stimuli ranging from 5 seconds to 20 seconds in duration, while 8- to 110-second 
sequences are highly recommended. Four to six scenes are considered sufficient when 
the variety of content is respected. P.913 mandates that at least 24 subjects must rate each 
stimulus in a controlled environment, while at least 35 subjects must be used in a public 
environment. Fewer subjects may be used for pilot studies to indicate trending.

Subjective Quality Evaluation Methods and Metrics
The ITU-T P-series recommendations define some of the most commonly used methods 
for subjective quality assessment. Some examples are presented in this section.

Absolute Category Rating

In the absolute category rating (ACR) method, the quality judgment is classified 
into several categories. The test stimuli are presented one at a time and are rated 
independently on a category scale. ACR is a single-stimulus method, where a viewer 
watches one stimulus (e.g., video clip) and then rates it. ACR methods are influenced 
by the subject’s opinion of the content—for example, if the subject does not like the 
production of the content, he may give it a poor rating. The ACR method uses the 
following five-level rating scale:

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

A variant of the ACR method is ACR with hidden reference (ACR-HR). With ACR-HR, 
the experiment includes a reference version of each video segment, not as part of a 
pair but as a freestanding stimulus for rating. During the data analysis the ACR scores 
are subtracted from the corresponding reference scores to obtain a differential viewer 
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(DV) score. This procedure is known as hidden reference removal. The ACR-HR method 
removes some of the influence of content from the ACR ratings, but to a lesser extent than 
double-stimulus methods, which are discussed below.

Degradation Category Rating

Also known as the double-stimulus impair scale (DSIS) method, the degradation category 
rating (DCR) presents a pair of stimuli together. The reference stimulus is presented first, 
followed by a version after it has undergone processing and quality degradation. In this 
case, the subjects are asked to rate the impairment of the second stimulus with respect to 
the reference. DCR is minimally influenced by the subject’s opinion of the content. Thus, 
DCR is able to detect color impairments and skipping errors that the ACR method may 
miss. However, DCR may have a slight bias, as the reference is always shown first.  
In DCR, the following five-level scale for rating the relative impairment is used:

5 Imperceptible

4 Perceptible but not annoying

3 Slightly annoying

2 Annoying

1 Very annoying

Comparison Category Rating

The comparison category rating (CCR) is a double-stimulus method whereby two 
versions of the same stimulus are presented in a randomized order. For example, half of 
the time the reference is shown first, and half the time it is shown second, but in random 
order. CCR is also known as the double-stimulus comparison scale (DSCS) method. 
It may be used to compare reference video with processed video, or to compare two 
different impairments. CCR, like DCR, is minimally influenced by the subject’s opinion 
of the content. However, occasionally subjects may inadvertently swap their rating in 
CCR, which would lead to a type of error that is not present in DCR or ACR. In CCR, the 
following seven-level scale is used for rating.

-3 Much worse

-2 Worse

-1 Slightly worse

0 The same

1 Slightly better

2 Better

3 Much better
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SAMVIQ

Subjective assessment of multimedia video quality (SAMVIQ) is a non-interactive 
subjective assessment method used for video-only or audio-visual quality evaluation, 
spanning a large number of resolutions from SQCIF to HDTV. The SAMVIQ methodology 
uses a continuous quality scale. Each subject moves a slider on a continuous scale 
graded from zero to 100. This continuous scale is annotated by five quality items linearly 
arranged: excellent, good, fair, poor, and bad.

MOS

The mean opinion score (MOS) is the most common metric used in subjective video 
quality evaluation. It forms the basis of the subjective quality-evaluation methods, and it 
serves as a reference for the objective metrics as well. Historically, this metric has been 
used for decades in telephony networks to obtain the human user’s view of the quality 
of the network. It has also been used as a subjective audio-quality measure. After all the 
subjects are run through an experiment, the ratings for each clip are averaged to compute 
either a MOS or a differential mean opinion score (DMOS).

The MOS provides a numerical indication of the perceived quality from the 
user’s point of view of the received media after it has undergone compression and/or 
transmission. The MOS is generally expressed as a single number in the range from 1 to 5, 
where 1 is the lowest perceived quality, and 5 is the highest perceived quality. MOS is used 
for single-stimulus methods such as ACR or ACR-HR (using raw ACR scores), where the 
subject rates a stimulus in isolation. In contrast, the DMOS scores measure a change in 
quality between two versions of the same stimulus (e.g., the source video and a processed 
version of the video). ACR-HR (in case of average differential viewer score), DCR, and 
CCR methods usually produce DMOS scores.

Comparing the MOS values of different experiments requires careful consideration of 
intra- and inter-experimental variations. Normally, only the MOS values from the same test 
type can be compared. For instance, the MOS values from a subjective test that use an ACR 
scale cannot be directly compared to the MOS values from a DCR experiment. Further, even 
when MOS values from the same test types are compared, the fact that each experiment is 
slightly different even for the same participants leads to the following limitations:

A score assigned by subject is rarely always the same, even when •	
an experiment is repeated with the same samples in the same 
representation order. Usually this is considered as a type of noise 
on the MOS scores.

There is a short-term context dependency as subjects are •	
influenced by the short-term history of the samples they have 
previously scored. For example, following one or two poor 
samples, subjects tend to score a mediocre sample higher. 
If a mediocre sample follows very good samples, there is a 
tendency to score the mediocre sample lower. To average out 
this dependency, the presentation order should be varied for the 
individual subjects. However, this strategy does not remove the 
statistical uncertainty.
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The mid-term contexts associated with the average quality, the •	
quality distribution, and the occurance of distortions significantly 
contribute to the variations between subjective experiments. For 
example, if an experiment is composed of primarily low-quality 
samples, people tend to score them higher, and vice versa. This 
is because people tend to use the full quality scale offered in an 
experiment and adapt the scale to the qualities presented in the 
experiment. Furthermore, individual distortions for less frequent 
samples are scored lower compared to experiments where  
samples are presented more often and people become more 
familiar with them.

The long-term dependencies reflect the subject’s cultural •	
interpretation of the category labels, the cultural attitude to 
quality, and language dependencies. For example, some people 
may have more frequent experiences with video contents than 
others. Also, the expectations regarding quality may change over 
time. As people become familiar with digital video artifacts, it 
becomes part of their daily experience.

Although these effects cause differences between individual experiments, they 
cannot be avoided. However, their impacts can be minimized by providing informative 
instructions, well-balanced test designs, a sufficient number of participants, and a mixed 
presentation order.

Objective Video Quality Evaluation Methods and Metrics
Video quality assessment (VQA) studies aim to design algorithms that can automatically 
evaluate the quality of videos in a manner perceptually consistent with the subjective 
human evaluation. This approach tracks an objective video-quality metric, which is 
automatable, and the results are verifiable by repeated execution, as they do not require 
human field trial. However, these algorithms merely attempt to predict human subjective 
experience and are not perfect; they will fail for certain unpredictable content. Thus, the 
objective quality evaluation cannot replace subjective quality evaluation; they only aid as 
a tool in the quality assessment. The ITU-T P.14015 presents a framework for the statistical 
evaluation of objective quality algorithms regardless of the assessed media type.

In P.1401, the recommended statistical metrics for objective quality assessment need 
to cover three main aspects—accuracy, consistency, and linearity—against subjective 
data. It is recommended that the prediction error be used for accuracy, the outlier ratio or 

5ITU-T Recommendation P.1401: Methods, Metrics and Procedures for Statistical Evaluation, 
Qualification and Composition of Objective Quality Prediction Models (Geneva, Switzerland: 
International Telecommunications Union, 2012).
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the residual error distribution for consistency, and the Pearson correlation coefficient for 
linearity. The root mean square of the prediction error is given by:
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where N is the number of samples and N-1 ensures an unbiased estimator for the RMSE.
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An objective video or image quality metric can play a variety of roles in video 
applications. Notable among these are the following:

An objective metric can be used to dynamically monitor and •	
adjust the quality. For example, a network digital video server 
can appropriately allocate, control, and trade off the streaming 
resources based on the video quality assessment on the fly.

It can be used to optimize algorithms and parameter settings of •	
video processing systems. For instance, in a video encoder, a quality 
metric can facilitate the optimal design of pre-filtering and bit-rate 
control algorithms. In a video decoder, it can help optimize the 
reconstruction, error concealment, and post-filtering algorithms.

It can be used to benchmark video processing systems and •	
algorithms.

It can be used to compare two video systems solutions.•	

Classification of Objective Video Quality Metrics
One way to classify the objective video quality evaluation methods is to put them into 
three categories based on the amount of reference information they require: full reference 
(FR), reduced reference (RR), and no reference (NR). These methods are discussed below. 
The FR methods can be further categorized as follows:

Error sensitivity based approaches•	

Structural similarity based approaches•	

Information fidelity based aproaches•	

Spatio-temporal approaches•	
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Saliency based approaches•	

Network aware approaches•	

These approaches are discussed in the following subsections. Further, an example 
metric for each approach is elaborated.

Full Reference

A digital video signal undergoes several processing steps during which video quality 
may have been traded off in favor of compression, speed, or other criteria, resulting in a 
distorted signal that is available to the viewer. In objective quality assessment, the fidelity 
of the distorted signal is typically measured. To determine exactly how much degradation 
has occurred, such measurements are made with respect to a reference signal that is 
assumed to have perfect quality. However, the reference signal may not be always available.

Full-reference6 (FR) metrics measure the visual quality degradation in a distorted 
video with respect to a reference video. They require the entire reference video to 
be available, usually in unimpaired and uncompressed form, and generally impose 
precise spatial and temporal alignment, as well as calibration of luminance and color 
between the two videos. This allows every pixel in every frame of one video to be directly 
compared with its counterpart in the other video.

Typically, the fidelity is determined by measuring the distance between the reference 
and the distorted signals in a perceptually meaningful way. The FR quality evaluation 
methods attempt to achieve consistency in quality prediction by modeling the significant 
physiological and psychovisual features of the HVS and using this model to evaluate 
signal fidelity. As fidelity increases, perceived quality of the content also increases. 
Although FR metrics are very effective in analysis of video quality, and are very widely 
used for analysis and benchmarking, the FR metrics’ requirement that the reference be 
accessible during quality evaluation at the reconstruction end may not be fulfilled in 
practice. Thus, their usefulness may become limited in such cases.

Reduced Reference

It is possible to design models and evaluation criteria when a reference signal is not 
fully available. Research efforts in this area generated the various reduced-reference7 
(RR) methods that use partial reference information. They extract a number of features 
from the reference and/or the distorted test video. These features form the basis of the 
comparison between the two videos, so that the full reference is not necessary. This 
approach thus avoids the assumptions that must be made in the absence of any reference 
information, while keeping the amount of reference information manageable.

6ITU-T Recommendation J.247: Objective Perceptual Multimedia Video Quality Measurement  
in the Presence of a Full Reference (Geneva, Switzerland: International Telecommunications Union, 
2009).
7ITU-T Recommendation J.246: Perceptual Visual Quality Measurement Techniques for Multimedia 
Services over Digital Cable Television Networks in the Presence of a Reduced Bandwidth Reference 
(Geneva, Switzerland: International Telecommunications Union, 2008).
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No Reference

No-reference (NR) metrics analyze only the distorted test video without depending on an 
explicit reference video. As a result, NR metrics are not susceptible to alignment issues. 
The main challenge in NR approaches, however, is to distinguish between the distortions 
and the actual video signal. Therefore, NR metrics have to make assumptions about the 
video content and the types of distortions.

Figure 4-11 shows typical block diagrams of the FR and the NR approaches.

Figure 4-11.  Reference-based classification examples: FR and NR approaches

An interesting NR quality measurement algorithm is presented in Wang et al.8 This 
algorithm considers blurring and blocking as the most significant artifacts generated 
during the JPEG compression process, and proposes to extract features that can be used 
to reflect the relative magnitudes of these artifacts. The extracted features are combined 
to generate a quality prediction model that is trained using subjective experimental 
results. It is expected that the model would be a good fit for images outside the 
experimental set as well. While such algorithms are interesting in that an assessment can 
be made solely on the basis of the available image content without using any reference, 
it is always better to use an FR approach when the reference is available, so the following 
discussion will focus on the various FR approaches.

The problem of designing an objective metric that closely agrees with perceived 
visual quality under all conditions is a hard one. Many available metrics may not account 
for all types of distortion corrupting an image, or the content of the image, or the strength 
of the distortion, yet provide the same close agreement with human judgments. As such 

8Z. Wang, H. R. Sheikh, and A. C. Bovik, “No-Reference Perceptual Quality Assessment of JPEG 
Compressed Images,” Proceedings of International Conference on Image Processing 1, (2002): 
477-80.
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this remains an active research area. Several FR approaches have been taken in the quest 
for finding a good solution to this problem. Some of these approaches are presented in 
the following sections.

Error Sensitivity Based Approaches
When an image or video frame goes through lossy processing, a distorted image or video 
frame is produced. The amount of error or the distortion that is introduced by the lossy 
process determines the amount of visual quality degradation. Many quality-evaluation 
metrics are based on the error or intensity difference between the distorted image and 
the reference image pixels. The simplest and most widely used full-reference quality 
metric is the mean squared error (MSE), along with the related quantity of peak signal-to-
noise ratio (PSNR). These are appealing because they are simple to calculate, have clear 
physical meanings, and are mathematically convenient in the context of optimization. 
However, they are not very well matched to perceived visual quality.

In error sensitivity based image or video quality assessment, it is generally assumed 
that the loss of perceptual quality is directly related to the visibility of the error signal. 
The simplest implementation of this concept is the MSE, which objectively quantifies the 
strength of the error signal. But two distorted images with the same MSE may have very 
different types of errors, some of which are much more visible than others. In the last 
four decades, a number of quality-assessment methods have been developed that exploit 
known characteristics of the human visual system (HVS). The majority of these models 
have followed a strategy of modifying the MSE measure so that different aspects of the 
error signal are weighted in accordance with their visibility. These models are based on a 
general framework, as discussed below.

General Framework

Figure 4-12 depicts a general framework of error sensitivity based approaches of image 
or video quality assessment. Although the details may differ, most error sensitivity based 
perceptual quality assessment models can be described with a similar block diagram.

Figure 4-12.  General framework of error sensitivity based approaches
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In Figure 4-12, the general framework includes the following stages:

•	 Pre-processing: In this stage, known malformations are 
eliminated and the images are prepared so as to perform a fair 
comparison between the distorted image and the reference 
image. For example, both images are properly scaled and aligned. 
If necessary, a color space conversion or gamma correction may 
be performed that is more appropriate for the HVS. Further, a  
low-pass filter simulating the point spread function of the eye 
optics may be applied. Additionally, both images may be modified 
using a non-linear point operation to simulate light adaptation.

•	 Channel Decomposition: The images are typically separated 
into subbands or channels that are sensitive to particular spatial 
and temporal frequency, as well as orientation. Some complex 
methods try to closely simulate neural responses in primary 
visual cortex, while others simply use DCT or wavelet transforms 
for channel decomposition.

•	 Contrast Sensitivity Normalization: The contrast sensitivity 
function (CSF) describes the sensitivity of the HVS to different 
spatial and temporal frequencies that are present in the visual 
stimulus. The frequency response of the CSF is typically 
implemented as a linear filter. Some older methods weigh the 
signal according to CSF in a stage before channel decomposition, 
but recent methods use CSF as a base-sensitivity normalization 
factor for each channel.

•	 Error Normalization: The presence of one image component 
may decrease or mask the visibility of another, nearby image 
component, which is in close proximity in terms of spatial 
or temporal location, spatial frequency, or orientation. Such 
masking effect is taken into account when the error signal in 
each channel is calculated and normalized. The normalization 
process weighs the error signal in a channel by a space-varying 
visibility threshold. For each channel, the visibility threshold is 
determined based on the channel’s base-sensitivity, as well as 
the energy of the reference or distorted image coefficients in a 
spatial neighborhood, either within the same channel or across 
channels. The normalization process expresses the error in terms 
of just noticeable difference (JND) units. Some methods also 
consider the effect of saturation of the contrast response.
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•	 Error Pooling: In this final stage, the normalized error signals 
are combined to a single value. To obtain the combined value, 
typically the Minkowski norm is calculated as follows:
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where e
i,j

 is the normalized error of the jth spatial coefficient in 
the ith frequency channel, and b is a constant with typical values 
between 1 and 4.

Limitations

Although error sensitivity based approaches estimate the visibility of the error signal 
by simulating the functional properties of the HVS, most of these models are based 
on linear or quasilinear operators that have been characterized using restricted and 
simplistic stimuli. In practice, however, the HVS is a complex and highly non-linear 
system. Therefore, error sensitivity based approaches adopt some assumptions and 
generalizations leading to the following limitations:

•	 Quality definition: As error sensitivity based image or video 
quality assessment methods only track the image fidelity, 
lower fidelity does not always mean lower visual quality. The 
assumption that visibility of error signal translates to quality 
degradation may not always be valid. Some distortions are 
visible, but are not so objectionable. Brightening an entire image 
by globally increasing the luma value is one such example. 
Therefore, image fidelity only moderately correlates with  
image quality.

•	 Generalization of models: Many error-sensitivity models are 
based on experiments that estimate the threshold at which a 
stimulus is barely visible. These thresholds are used to define 
error-sensitivity measures such as the contrast sensitivity 
function. However, in typical image or video processing, 
perceptual distortion happens at a level much higher than 
the threshold. Generalization of near-threshold models in 
suprathreshold psychophysics is thus susceptible to inaccuracy.
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•	 Signal characteristics: Most psychophysical experiments 
are conducted using relatively simple patterns, such as spots, 
bars, or sinusoidal gratings. For example, the CSF is typically 
obtained from threshold experiments using global sinusoidal 
images. However, real-world natural images have much 
different characteristics from the simple patterns. Therefore, the 
applicability of the simplistic models may be limited in practice.

•	 Dependencies: It is easy to challenge the assumption used in 
error pooling that error signals in different channels and spatial 
locations are independent. For linear channel decomposition 
methods such as the wavelet transform, a strong dependency 
exists between intra- and inter-channel wavelet coefficients of 
natural images. Optimal design of transformation and masking 
models can reduce both statistical and perceptual dependencies. 
However, the impact of such design on VQA models is yet to be 
determined.

•	 Cognitive interaction: It is well known that interactive visual 
processing such as eye movements influences the perceived 
quality. Also, cognitive understanding has a significant impact on 
quality. For example, with different instructions, a human subject 
may give different scores to the same image. Prior knowledge of 
or bias toward an image, attention, fixation, and so on may also 
affect the evaluation of the image quality. However, most error 
sensitivity based image or video quality assessment methods 
do not consider the cognitive interactions as they are not well 
understood and are difficult to quantify.

Peak Signal-to-Noise Ratio

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the 
maximum possible power of a signal and the power of distorting noise that affects the 
quality of its representation after compression, processing, or transmission. Because 
many signals have a very wide dynamic range (ratio between the largest and smallest 
possible values of a changeable quantity), the PSNR is usually expressed in terms of 
the logarithmic decibel (dB) scale. The PSNR does not always perfectly correlate with a 
perceived visual quality, owing to the non-linear behavior of the HVS, but as long as the 
video content and the codec type are not changed, it is a valid quality measure,9 as it is a 
good indicator of the fidelity of a video signal in a lossy environment.

Let us consider a signal f that goes through some processing or transmission and is 
reconstructed as an approximation f̂ , where some noise is introduced. Let f

m
 is the peak 

or maximum signal value; for n-bit representation of the signal f
m

 = 2n − 1. For example, in 

9Q. Huynh-Thu, and M. Ghanbari, “Scope of Validity of PSNR in Image/Video Quality 
Assessment,” Electronic Letters 44, no. 13 (2008): 800–801.
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case of an 8-bit signal f
m

 = 255, while for a 10-bit signal, f
m

 = 1023. PSNR, as a ratio of signal 
power to the noise power, is defined as follows:

PSNR
f

MSE
m=10 10
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	 (Equation 4-3)

where the mean square error (MSE) is given by:
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where N is the number of samples over which the signal is approximated. Similarly,  
the MSE for a two-dimensional signal such as image or a video frame with width M and 
height N is given by:

MSE
M N

f i j f i j
j

N

i

M

=
´

-
==
åå1 2

11

( ( , ) ( , )) 	 (Equation 4-5)

where f( i, j) is the pixel value at location (i, j) of the source image, and ˆ( , )f i j  is the 
corresponding pixel value in the reconstructed image. PSNR is usually measured for an 
image plane, such as the luma or chroma plane of a video frame.

Applications
PSNR has traditionally been used in analog audio-visual systems as a consistent quality 
metric. Digital video technology has exposed some limitations in using the PSNR as a 
quality metric. Nevertheless, owing to its low complexity and easy measurability, PSNR is 
still the most widely used video quality metric for evaluating lossy video compression or 
processing algorithms, particularly as a measure of gain in quality for a specified target bit 
rate for the compressed video. PSNR is also used in detecting the existence of frame drops 
or severe frame data corruption and the location of dropped or corrupt frames in a  
video sequence in automated environments. Such detections are very useful in 
debugging and optimization of video encoding or processing solutions. Furthermore, 
PSNR is extensively used as a comparison method between two video coding solutions  
in terms of video quality.

Advantages
PSNR has the following advantages as a video quality metric.

PSNR is a simple and easy to calculate picture-based metric. •	
PSNR calculation is also fast and parallelization-friendly—for 
example, using single instruction multiple data (SIMD) paradigm.

Since PSNR is based on MSE, it is independent of the direction  •	
of the difference signal; either the source or the reconstructed 
signal can be subtracted from one another yielding the same 
PSNR output.

f̂

f̂
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PSNR is easy to incorporate into practical automated  •	
quality- measurement systems. This flexibility makes it amenable 
to a large test suite. Thus, it is very useful in building confidence 
on the evaluation.

The PSNR calculation is repeatable; for the same source and •	
reconstructed signals, the same output can always be obtained. 
Furthermore, PSNR does not depend on the width or height of the 
video, and works for any resolution.

Unlike cumbersome subjective tests, PSNR does not require •	
special setup for the environment.

PSNR is considered to be a reference benchmark for developing •	
various other objective video-quality metrics.

For the same video source and the same codec, PSNR is a •	
consistent quality indictor, so it can be used for encoder 
optimization to maximize the subjective video quality and/or the 
performance of the encoder.

PSNR can be used separatelyfor luma and chroma channels. Thus, •	
variation in brightness or color between two coding solutions can 
be easily tracked. In order to determine which solution uses more 
bits for a given quality level, such information is very useful.

The popularity of PSNR is not only rooted in its simplicity but  •	
also its performance as a metric should not be underestimated.  
A validation study conducted by the Video Quality Experts Group 
(VQEG) in 2001 discovered that the nine VQA methods that it 
tested, including some of the most sophisticated algorithms at 
that time, were “statistically indistinguishable” from the PSNR.10

Limitations
Common criticisms for PSNR include the following.

Some studies have shown that PSNR poorly correlates with •	
subjective quality.11

PSNR does not consider the visibility differences of two different •	
images, but only considers the numerical differences. It does not 
take the visual masking phenomenon or the characteristics of 
the HVS into account–all pixels that are different in two images 
contribute to the PSNR, regardless of the visibility of the difference.

10Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video 
Quality Assessment, 2000, available at www.vqeg.org.
11B. Girod, “What's Wrong with Mean Squared Error?” in Visual Factors of Electronic Image 
Communications, ed. A. B. Watson, (Cambridge, MA: MIT Press, 1993): 207–20.

http://www.vqeg.org/
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Other objective perceptual quality metrics have been shown  •	
to outperform PSNR in predicting subjective video quality in 
specific cases.12

Computational complexity of the encoder in terms of execution •	
time or machine cycles is not considered in PSNR. Nor does it 
consider system properties such as data cache size, memory 
access bandwidth, storage complexity, instruction cache size, 
parallelism, and pipelining, as all of these parameters contribute 
to coding complexity of an encoder. Therefore, the comparison of 
two encoders is quite restricted when PSNR is used as the main 
criteria.

PSNR alone does not provide sufficient information regarding •	
coding efficiency of an encoder; a corresponding cost measure 
is also required, typically in terms of the number of bits used. 
In other words, saying that a certain video has a certain level of 
PSNR does not make sense unless the file size or the bit rate for 
the video is also known.

PSNR is typically averaged over a frame, and local statistics •	
within the frame are not considered. Also, for a video sequence, 
the quality may vary considerably from scene to scene, which 
may not be accurately captured if frame-based PSNR results are 
aggregated and an averge PSNR is used for the video sequence.

PSNR does not capture temporal quality issues such as frame •	
delay or frame drops. Additionally, PSNR is only a source coding 
measure and does not consider channel coding issues such as 
multi-path propagation or fading. Therefore, it is not a suitable 
quality measure in lossy network environment.

PSNR is an FR measure, so reference is required for quality •	
evaluation of a video. However, in practice, an unadulterated 
reference is not generally available at the reconstruction end. 
Nevertheless, PSNR remains effective and popular for evaluation, 
analysis, and benchmarking of video quality.

Improvements on PSNR
Several attempts have been made in literature to improve PSNR. Note that visibility of 
a given distortion depends on the local content of the source picture. Distortions are 
usually more objectionable in plain areas and on edges than in busy areas. Thus, it is 
possible to model the visual effect of the distortion itself in a more sophisticated way than 

12ITU-T Recommendation J.144: Objective Perceptual Video Quality Measurement Techniques for 
Digital Cable Television in the Presence of a Full Feference (Geneva, Switzerland: International 
Telecommunications Union, 2004).
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simply measuring its energy, as done in PSNR. For example, a weighting function may 
be applied in frequency domain, giving more weight to the lower-frequency components 
of the error than to the higher-frequency components. A new measure, named just 
noticeable difference (JND), has been defined by Sarnoff in 2003, based on a visual 
discrimination mode.13

Moving Picture Quality Metric

PSNR does not take the visual masking phenomenon into consideration. In other words, 
every single pixel error contributes to the decrease of the PSNR, even if this error is not 
perceptible. This issue is typically addressed by incorporating some HVS models. In 
particular, two key aspects of the HVS, namely contrast sensitivity and masking, have 
been intensively studied in the literature. The first phenomenon accounts for the fact 
that a signal is detected by the eye only if its contrast is greater than some threshold. 
The sensitivity of the eye varies as a function of spatial frequency, orientation, and 
temporal frequency. The second phenomenon is related to the human vision response 
to a combination of several signals. For example, consider a stimulus consisting of the 
foreground and the background signals. The detection threshold of the foreground is 
modified as a function of the contrast from the background.

The moving picture quality metric (MPQM)14 is an error-sensitivity based spatio-
temporal objective quality metric for moving pictures that incorporates the two HVS 
characteristics mentioned above. Following the general framework shown in Figure 4-12, 
MPQM first decomposes an original video and a distorted version of it into perceptual 
channels. A channel-based distortion measure is then computed, accounting for contrast 
sensitivity and masking. After obtaining the distortion data for each channel, the data is 
combined over all the channels to compute the quality rating. The resulting quality rating 
is then scaled from1 to 5 (from bad to excellent). MPQM is known to give good correlation 
with subjective tests for some videos, but it also yields bad results for others.15 This is 
consistent with other error-sensitivity based approaches.

The original MPQM algorithm does not take chroma into consideration, so a 
variant of the algorithm called the color MPQM (CMPQM) has been introduced. In this 
technique, first the color components are converted to RGB values that are linear with 
luminance. Then the RGB values are converted to coordinate values corresponding to a 
luma and two chroma channels. This is followed by the analysis of each component of 
the original and error sequence by a filter bank. As the HVS is less sensitive to chroma, 
only nine spatial and one temporal filter is used for these signals. The rest of the steps are 
similar to those in MPQM.

13J. Lubin, “A Visual Discrimination Mode for Image System Design and Evaluation,” in Visual 
Models for Target Detection and Recognition, ed. E. Peli, (Singapore: World Scientific Publishers, 
1995): 207–20.
14C. J. Branden-Lambrecht, and O. Verscheure, “Perceptual Quality Measure using a  
Spatio-Temporal Model of the Human Visual System,” in Proceedings of the SPIE 2668 (San Jose, 
CA: SPIE-IS&T, 1996): 450–61.
15See http://www.irisa.fr/armor/lesmembres/Mohamed/Thesis.pdf.

http://www.irisa.fr/armor/lesmembres/Mohamed/Thesis.pdf
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Structural Similarity Based Approaches
Natural image signals are highly structured. There are strong dependencies among the 
pixels of natural images, especially when they are spatially adjacent. These dependencies 
carry important information about the structure of the objects in a visual scene. The 
Minkowski error metric used in error sensitivity based approaches does not consider 
the underlying structure of the signal. Also, decomposition of image signal using linear 
transforms, as done by most quality measures based on error sensitivity, do not remove 
the strong dependencies. Structural similarity based quality assessment approaches try 
to find a more direct way to compare the structures of the reference and the distorted 
signals. Based on the HVS characteristic that human vision reacts quickly to structural 
information in the viewing field, these approaches approximate the perceived image 
distortion using a measure of structural information change. The Universal Image Quality 
Index (UIQI)16 and the Structural Similarity Index (SSIM) 17 are two examples of this 
category. For a deeper understanding, the SSIM is discussed below in detail.

Structural Similarity Index

Objective methods for assessing perceptual image quality attempt to measure the visible 
differences between a distorted image and a reference image using a variety of known 
properties of the HVS. Under the assumption that human visual perception is highly 
adapted for extracting structural information from a scene, a quality assessment method 
was introduced based on the degradation of structural information.

The structural information in an image is defined as those attributes that represent 
the structure of objects in a scene, independent of the luminance and contrast. Since 
luminance and contrast can vary across a scene, structural similarity index (SSIM) 
analysis only considers the local luminance and contrast. As these three components are 
relatively independent, a change in luminance or contrast of an image would not affect 
the structure of the image.

The system block diagram of the structural similarity index based quality assessment 
system is shown in Figure 4-13.

16Z. Wang, and A. C. Bovik, “A Universal Image Quality Index,” IEEE Signal Processing Letters 9, 
no. 3 (March 2002): 81–84.
17Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From 
Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing 13, no. 4  
(April 2004): 600–12.
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As shown in Figure 4-13, the system consists of two nonnegative spatially aligned 
image signals x and y. If one of the signals has perfect quality, then the similarity measure 
can serve as a quantitative measurement of the quality of the second signal. The system 
separates the task of similarity measurement into three comparisons: luminance, 
contrast, and structure.

Luminance is estimated as the mean intensity (m) of the image. The luminance 
comparison function l(x,y) is a function of the mean intensities m

x
and m

y
 of images x and 

y, and can be obtained by comparing their mean intensities. Contrast is estimated as 
the standard deviation (s) of an image. The contrast comparison function c(x,y) then 
reduces to a comparison of s

x
 and s

y
. In order to perform the structure comparison, the 

image is first normalized by dividing the singal by its own standard deviation, so that both 
images have unit standard deviation. The structure comparison s(x,y) is then done on 
these normalized signals (x − m

x
)/s

x
 and (y − m

y
)/s

y
. Combining the results of these three 

comparisons yields an overall similarity measure::

S x y f l x y c x y s x y( , ) ( ( , ), ( , ), ( , )).= 	 (Equation 4-6)

The similarity measure is designed to satisfy the following conditions:

Symmetry: •	 S(x, y) = S(y, x)

Boundedness: •	 S(x, y) £ 1

Unity maximum: •	 S(x, y) = 1 if and only if x = y (in discrete 
representations, x y i Ni i= " =, , ,1 .)

The luminance comparison function is defined as):

l x y
C

C
x y

x y

( , ) =
+

+ +

2 1

2 2
1

m m
m m

	 (Equation 4-7)

Figure 4-13.  Block diagram of the SSIM measurement system
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Here, the constant C
1
 is introduced to avoid instability when m

x
2 + m

y
2 is close to 

zero. Specifically, C
1
 is chosen as: C

1
 = (K

1
L)2, where L is the dynamic range of the pixel 

values (e.g., 255 for 8-bit grayscale pixels), and the constant K1 1<<  is a small constant. 
Qualitatively, Equation 4-7 is consistent with Weber’s law, which is widely used to 
model light adaptation or luminance masking in the HVS. In simple terms, Weber’s 
law states that the HVS is sensitive to the relative luminance change, and not to the 
absolute luminance change. If R represents the relative luminance change compared 
to the background luminance, the distorted signal mean intensity can be substituted by 
m

y
 = (1 + R)m

x
 and Equation 4-7 can be rewritten as ():

l
R

R
C

x

( , )
( )

( )
x y =

+

+ + +

2 1

1 1 2 1
2m

	 (Equation 4-8)

For small values of C
1
 with respect to m

x
2 , l(x,y) = f (R), which is consistent with 

Weber’s law.
The contrast comparison function takes a similar form ():

c
C

C
x y

x y

( , )x y =
+

+ +
2 2

2 2
2

s s
s s

	 (Equation 4-9)

where C
2
 = (K

2
L)2, and K2 1<< . Note that with the same amount of contrast change  

Ds  = s
y
 − s

x
, this measure is less sensitive to a high-base contrast than a low-base contrast. 

This is consistent with the contrast-masking feature of the HVS.
Structure comparison is conducted after luminance subtraction and variance 

normalization. Specifically, the two unit vectors (x − m
x
)/s

x
 and (y − m

y
)/s

y
, are associated 

with the structure of the two images. The correlation between these two vectors can 
simply and effectively quantify the structural similarity. Notice that the correlation 
between (x − m

x
)/s

x
 and (y − m

y
)/s

y
 is equivalent to the correlation coefficient between x 

and y. Thus, the structure comparison function is defined as follows: 

s x y
C

C
xy

x y

( , )=
+
+

s
s s

3

3

	 (Equation 4-10)

As in the luminance and contrast measures, a small constant C
3
 is introduced for 

stability. In discrete form, s
xy

can be estimated as :

s m mxy i x i y
i

N

N
x y=

-
- -

=
å1

1 1

( )( ) 	 (Equation 4-11)

The three comparisons of Equations 4-8, 4-9, and 4-10 are combined to yield the 
resulting similarity measure SSIM between signals x and y:

SSIM l x y c x y s x y( , ) [ ( , )] [ ( , )] [ ( , )]x y = a b g 	 (Equation 4-12)

where a > 0, b > 0, and g  > 0 are parameters used to adjust the relative importance of the 
three components.
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The expression is typically used in a simplified form, with a = b = g  = 1 and C
3
 = C

2
/2:

SSIM
C C

C C
x y xy

x y x y

( , )
( )( )

( )( )
x y =

+ +
+ + + +

2 21 2

2 2
1

2 2
2

m m s
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	 (Equation 4-13)

The UIQI6 is a special case of SSIM with C
1
 = C

2
 = 0. However, it produces unstable 

results when either (m
x

2 + m
y

2) or (s
x

2 + s
y

2) is very close to zero.

Information Fidelity Based Approaches
Images and videos generally involve natural scenes, which are characterized using 
statistical models. Most real-world distortion processes disturb these statistics and make 
the image or video signals unnatural. This observation led researchers to use natural 
scene statistics (NSS) models in conjunction with a distortion (channel) model to quantify 
the information shared between a distorted and a reference image, and to show that 
this shared information is an aspect of signal fidelity that relates well with visual quality. 
Although in contrast to the HVS error-sensitivity and the structural approaches, the 
statistical approach, as used in an information-theoretic setting, does not rely on any 
HVS parameter, or constants requiring optimization, it still yields an FR QA method that 
is competitive with state-of-the-art QA methods. The visual information fidelity (VIF) is 
such an information-fidelity based video quality assessment metric.

Visual Information Fidelity

Visual Information Fidelity18 (VIF) is an information theoretic criterion for image 
fidelity measurement based on NSS. The VIF measure quantifies the information that 
could ideally be extracted by the brain from the reference image. Then, the loss of this 
information to the distortion is quantified using NSS, HVS and an image distortion 
(channel) model in an information-theoretic framework. It was found that visual quality 
of images is strongly related to relative image information present in the distorted image, 
and that this approach outperforms state-of-the-art quality-assessment algorithms. 
Further, VIF is characterized by only one HVS parameter that is easy to train and optimize 
for improved performance.

VIF utilizes NSS models for FR quality assessment, and models natural images in the 
wavelet domain using the well-known Gaussian Scale Mixtures (GSM). Wavelet analysis of 
images is useful for natural image modeling. The GSM model has been shown to capture 
key statistical features of natural images, such as linear dependencies in natural images.

Natural images of perfect quality can be modeled as the output of a stochastic 
source. In the absence of any distortions, this signal passes through the HVS before 
entering the brain, which extracts cognitive information from it. For distorted images, it is 
assumed that the reference signal has passed through another distortion channel before 
entering the HVS.

18H. R. Sheikh and A. C. Bovik, “Image Information and Visual Quality,” IEEE Transactions on 
Image Processing 15, no. 2 (2006): 430–44.
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The distortion model captures important, and complementary, distortion types: 
blur, additive noise, and global or local contrast changes. It assumes that in terms of their 
perceptual annoyance, real-world distortions could roughly be approximated locally 
as a combination of blur and additive noise. A good distortion model is one where 
the distorted image and the synthesized image look equally perceptually annoying, 
and the goal of the distortion model is not to model image artifacts but the perceptual 
annoyance of the artifacts. Thus, even though the distortion model may not be able to 
capture distortions such as ringing or blocking exactly, it may still be able to capture their 
perceptual annoyance. However, for distortions other than blur and white noise— for 
example, for low-bit-rate compression noise—the model fails to adequately reproduce 
the perceptual annoyance.

The HVS model is also described in the wavelet domain. Since HVS models are 
duals of NSS models, many aspects of HVS are already captured in the NSS description, 
including wavelet channel decomposition, response exponent, and masking effect 
modeling. In VIF, the HVS is considered a distortion channel that limits the amount 
of information flowing through it. All sources of HVS uncertainty are lumped into one 
additive white Gaussian stationary noise called the visual noise.

The VIF defines mutual informations I C E sN N N( ; | )
 

 and I C F sN N N( ; | )
 

 to be the 
information that could ideally be extracted by the brain from a particular subband in the 
reference and the distorted images, respectively. Intuitively, visual quality should relate 
to the amount of image information that the brain could extract from the distorted image 
relative to the amount of information that the brain could extract from the reference 
image. For example, if the brain can extract 2.0 bits per pixel of information from the 
distorted image when it can extract 2.1 bits per pixel from the reference image, then most 
of the information has been retrieved and the corresponding visual quality should be very 
good. By contrast, if the brain can extract 5.0 bits per pixel from the reference image, then 
3.0 bits per pixel information has been lost and the corresponding visual quality should 
be very poor.

The VIF is given by:

VIF
I C F s
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N j N j N j
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N j N j N j

j sub

= Î
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	 (Equation 4-14)

where the sum is performed over the subbands of interest, and 


C N j,  represent N elements 
of the random field Cj that describes the coefficients from subband j, and so on.

The VIF has many interesting properties. For example, VIF is bounded below by zero, 
indicating all information is lost in the distortion channel. If a test image is just a copy 
of itself, it is not distorted at all, so the VIF is unity. Thus, VIF is always in the range [0,1]. 
Interestingly, a linear contrast enhancement of the reference image that does not add 
noise to it will result in a VIF value larger than unity, thereby signifying that the enhanced 
image has a superior visual quality to the reference image. This is a unique property not 
exhibited by other VQA metrics.
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Spatio-Temporal Approaches
Traditional FR objective quality metrics do not correlate well with temporal distortions 
such as frame drops or jitter. Spatio-temporal approaches are more suitable for video 
signals as they consider the motion information between video frames, thereby capturing 
temporal quality degradation as well. As a result, these algorithms generally correlate well 
with the HVS. As an example of this approach, the spatio-temporal video SSIM (stVSSIM) 
is described.

Spatio-Temporal Video SSIM

Spatio-temporal video SSIM19 (stVSSIM) algorithm is a full-reference VQA algorithm 
based on the motion-based video integrity evaluation20 (MOVIE) algorithm. MOVIE 
utilizes a multi-scale spatio-temporal Gabor filter bank to decompose the videos and to 
compute motion vectors. However, MOVIE has high computational complexity, making 
practical implementations difficult. So, stVSSIM proposes a new spatio-temporal metric 
to address the complexity issue. The stVSSIM algorithm was evaluated on VQEG’s full-
reference data set (Phase I for 525 and 625 line TV signals) and was shown to perform 
extremely well in terms of correlation with human perception.

For spatial quality assessment, stVSSIM uses the single-scale structural similarity 
index (SS-SSIM) as it correlates well with human perception of visual quality. For 
temporal quality assessment, stVSSIM extends the SS-SSIM to the spatio-temporal 
domain and calls it SSIM-3D. Motion information is incorporated in the stVSSIM using a 
block-based motion estimation algorithm, as opposed to optical flow, as used in MOVIE. 
Further, a method to completely avoid block motion estimation is introduced, thereby 
reducing computational complexity.

For spatial quality assessment, SS-SSIM is computed on a frame-by-frame basis. 
The spatial-quality measure is applied on each frame and the frame-quality measure is 
computed using the percentile approach. As humans tend to rate images with low-quality 
regions with greater severity, using a percentile approach would enhance algorithm 
performance. So, Percentile-SSIM or P-SSIM is applied on the scores obtained for each 
frame. Specifically, the frame-quality measure is:

S SSIM iframe
i

=
Î
å1

| |
( )

j j
	 (Equation 4-15)

where the set of the lowest 6 percent of SSIM values from the frame and SSIM(i) the  
SS-SSIM score is at pixel location i.

The spatial score for the video is computed as the mean of the frame-level scores and 
is denoted as S

video
.

19A. K. Moorthy and A. C. Bovik, “Efficient Motion Weighted Spatio-Temporal Video SSIM Index,” 
in Proceedings of SPIE-IS&T Electronic Imaging 7527 (San Jose, CA: SPIE-IS&T, 2010): 1–9.
20K. Seshadrinathan and A. C. Bovik, “Motion-based Perceptual Quality Assessment of Video,” in 
Proceedings of the SPIE 7240 (San Jose, CA: SPIE-IS&T, 2009): 1–12.
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Temporal quality evaluation utilizes three-dimensional structural similarity  
(SSIM-3D) for a section of the video and performs a weighting on the resulting scores 
using motion information derived from motion vectors. In this case, a video is viewed 
as a three-dimensional signal. If x and y are the reference and the distorted video, a 
volume section is defined around a pixel location (i,j,k) with spatial dimensions (a, b) 
while the volume temporally encompasses g  frames. Here, (i,j) correspond to the spatial 
location and k corresponds to the frame number. The SSIM-3D is then expressed as a 3-D 
extension of the SSIM as follows:

SSIM
C C

D
x i j k y i j k x i j k y i j k

x
3

1 22 2
=

+ +( )( )
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	 (Equation 4-16)

To compute the 3-D mean m, the variance s 2, and the co-variance s
xy

, the sections 
x and y are weighted with a weighting factor w for each dimension (i,j,k). The essence 
of stVSSIM is evaluating spatio-temporal quality along various orientations at a pixel, 
followed by a weighting scheme that assigns a spatio-temporal quality index to that 
pixel. The weighting factor depends on the type of filter being used—one out of the four 
proposed spatio-temporal filters (vertical, horizontal, left, and right).

To incorporate motion information, block motion estimation is used, where motion 
vectors are computed between neighboring frames using the Adaptive Rood Pattern Search 
(ARPS) algorithm operating on 8×8 blocks. Once motion vectors for each pixel (i,j,k) are 
available, spatio-temporal SSIM-3D scores are weighted. To avoid weighting that uses 
floating point numbers, a greedy weighting is performed. In particular, the spatio-temporal 
score at pixel (i,j,k) is selected from the scores produced by the four filters based on the type 
of filter that is closest to the direction of motion at pixel (i,j,k). For example, if the motion 
vector at a pixel were (u,v) = (0,2), the spatio-temporal score of that pixel would be the 
SSIM-3D value produced by the vertical filter. If the motion vector is equidistant from two of 
the filter planes, the spatio-temporal score is the mean of the SSIM-3D scores of the two filters. 
In case of zero motion, the spatio-temporal score is the mean of all four SSIM-3D values.

The temporal score for the video is computed as the mean of the frame-level scores 
and is denoted as T

video
. The final score for the video is given by S

video
 × T

video
.

Saliency Based Approaches
Quality-assessment methods suitable for single images are also typically used for video. 
However, these methods do not consider the motion information of the video sequence. 
As a result, they turn out to be poor evaluation metrics for video quality. In addition, most 
VQA algorithms ignore the human visual attention mechanism, which is an important 
HVS characteristic.

Human eyes usually focus on edges with high-contrast or salient areas that 
are different from their neighboring areas. Recognizing this fact, saliency based 
approaches of video quality evaluation treat the distortion occuring in the salient areas 
asymmetrically compared to that occuring in other areas. One such approach is SVQA.21

21Q. Ma, L. Zhang, and B. Wang, “New Strategy for Image and Video Quality Assessment,” Journal 
of Electronic Imaging 19, no. 1 (2010): 1–14.
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Saliency-based Video Quality Assessment

In a saliency based video quality-assessment (SVQA) approach, a spatial saliency map is 
extracted from reference images or video frames using a fast frequency domain method 
called the phase spectrum of quaternion Fourier transform (PQFT). When the inverse Fourier 
transform is taken of an image phase spectrum, salient areas are easily recognizable.  
The saliency map is used as weights to adjust other objective VQA criteria, such as PSNR, 
MSSIM, VIF, and so on. Similarly, temporal weights are determined from adjacent frames.

Given a reference image and a corresponding distorted image, the saliency map 
of the reference image can be obtained using the PQFT. Then, an improved quality 
assessment index, called the saliency-based index (S-index), is determined by weighting 
the original index by the saliency map. For example, if p

i
 is the luma value of the i th pixel 

in the salient area, the pixel saliency weight w
i
 is given by the following:

w
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( ) 	 (Equation 4-17)

where b is a small constant to keep w
i
 > 0, and M and N are the width and height of the 

image, respectively. Therefore, this weighting takes into account the non-salient areas 
as well. However, pixels in the salient area have large weights. Using these weights, the 
saliency-based PSNR (SPSNR) is written as:
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	 (Equation 4-18)

Thus, the distortion of pixels in the salient area is given more importance than pixels 
in other areas. Saliency-based MSSIM (SMSSIM) and saliency-based VIF (SVIF) are also 
defined in a similar manner.

As SVQA deals with video signals instead of images only, the following 
considerations are taken into account:

HVS is sensitive to motion information, but less sensitive to •	
the background. Therefore, distortion of moving objects is very 
important. SVQA differentiates between a fixed camera and a 
moving camera while locating a moving object.

As frames are played out in real time, human eyes can only pay •	
attention to a much smaller area in an image, compared to when 
looking at a fixed image. This is considered in intraframe weights.

Due to •	 motion masking effect, visual sensitivity is depressed 
during large-scale scene changes or rapid motion of objects. 
Therefore, frames should be weighted differently based on motion 
masking. This is considered in interframe weights.

Considering spatio-temporal properties of video sequences, •	
saliency weights in both spatial and temporal domains contribute 
to the final quality index.
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In SVQA, the intraframe weight uses PQFT to calculate the saliency map for pixels 
with non-zero motion. Non-zero motion is represented as the difference image between 
two adjacent video frames. This establishes the first consideration of moving objects. 
In a short interval, the saliency map is allowed to have a square area of processing, 
thus addressing the second consideration. As the interframe weight is based on motion 
masking, the third consiration for weighting is also addressed. Finally, it is noteworthy 
that both intraframe weight and interframe weight are considered together in SVQA. 
Figure 4-14 shows the SVQA framework.

Figure 4-14.  The SVQA framework

According to Figure 4-14, the flow of SVQA is as follows:

1.	 The reference and distorted video sequences are divided into 
frames. Each sequence is composed of n images: D

1
 to D

n
 for 

distorted frames, R
1
 to R

n
 for reference frames, as shown on 

the upper part of Figure 4-14.

2.	 Considering camera shift, where all pixels are moving,  
a binary function is defined to detect such motion. If the 
luma difference between pixels co-located in adjacent 
frames exceeds a threshold, a movement is detected. If the 
movement is detected for all pixels, a camera movement is 
understood; otherwise, object movement is considered on a 
static background. The quaternion for a frame is constructed 
as a weighted combination of motion information and three 
color channel information.
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3.	 The saliency map (SM) is calculated for each reference video 
frame using the PQFT with motion, denoted as SM

1
to SM

n
.

4.	 Based on the SM, the intraframe weights (w
1
, …, w

n
) are 

calculated for n frames.

5.	 The frame quality FQ
i
 is calculated for the ith frame using any of 

the saliency-based metrics such as SPSNR, SMSSIM, or SVIF.

6.	 Based on the SM, the interframe weights (e
1
, …, e

n
) are 

calculated for n frames.

7.	 The SVQA index, the measure of quality of the entire video is 
calculated using the following equation:

SVQA
FQ e
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	 (Equation 4-19)

where n is the number of video frames.

Network-Aware Approaches
The objective video quality metrics such as PSNR neither perfectly correlate with 
perceived visual quality nor take the packet loss into account in lossy network 
environments such as multihop wireless mesh networks. While PSNR and similar metrics 
may work well for evaluating video quality in desktop coding applications and streaming 
over wired networks, remarkable inaccuracy arises when they are used to evaluate video 
quality over wireless networks. 

For instance, in a wireless environment, it could happen that a video stream with a 
PSNR around 38dB (typically considered medium-high quality in desktop video coding 
applications) is actually perceived to have the same quality as the original undistorted 
video. This is because wireless video applications typically use the User Datagram 
Protocol (UDP), which does not guarantee reliable transmissions and may trade packet 
loss for satisfying delay requirements. Generally, in wireless local area networks (WLAN) 
consisting of unstable wireless channels, the probability of a packet loss is much higher 
than that in wired networks. In such environments, losing consecutive packets may cause 
the loss of an entire frame, thereby degrading the perceived video quality further than in 
desktop video coding applications.

Modified PSNR

Aiming to handle video frame losses, Modified PSNR (MPSNR) was proposed.22 Two 
objective metrics are derived based on linear regression of PSNR against subjective MOS. 

22A. Chan, K. Zeng, P. Mohapatra, S.-J. Lee, and S. Banerjee, “Metrics for Evaluating Video 
Streaming Quality in Lossy IEEE 802.11 Wireless Networks,” Proceedings of IEEE INFOCOM, 
(San Diego, CA: March 2010): 1–9.
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The first metric, called PSNR-based Objective MOS (POMOS), predicts the MOS from 
the mean PSNR, while achieving a correlation of 0.87 with the MOS. The second metric, 
called Rate-based Objective MOS (ROMOS), adds streaming network parameters such as 
the frame loss rate, and achieves a higher correlation of 0.94 with the MOS.

Frame losses are prevalent in wireless networks, but are not accounted for in the 
traditional PSNR calculations. Due to packet losses during streaming, a frame can be 
missing, which is typically unrecognizable by a human viewer. However, a missing 
frame causes the wrong frame to be compared against the original frame during PSNR 
calculation. Such off-position comparisons result in low PSNR values. A straightforward 
way to fix this is to introduce timing information into the source video. But such 
modification of source video is undesirable.

To determine if any frame is missing, an alternative approach is to match the frame 
with the original frame. The algorithm assumes that the sum of PSNRs of all frames 
is maximized when all frames are matching, and it uses this sum to determine the 
mismatching frame. In particular, MPSNR matches each frame in a streamed video to  
a frame in the reference video so that the sum of PSNR of all frame pairs is maximized.  
A moving window is used to determine the location of the matching frame. If frame j  
in the streamed video matches frame k belonging to the window in the reference video,  
it is considered that the frames (k-j) are missing. A frame in the streamed video need 
only be compared with, at most, g frames in the reference video, where g is the number of 
frames lost.

In addition to PSNR, the MPSNR measures the following video streaming 
parameters:

Distorted frame rate (•	 d): the percentage of mismatched frames in 
a streaming video.

Distorted frame PSNR (•	 dPSNR): the mean PSNR value of all the 
mismatched frames.

Frame loss rate (•	 l): the percentage of lost frames in a streaming 
video. It is calculated by comparing the total number of frames in 
the received streamed video with that in the reference video.

Once the corresponding frames in a streamed video and the reference video are 
matched, and the PSNR of each frame in the streamed video is calculated, all the above 
parameters are readily available.

In the MPSNR model, this method of matching is applied to a training set of videos, 
and the average PSNR for a window W is calculated. Experimental results show that the 
average PSNR exhibits a linear relationship with subjective MOS. Therefore, a linear 
model of the average PSNR can be used to predict the MOS score. The linear model is 
given as:

POMOS average PSNR= +0 8311 0 0392. . ( ) 	 (Equation 4-20)
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Note that average PSNR is used in this model. Since the average PSNR of a perfectly 
matching frame is infinity (or a very high value), it affects the prediction of MOS. To 
mitigate this problem, another linear model is proposed that does not use the PSNR 
values:

ROMOS
d

dPSNR
l= - -4 367 0 5040 0 0517. . . . 	 (Equation 4-21)

Noise-Based Quality Metrics
An interesting approach to quality evaluation is to evaluate the noise introduced instead 
of the signal fidelity.

Noise Quality Measure

In the noise quality measure23 (NQM), a degraded image is modeled as an original image 
that has been subjected to linear frequency distortion and additive noise injection. 
These two sources of degradation are considered independent and are decoupled into 
two quality measures: a distortion measure (DM) resulting from the effect of frequency 
distortion, and a noise quality measure (NQM) resulting from the effect of additive noise.

The NQM is based on a contrast pyramid and takes into account the following:

The variation in contrast sensitivity with distance, image •	
dimensions, and spatial frequency

The variation in the local brightness mean•	

The contrast interaction between spatial frequencies•	

The contrast masking effects•	

For additive noise, the non-linear NQM is found to be a better measure of visual 
quality than the PSNR and linear quality measures.

The DM is computed in three steps. First, the frequency distortion in the degraded 
image is found. Second, the deviation of this frequency distortion from an all-pass 
response of unity gain (no distortion) is computed. Finally, the deviation is weighted by 
a model of the frequency response of the HVS, and the resulting weighted deviation is 
integrated over the visible frequencies.

Objective Coding Efficiency Metrics
Measuring coding efficiency is another way to look at the tradeoff between visual quality 
and bit-rate cost in video coding applications. In this section we discuss the popular BD 
metrics for objective determination of coding efficiency.

23N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image Quality 
Assessment Based on a Degradation Model,” IEEE Transactions on Image Processing 9,  
no. 4 (April 2000): 636–50.
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BD-PSNR, BD-SSIM, BD-Bitrate

Bjøntegaard delta PSNR24 (BD-PSNR) is an objective measure of coding efficiency of 
an encoder with respect to a reference encoder. It was proposed by Gisle Bjøntegaard 
in April 2001 in the Video Coding Expert Group’s (VCEG) meeting. BD-PSNR considers 
the relative differences between two encoding solutions in terms of number of bits 
used to achieve a certain quality. In particular, BD-PSNR calculates the average PSNR 
difference between two rate-distortion (R-D) curves over an interval. This metric is a 
good indication of visual quality of encoded video, as it considers the cost (i.e., bits used) 
to achieve a certain visual quality of the decoded video, represented by the popular 
objective measure PSNR. Improvements to the BD-PSNR model can be performed by 
using log

10
(bitrate) instead of simply the bit rate when plotting R-D data points, resulting 

in straighter R-D curves and more uniformly spaced data points across the axes.
BD-PSNR uses a third order logarithmic polynomial to approximate a given R-D 

curve. The reconstructed distortion in PSNR is given as:

D D r a br cr drPSNR = = + + +( ) 2 3 	 (Equation 4-22)

where r = log(R), R is the output bit rate, and a, b, c, and d are fitting parameters.
This model is a good fit to R-D curves and there is no problem with singular 

points, as could have happened for a model with (r + d) in the denominator. The above 
equation can be solved with four R-D data points obtained from actual encoding, and 
the fitting parameters a, b, c, and d can be determined. Thus, this equation can be used 
to interpolate the two R-D curves from the two encoding solutions, and the delta PSNR 
between the two curves can be obtained as:

BD PSNR
r r

D r D r dr
H L

r

r
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where r
H

 = log(R
H

), r
L
 = log(R

L
) are the high and low ends, respectively, of the output bit 

rate range, and D
1
(r) and D

2
(r) are the two R-D curves.

Similarly, the interpolation can also be done on the bit rate as a function of SNR:

r a bD cD dD= + + +2 3 	 (Equation 4-24)

where r = log(R), R is the output bit rate, a, b, c, and d are fitting parameters, and D is 
the distortion in terms of PSNR. From this the BD-bit rate can be calculated in a similar 
fashion as is done for PSNR above:

BD Bit rate
D D

r r dD
H L

D

D

L

H

=
-

-ò
1

2 1( ) 	 (Equation 4-25)

24B. Bjøntegaard, Calculation of Average PSNR Differences between RD curves (VCEG-M33) 
(Austin, TX: ITU-T VCEG SG16 Q.6, 2001).
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Therefore, from BD-PSNR calculations, both of the following can be obtained:

Average PSNR difference in dB over the whole range of bit rates•	

Average bit rate difference in percent over the whole range of PSNR•	

If the distortion measure is expressed in terms of SSIM instead of PSNR,  
BD-SSIM can be obtained in the same manner. BD-PSNR/BD-SSIM calculation depends 
on interpolating polynomials based on a set of rate-distorion data points. Most 
implementations of BD-PSNR use exactly four rate-distortion data points for polynomial 
interpolation, resulting in a single number for BD-PSNR.

Advantages
BD metrics have the advantage that they are compact and in some sense more accurate 
representations of the quality difference compared to R-D curves alone. In case of a 
large number of tests, BD metrics can readily show the difference between two encoding 
solutions under various parameters. Further, BD metrics can consolidate results from 
several tests into a single chart, while showing video quality of one encoding solution 
with respect to another; these presentations can effectively convey an overall picture of 
such quality comparisons.

Limitations
The BD metrics are very useful in comparing two encoding solutions. However, for  
ultra-high-definition (UHD) video sequences, the BD metrics can give unexpected 
results.25 The behavior appears owing to polynomial curve-fitting and the high-frequency 
noise in the video sequences. Standard polynomial interpolation is susceptible to Runge’s 
phenomenon (problematic oscillation of the interpolated polynomial) when using  
high-degree polynomials. Even with just four data points (third degree polynomial), some 
interpolated curves see oscillation that can result in inaccurate BD-PSNR evaluations.

Alternative interpolation methods such as splines reduce the error caused by 
Runge’s phenomenon and still provide curves that fit exactly through the measured 
rate-distortion data points. There are video examples where using piecewise cubic 
spline interpolation improves the accuracy of BD-PSNR calculation by nearly 1 dB over 
polynomial interpolation.

When oscillation occurs from polynomial interpolation, the resulting BD-PSNR 
calculation can be dramatically skewed. Figure 4-15 shows the polynomial interpolation 
problem in rate-PSNR curves from two sample encoding. The charts show the difference 
between polynomial interpolation and cubic spline interpolation and the BD-PSNR 
values using each method.

25 Sharp Corporation, “On the Calculation of PSNR and Bit Rate Differences for the SVT Test 
Data,” ITU SG16, Contibution 404, April 2008, available at http://www.docstoc.com/docs/ 
101609255/On-the-calculation-of-PSNR-and-bit-rate-differences-for-the-SVT-test.

http://www.docstoc.com/docs/101609255/On-the-calculation-of-PSNR-and-bit-rate-differences-for-the-SVT-test
http://www.docstoc.com/docs/101609255/On-the-calculation-of-PSNR-and-bit-rate-differences-for-the-SVT-test
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The average PSNR and bit rates correlate very closely between the two encoders, 
indicating that the BD-PSNR value achieved using polynomial interpolation would not be 
an accurate representation of the quality difference between the two encoders.

Additionally, BD-PSNR does not consider the coding complexity, which is a critical 
problem for practical video applications, especially for those on handheld devices whose 
computational capability, memory, and power supply are all limited. Such limitations 
are addressed by considering a generalized BD-PSNR metric that includes complexity in 
addition to rate and distortion. The generalized metric is presented in the next section.

Generalized BD-PSNR

The Generalized BD-PSNR26 (GBD-PSNR) is a coding efficiency measure developed by 
generalizing BD-PSNR from R-D curve fitting to rate-complexity-distortion (R-C-D) 
surface fitting. GBD-PSNR involves measurement of coding complexity, R-C-D surface 
fitting, and the calculation of differential PSNR between two R-C-D surfaces.

In general, coding complexity is multi-dimensional and requires consideration of 
several factors, including the computational complexity measured by executing time 
or machine cycles, data cache size, memory access bandwidth, storage complexity, 
instruction cache size, parallelism, and pipelining. However, in practice, it is difficult to 
simultaneously account for all these dimensions. A widely used alternative is the coding 
time on a given platform. Not only does it indicate the computational complexity, but 
it also partially reflects the contributions from other complexity dimensions such as 
memory access in the coding process.

Figure 4-15.  Polynomial interpolation issue in R-D curves

26X. Li, M. Wien, and J.-R. Ohm, “Rate-Complexity-Distortion Evaluation for Hybrid Video 
Coding,” Proceedings of IEEE International Conference on Multimedia and Expo, (July 2010): 
685–90.
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In order to perform R-C-D surface fitting, the R-C-D function is defined as follows: 

Definition 4-1. The rate-complexity-distortion function 
D(R, C) is the infimum of distortion D such that the rate-
complexity-distortion triplet (R, C, D) is in the achievable 
rate-complexity-distortion region of the source for a given rate-
complexity pair (R, C).

Therefore, D(R, C) is non-increasing about R and C, respectively. Similar to convex 
R-D function, the R-C-D function is convex as well. Based on these properties, D(R, C) 
can be approximated using an exponential model. To obtain a good tradeoff between 
accuracy and fitting complexity while keeping backward compatibility with  
BD-PSNR, D(R, C) is approximated as:

D R C a r a r a r a a c a c( , ) = + + + + +0
3

1
2

2 3 4
2

5 	 (Equation 4-26)

where, a
0
, . . . , a

5
 are fitting parameters, r = log(r), c = log(C), R is the output bit rate, C is the 

coding complexity, and D is the distortion in terms of PSNR. To fit an R-C-D surface with 
this equation, at least six (R, C, D) triplets from actual coding are necessary. However, in 
practice, a higher number of (R, C, D) triplets will lead to a better accuracy. Typically 20 
data points are used to fit such a surface.

Similar to BD-PSNR, the average differential PSNR between two R-C-D surfaces can 
be calculated as:
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where DP
GBD

 is the GBD-PSNR, D
1
(r, c) and D

2
(r, c) are the two fitting functions for the 

two R-C-D surfaces, r
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 are the logarithmic forms of R
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L
 which 

bound the overlapped R-C region from the actual coding results.
Due to the complexity nature of some algorithms, the two R-C-D surfaces may have 

no R-C intersection. In this extreme case, the GBD-PSNR is undefined.

Limitations
The dynamic range of coding complexity covered by GBD-PSNR is sometimes limited. 
This happens when the coding complexity of the two encoders are so different that there 
is only a relatively small overlapped region by the two R-C-D surfaces.

Also, the coding complexity is platform and implementation dependent. Although 
GBD-PSNR shows a good consistency over different platforms, slightly different  
GBD-PSNR value may still be obtained on different platforms.

Examples of Standards-based Measures
There are a few objective quality measures based on the ITU-T standards.
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Video Quality Metric

The video quality metric (VQM)27 is an objective measurement for perceived video 
quality developed at the National Telecommunications and Information Administration 
(NTIA). Owing to its excellent performance in the VQEG Phase 2 validation tests, the 
VQM methods were adopted by the American National Standards Institute (ANSI) as a 
national standard, and by ITU as ITU-T Rec. J. 144.28 The VQM measures the perceptual 
effects of video impairments, including blurring, jerkiness, global noise, block distortion, 
and color distortion, and combines them into a single metric. The testing results show 
that VQM has a high correlation with subjective video quality assessment.

The algorithm takes a source video clip and a processed video clip as inputs and 
computes the VQM in four steps:

1.	 Calibration: In this step the sampled video is calibrated in 
preparation for feature extraction. The spatial and temporal 
shift, the contrast and the brightness offset of the processed 
video are estimated and corrected with respect to the  
source video.

2.	 Quality Features Extraction: In this step, using a mathematical 
function, a set of quality features that characterize perceptual 
changes in the spatial, temporal, and color properties are 
extracted from spatio-temporal subregions of video streams.

3.	 Quality Parameters Calculation: In this step, a set of quality 
parameters that describe perceptual changes in video quality 
are computed by comparing the features extracted from the 
processed video with those extracted from the source video.

4.	 VQM Calculation: VQM is computed using a linear 
combination of parameters calculated from the  
previous steps.

VQM can be computed using various models based on certain optimization criteria. 
These models include television model, video conferencing model, general model, 
developer model, and PSNR model. The general model uses a linear combination of 
seven parameters. Four of these parameters are based on features extracted from spatial 
gradients of the luma component, two parameters are based on features extracted from 
the vector formed by the two chroma components, and the last parameter is based on 
contrast and absolute temporal information features, both extracted from the luma 
component. Test results show a high correlation coefficient of 0.95 between subjective 
tests and the VQM general model (VQMG).27

27M. Pinson, and S. Wolf, “A New Standardized Method for Objectively Measuring Video Quality,” 
IEEE Transactions on Broadcasting 50, no. 3 (September 2004): 312–22.
28ITU-T Recommendation J.144: Objective Perceptual Video Quality Measurement Techniques for 
Digital Cable Television in the Presence of a Full Reference (Geneva, Switzerland: International 
Telecommunications Union, 2004).



Chapter 4 ■ Video Quality Metrics

149

ITU-T G.1070 and G.1070E

The ITU Recommendation G.107029 is a standard computational model for quality of 
experience (QoE) planning. Originally developed for two-way video communication, 
G.1070 model has been widely used, studied, extended, and enhanced. In G.1070, the 
visual quality model is based on several factors, including frame rate, bit rate, and packet-
loss rate. For a fixed frame rate and a fixed packet-loss rate, a decrease in bit rate would 
result in a corresponding decrease in the G.1070 visual quality. However, a decrease in 
bit rate does not necessarily imply a decrease in quality. It is possible that the underlying 
video content is of low complexity and easy to encode, and thus results in a lower bit rate 
without corresponding quality loss. G.1070 cannot distinguish between these two cases.

Given assumptions about the coding bit rate, the frame rate, and the packet-loss rate, 
the G.1070 video quality estimation model can be used to generate an estimate, typically 
in the form of a quality score, of the perceptual quality of the video that is delivered to 
the end user. This score is typically higher for higher bit rates of compressed videos, and 
lower for lower bit rates of compressed videos.

To calculate the G.1070 visual quality estimate, a typical system includes a data 
collector or estimator that is used to analyze the encoded bitstream, extract useful 
information, and estimate the bit rate, frame rate, and packet-loss rate. From these 
three estimates, a G.1070 Video Quality Estimator computes the video quality estimate 
according to a function defined in Section 11.2 of Rec. G.1070.

Although the G.1070 model is generally suitable for estimating network-related 
aspects of the perceptual video quality, such as the expected packet-loss rate, information 
about the content of the video is generally not considered. For example, a video scene 
with a complex background and a high level of motion, and another scene with relatively 
less activity or texture, may have dramatically different perceived qualities even if they are 
encoded at the same bit rate and frame rate. Also, the coding bit rate required to achieve 
high-quality coding of an easy scene may be relatively low. Since the G.1070 model 
generally gives low scores for low-bit-rate videos, this model may unjustifiably penalize 
such easy scenes, notwithstanding the fact that the perceptual quality of that video scene 
may actually be high. Similarly, the G.1070 score can overestimate the perceptual quality 
of video scenes. Thus, the G.1070 model may not correlate well with subjective quality 
scores of the end users.

To address such issues, a modified G.1070 model, called the G.1070E was 
introduced.30 This modified model takes frame complexity into consideration, and 
provides frame complexity estimation methods. Based on the frame complexity, bit-rate 
normalization is then performed. Finally, the G.1070 Video Quality Estimator uses the 
normalized bit rate along with the estimated frame rate and packet-loss rate to yield the 
video quality estimate.

29ITU-T Recommendation G.1070: Opinion Model for Video-Telephony Applications (Geneva, 
Switzerland: International Telecommunications Union, 2012).
30B. Wang, D. Zou, R. Ding, T. Liu, S. Bhagavathi, N. Narvekar, and J. Bloom, “Efficient Frame 
Complexity Estimation and Application to G.1070 Video Quality Monitoring,” Proceedings of 2011 
Third International Workshop on Quality of Multimedia Experience (2011): 96–101.
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The G.1070E is a no-reference compressed domain objective video-quality 
measurement model. Experimental results show that the G.1070E model yields a higher 
correlation with subjective MOS scores and can reflect the quality of video experience 
much better than G.1070.

ITU-T P.1202.2

The ITU-T P.1202 series of documents specifies models for monitoring the video 
quality of IP-based video services based on packet-header and bitstream information. 
Recommendation ITU-T P.1202.231 specifies the algorithmic model for the higher-resolution 
application area of ITU-T P.1202. Its applications include the monitoring of performance 
and quality of experience (QoE) of video services such as IPTV. The Rec. P.1202.2 and has 
two modes: Mode 1, where the video bitstreams are parsed and not decoded into pixels, 
and Mode 2, where the video bitstreams are fully decoded into pixels for analyzing.

The Rec. P.1202.2 is a no-reference video-quality metric. An implementation of the 
algorithm has the following steps:

1.	 Extraction of basic parameters such as frame resolution, frame 
level quantization parameter, frame size, and frame number.

2.	 Aggregation of basic parameters into internal picture level to 
determine frame complexity.

3.	 Aggregation of basic parameters into model level to obtain 
video sequence complexity, and quantization parameter at 
the video sequence level.

4.	 Quality estimation model to estimate the MOS as:

P MOS f frame QP frame resolution frame size frame numbe. . ( , , ,1202 2 = rr)  

(Equation 4-28)

Studies have found that the P.1202.2 algorithm’s estimated MOS has similar Pearson 
linear correlation coefficient and Spearman ranked order correlation coefficient to VQEG 
JEG’s (Joint Effort Group) estimated MOS, which uses the following linear relationship:32

VQEG JEG MOS frame QP= - ´ +0 172 9 249. . 	 (Equation 4-29)

However, both of these results are worse than MS-SSIM. It is also found that P.1202.2 
does not capture compression artifacts well.

31ITU-T Recommendation P.1202.2: Parametric Non-intrusive Bitstream Assessment of Video Media 
Streaming Quality – Higher Resolution Application Area (Geneva, Switzerland: International 
Telecommunications Union, 2013).
32L. K. Choi, Y. Liao, B. O'Mahony, J. R. Foerster, and A. C. Bovik, “Extending the Validity Scope 
of ITU-T P.1202.2,” in Proceedings of the 8th International Workshop on Video Processing and 
Quality Metrics for Consumer Electronics (Chandler, AZ: VPQM, 2014), retrieved from  
www.vpqm.org.

http://www.vpqm.org/
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Therefore, an improved FR MOS estimator is proposed based on MS-SSIM. 
In particular, an MS-SSIM-based remapping function is developed. The resulting 
estimated MOS is a function of MS-SSIM and the frame parameters, such as frame level 
quantization parameter, frame size, frame type, and resolution. The algorithm first 
performs devices and content analysis, followed by spatial complexity computation.

Then, a non-linear model fitting is performed using logistic function. These results, 
along with the MS-SSIM values, are provided to the MOS estimator to calculate the 
estimated MOS. Experimental results show that for a set of tests, the estimated MOS has 
a Pearson correlation coefficient >0.9 with MOS, which is much better than that given by 
MS-SSIM (0.7265).

Measurement of Video Quality
We elaborate on important considerations for video quality measurement, for both 
subjective and objective measurements. Further, for clarity we discuss the objective 
measurements from typical application point of view.

Subjective Measurements
The metrics used in subjective measurement are MOS and DMOS. However, after 
obtaining the raw scores, they cannot be directly used. To eliminate bias, the following 
measurement procedure is generally used.

Let s
ijk

 denote the score assigned by subject i to video j in session k. Usually, two 
sessions are held. In the processing of the raw scores, difference scores d

ijk
 are computed 

per session by subtracting the quality assigned by the subject to a video from the quality 
assigned by the same subject to the corresponding reference video in the same session. 
Computation of difference scores per session helps account for any variability in the use 
of the quality scale by the subject between sessions. The difference scores are given as:

d s sijk ijk ij k= - ref . 	 (Equation 4-30)

The difference scores for the reference videos are 0 in both sessions and are 
removed. The difference scores are then converted to Z-scores per session:
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z dijk ijk ik ik= - m s 	 (Equation 4-33)

where N
ik

 is the number of test videos seen by subject i in session k.
Every subject sees each test video in the database exactly once, either in the first 

session or in the second session. The Z-scores from both sessions are then combined to 
create a matrix {z

ij
}. Scores from unreliable subjects are discarded using the procedure 

specified in the ITU-R BT.500-13 recommendation.
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The distribution of the scores is then investigated. If the scores are normally 
distributed, the procedure rejects a subject whenever more than 5 percent of scores 
assigned by that subject fall outside the range of two standard deviations from the mean 
scores. If the scores are not normally distributed, the subject is rejected whenever more 
than 5 percent of his scores fall outside the range of 4.47 standard deviations from the 
mean scores. However, in both situations, subjects who are consistently pessimistic or 
optimistic in their quality judgments are not eliminated.

The Z-scores are then linearly rescaled to lie in the range [0,100]. Finally, the DMOS 
of each video is computed as the mean of the rescaled Z-scores from the remaining 
subjects after subject rejection.

Objective Measurements and Their Applications
Objective measurements are very useful in automated environments—for example, in 
automated quality comparison of two video encoder solutions. Figure 4-16 shows the 
block diagram of a typical encoder comparison setup using full-reference objective 
video-quality metrics.

Figure 4-16.  An example of a typical encoder comparison setup using FR objective  
quality metrics

Several factors need to be considered for such an application using full reference 
objective video quality metrics:

The source and distorted videos need to be aligned in time so that •	
the same video frame is compared for quality.

The same decoder implementation should be used, eliminating •	
any measurement variability owing to the decoding process.
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To ensure a fair comparison, the encoder parameters must be the •	
same or as close as possible.

No pre-processing is assumed before the encoding process. •	
Although it is possible to use a pre-processing step before each 
encoder, in that case the same pre-processor must be used.

Notice that such a setup can take advantage of automation and use an enormous set 
of video clips for comparison of different encoder implementations, thus exposing the 
strengths and weaknesses of each encoder under various workload complexities. Such 
source comparisons without considering network or channel errors are ideal for a fair 
comparison. However, in practical applications, such as mobile video recording using two 
different devices, where the recorded videos are stored and decoded before computing 
objective quality metrics, quality comparison should be done in similar environments as 
much as possible. For example, in wireless network environment, the packet-loss rate or 
bit-error rate should be similar.

Objective measures are also extensively used to determine frame drops in video 
applications. For example, as the (distorted) video is consumed, frame drops can be 
detected if the PSNR between the source and the distorted video is tracked frame by 
frame. In low-distortion environments, the consumed video would reasonably match the 
source; so the PSNR would also be a typical number (e.g., 25–40 dB) depending on the 
lossy characteristics of the various channels that introduce errors. However, in case of a 
frame drop, the wrong frame would be compared against the source, and a very low PSNR 
would be obtained, indicating the frame drop. This effect is exaggerated when the video 
contains frequent scene changes.

The same concept can be applied to detect sudden low-quality frames with 
corruption or other artifacts in a video. Such corruption can happen owing to network 
errors or encoder issues. But a sudden drop in PSNR or other objective measures can 
indicate the location of the corruption in the video in an automated environment.

Parameters to Tune
In visual communication applications, video codecs are one of the main sources of 
distortions. Since video decoders must follow certain specifications as defined by 
various standards, decoders generally do not significantly contribute to video-quality 
degradation. However, encoders are free to design and implement algorithms to control 
the amount of compression and thereby the amount of information loss depending 
on various considerations for system resources, application requirements, and the 
application environment. Therefore, in the video-encoding applications, there are several 
parameters that dictate the amount of information loss and thus influence the final video 
quality. Some of these parameters are adjustable at the algorithm level by the system 
architects; some are tunable by the implementors, while few parameters are usually 
available to the users for tuning.
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Parameters that Impact Video Quality
It is very important to understand the impact of the following parameters on final visual 
quality, particularly for benchmarking, optimization, or comparative analysis of the video 
encoding solutions.

•	 Number of lines in the vertical display resolution: High-
definition television (HDTV) resolution is 1,080 or 720 lines. In 
contrast, standard-definition digital television (DTV) is 480 lines 
(for NTSC, where 480 out of 525 scanlines are visible) or 576 lines 
(for PAL/SECAM, where 576 out of 625 scanlines are visible). 
For example, the so-called DVD quality is standard definition, 
while Blu-ray discs are high definition. An encoder may choose 
to reduce the resolution of the video as needed, depending on 
the available number of bits and the target quality level. However, 
recent encoders typically process the full resolution of video in 
most applications.

•	 Scanning type: Digital video uses two types of image scanning 
pattern: progressive scanning or interlaced scanning. Progressive 
scanning redraws all the lines of a video frame when refreshing 
the frame, and is usually denoted as 720p or 1080p, for example. 
Interlaced scanning draws a field—that is, every other line of the 
frame at a time—so the odd numbered lines are drawn during the 
first refresh operation and then the remaining even numbered 
lines are drawn during a second refreshing. Thus, the interlaced 
refresh rate is double that of the progressive referesh rate. 
Interlaced scanned video is usually denoted as 480i or 1080i, for 
example.

Movement of object makes a difference in perceived quality of 
interlaced scanned video. On a progressively scanned display, 
interlaced video yields better quality for still objects in frames 
owing to the higher refresh rate, but loses up to half of the 
resolution and suffers combing artifacts when objects in a frame 
is moving. Note that combing artifacts only occur when two fields 
are woven together to form a single frame and then displayed 
on a progressive display. Combing artifacts do not occur when 
interlaced content is shown on an interlaced display and when 
different deinterlacing algorithms such as bob are used for display 
on progressive monitors.

In practice, two interlaced fields formulate a single frame because 
the two fields consisting of the odd and even lines of one frame 
are temporally shifted. Frame pulldown and segmented frames 
are special techniques that allow transmitting full frames by 
means of interlaced video stream. For appropriate reconstruction 
and presentation at the receiving end of a transmission system, 
it is necessary to track whether the top or bottom field is 
transmitted first.
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•	 Number of frames or fields per second (Hz): In Europe, 
50 Hz television broadcasting system is more common, while 
in the United States, it is 60 Hz. The well-known 720p60 format 
is 1280×720 pixels, progressive encoding with 60 frames per 
second (60 Hz). The 1080i50/1080i60 format is 1920×1080 pixels, 
interlaced encoding with 50/60 fields, (50/60 Hz) per second. 
If the frame/field rate is not properly maintained, there may 
be visible flickering artifact. Frame drop and frame jitter are 
typical annoying video-quality issues resulting from frame-rate 
mismanagement.

•	 Bit rate: The amount of compression in digital video can be 
controlled by allocating a certain number of bits for each second’s 
worth of video. The bit rate is the primary defining factor of 
video quality. Higher bit rate typically implies higher quality 
video. Efficient bit allocation can be done by taking advantage 
of skippable macroblocks and is based on the spatio-temporal 
complexity of macroblocks. The amount of quantization is also 
determined by the available bit rate, thereby highly impacting the 
blocking artifact at transform block boundaries.

•	 Bit-rate control type: The bit-rate control depends on certain 
restrictions of the transmission system and the nature of the 
application. Some transmission systems have fixed channel 
bandwidth and need video contents to be delivered at a constant 
bit rate (CBR), while others allow a variable bit rate (VBR), where 
the amount of data may vary per time segment. CBR means 
the decoding rate of the video is constant. Usually a decoding 
buffer is used to keep the decoded bits until a frame’s worth of 
data is consumed instantaneously. CBR is useful in streaming 
video applications where, in order to meet the requirement of 
fixed number of bits per second, stuffing bits without useful 
information may need to be transmitted.

VBR allows more bits to be allocated for the more complex 
sections of the video, and fewer bits for the less complex sections. 
The user specifies a given subjective quality value, and the encoder 
allocates bits as needed to achieve the given level of quality. 
Thus a more perceptually consistent viewing experience can be 
obtained using VBR. However, the resulting compressed video still 
needs to fit into the available channel bandwidth, necessitating a 
maximum bit rate limit. Thus, the VBR encoding method typically 
allows the user to specify a bit-rate range indicating a maximum 
and/or minimum allowed bit rate. For storage applcations, VBR is 
typically more appropriate compared to CBR.

In addition to CBR and VBR, the average bit rate (ABR) encoding 
may be used to ensure the output video stream achieves a 
predictable long-term average bit rate.
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•	 Buffer size and latency: As mentioned above, the decoding 
buffer temporarily stores the received video as incoming bits that 
may arrive at a constant or variable bit rate. The buffer is drained 
at specific time instants, when one frame’s worth of bits are taken 
out of the buffer for display. The number of bits that are removed 
is variable depending on the frame type (intra or predicted 
frame). Given that the buffer has a fixed size, the bit arrival rate 
and the drain rate must be carefully maintained such that the 
buffer does not overflow or be starved of bits. This is typically 
done by the rate control mechanism that governs the amount of 
quantization and manages the resulting frame sizes. If the buffer 
overflows, the bits will be lost and one or more frames cannot be 
displayed, depending on the frame dependency. If it underflows, 
the decoder would not have data to decode, the display would 
continue to show the previously displayed frame, and decoder 
must wait until the arrival of a decoder refresh signal before the 
situation can be corrected. There is an initial delay between 
the time when the buffer starts to fill and the time when the 
first frame is taken out of the buffer. This delay translates to the 
decoding latency. Usually the buffer is allowed to fill at a  
level between 50 and 90 percent of the buffer size before the 
draining starts.

•	 Group of pictures structure: The sequence of dependency of 
the frames is determined by the frame prediction structure. 
Recall from Chapter 2 that intra frames are independently coded, 
and are usually allocated more bits as they typically serve as 
anchor frames for a group of pictures. Predicted and bi-predicted 
frames are usually more heavily quantized, resulting in higher 
compression at the expense of comparatively poor individual 
picture quality. Therefore, the arrangement of the group of picture 
is very important. In typical broadcast applications, intra frames 
are transmitted twice per second. In between two intra frames, 
the predicted and bi-predicted frames are used so that two bi-
predicted frames are between the predicted or intra reference 
frames. Using more bi-predicted frames does not typically 
improve visual quality, but such usage depends on applications. 
Note that, in videos with rapidly changing scenes, predictions 
with long-term references are not very effective. Efficient 
encoders may perform scene analysis before determining the 
final group of pictures structure.

•	 Prediction block size: Intra or inter prediction may be performed 
using various block sizes, typically from 16×16 down to 4×4. For 
efficient coding, suitable sizes must be chosen based on the 
pattern of details in a video frame. For example, an area with finer 
details can benefit from smaller prediction block sizes, while a flat 
region may use larger prediction block sizes.
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•	 Motion parameters: Motion estimation search type, search area, 
and cost function play important roles in determining visual quality. 
A full search algorithm inspects every search location to find the 
best matching block, but at the expense of very high computational 
complexity. Studies have suggested that over 50 percent of the 
encoding computations are spent in the block-matching process. 
The number of computations also grows exponentially as the search 
area becomes larger to capture large motions or to accommodate 
high-resolution video. Further, the matching criteria can be selected 
from techniques such as sum of absolute difference (SAD) and sum 
of absolute transformed differences (SATD). Using SATD as the 
matching criteria provides better video quality at the expense of 
higher computational complexity.

•	 Number of reference pictures: For motion estimation, one or 
more reference pictures can be used from lists of forward or 
backward references. Multiple reference pictures increase the 
probability of finding a better match, so that the difference signal 
is smaller and can be coded more efficiently. Therefore, the 
eventual quality would be better for the same overall number of 
bits for the video. Also, depending on the video content, a frame 
may have a better match with a frame that is not an immediate or 
close neighbor. This calls for long-term references.

•	 Motion vector precision and rounding: Motion compensation 
can be performed at various precision levels: full-pel, half-pel, 
quarter-pel, and so on. The higher the precision, the better the 
probability of finding the best match. More accurate matching 
results in using fewer bits for coding the error signal, or 
equivalently, using a finer quantization step for the same number 
of bits. Thus quarter-pel motion compensation provides better 
visual quality for the same number of bits compared to full-pel 
motion compensation. The direction and amount of rounding 
are also important to keep sufficient details of data, leading to 
achieving a better quality. Rounding parameters usually differ 
based on intra or inter type of prediction blocks.

•	 Interpolation method for motion vectors: Motion vector 
interpolation can be done using different types of filters. Typical 
interpolation methods employ a bilinear, a 4-tap, or a 6-tap filter. 
These filters produce different quality of the motion vectors, 
which leads to differences in final visual quality. The 6-tap filters 
generally produce the best quality, but are more expensive in 
terms of processing cycles and power consumption.
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•	 Number of encoding passes: Single-pass encoding analyzes and 
encodes the data on the fly. It is used when the encoding speed is 
most important—for example, in real-time encoding applications. 
Multi-pass encoding is used when the encoding quality is 
most important. Multi-pass encoding, typically implemented 
in two passes, takes longer than single-pass, as the input data 
goes through additional processing in each pass. In multi-pass 
encoding, one or more initial passes are used to collect the video 
characteristics data, and a final pass uses that data to achieve 
uniform quality at a specified target bit rate.

•	 Entropy coding type: Entropy coding type such as CABAC or 
CAVLC does not generally impact video quality. However, if there 
is a bit-rate limit, owing to the higher coding efficiency, CABAC 
may yield better visual quality, especially for low-target bit rates.

Tradeoff Opportunities
Video encoders usually have tunable parameters to achieve the best possible quality or 
the best possible encoding speed for that encoder. Some parameters allow the encoder 
to analyze the input video and collect detailed information of the characteristics of the 
input video. Based on this information, the encoder makes certain decisions regarding 
the amount of compression to perform or the encoding mode to be used. Often, 
multiple passes are used for the analysis and subsequent encoding. Thus, the encoder 
is able to compress the video efficiently and achieve the best possible quality for the 
given algorithm. However, such analysis would require time and would slow down the 
encoding process. Further, the analysis work would increase the power consumption of 
the encoding device. Therefore, sometimes tuning of the certain parameters to adapt to 
the given video characteristics is not attempted in order to increase performance, or to 
meet system resource constraints. Rather, these parameters use pre-defined values for this 
purpose, thereby reducing analysis work and aiming to achieve the best possible speed.

Most of the parameters mentioned in the above section that affect visual quality 
also affect the encoding speed. To achieve a good tradeoff between quality and speed 
for a given video encoder, several parameters can be tuned. Although not all parameters 
listed here are tunable by the end user, depending on the encoder implementation, some 
parameters may be exposed to the end-user level.

•	 Bit rate, frame rate, resolution: Videos with high bit rate, 
frame rate, and resolution usually take longer to encode, but 
they provide better visual quality. These parameters should be 
carefully set to accommodate the application requirement. For 
example, real-time requirements for encode and processing may 
be met on a certain device with only certain parameters.

•	 Motion estimation algorithm: There are a large number of  
fast-motion estimation algorithms available in the literature, all of 
which are developed with a common goal: to increase the speed 
of motion estimation while providing reasonable quality. Since 
motion estimation is the most time-consuming part of video 
encoding, it is very important to choose the algorithm carefully.
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•	 Motion search range: For best quality, the motion search 
range should be set to a high value so that large motions can be 
captured. On the other hand, the larger the search window, the 
more expensive is the search in terms of amount of computation 
to be done. So, a large search area directly impacts the 
encoding speed, memory bandwidth, frame latency, and power 
consumption. In addition, the large motion vectors would require 
more bits to encode. If the difference signal between a source 
block and the predicted block has substantial energy, it may be 
worthwhile to encode the block in intra-block mode instead of 
using the large motion vectors. Therefore, a tradeoff needs to be 
made between the search parameters and coding efficiency in 
terms of number of bits spent per decibel of quality gain.

•	 Adaptive search: To achieve better quality, often the motion 
search algorithms can adapt to the motion characteristics of 
the video and can efficiently curb the search process to gain 
significant encoding speed. For example, in order to accelerate 
motion search, an algorithm can avoid searching the stationary 
regions, use switchable shape search patterns, and take advantage 
of correlations in motion vectors. Thus, encoding speed can be 
increased without resorting to suboptimal search and without 
sacrificing visual quality.

•	 Prediction types: Predicted and bi-predicted frames introduce 
various levels of computational complexity and generally 
introduce visual quality loss in order to achieve compression. 
However, they also provide visually pleasing appearance of 
smooth motion. Therefore, prediction type of a frame is an 
important consideration in tradeoffs between quality and 
encoding speed.

•	 Number of reference frames: Mutiple reference frames can 
provide better visual quality than single reference frames, but 
computing motion vectors from multiple references are more 
time-consuming. In resource constrained environment, such 
parameters are important factors in tradeoff considerations.

•	 Transform mode and partition size: A block may use 8×8 or 
4×4 sizes for the transform and various partition sizes for the 
prediction. On some platforms, processing four 4×4 blocks may 
be slower than processing one 8×8 block. However, depending 
on the amount of details available in the video, such decision 
may impact the visual quality, as 4×4 partitions have better 
adaptability to finer details.



Chapter 4 ■ Video Quality Metrics

160

•	 Skip conditions: A block can be skipped if it meets certain 
criteria. Better skip decisions can be made based on analysis of 
the quantized transform coefficients characteristics compared to 
simple heuristics, resulting in better quality. But a large amount of 
computation is necessary to adopt such complex algorithms. It is 
a clear tradeoff opportunity for resource-constrained devices.

•	 Deblocking filter parameters: Encoding speed is usually 
sensitive to deblocking filter parameters. Performing strong 
deblocking slows the encoding, but depending on the content 
and the amount of blocking artifact, it may provide significantly 
better visual quality.

Summary
This chapter discussed visual quality issues and factors impacting the perceptual quality 
of video to a human observer. First, we studied the various compression and processing 
artifacts that contribute to visual quality degradation, and various factors that affect  
visual quality in general. Next, we discussed various subjective and objective quality 
evaluation methods and metrics with particular attention to various ITU-T standards.  
We discussed several objective quality evaluation approaches in detail. These approaches 
are based on various factors: error-sensitivity, structural similarity, information fidelity, 
spatio-temporal, saliency, network awareness, and noise. We also discussed video coding 
efficiency evaluation metrics and some examples of standard-based algorithms.

In the final part of this chapter, we covered about the encoding parameters 
that primarily impact video quality. Tuning some parameters offer good tradeoff 
opportunities beween video quality and compression speed. These include bit rate, frame 
rate, resolution, motion estimation parameters, Group of Pictures structure, number of 
reference frames, and deblocking filter parameters. Some of these parameters may be 
available to the end user for tuning.
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